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Abstract 
 Energy detection is among the most popular spectrum sensing method for spectrum sensing due 

its low complexity. Unfortunately, its performance is poor at low SNR. In this paper we proposed a 
spectrum sensing method for cognitive radio network that improves the performance of energy detection. 
The proposed method based on distribution analysis using kurtosis as test statistic. This comes from the 
fact that distribution of received signal when a channel is occupied will be different from vacant channel. 
Noise tends to have a Gaussian distribution. Signal which faces multipath fading during the transmission 
way will have non Gaussian distribution. Sensing algorithm was tested using captured DTV signal. Result 
shows that our method performs well at low SNR. It achieves probability of detection of 90 % for 10 % 
Probability of false alarm for low SNR, below -20 dB. 
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1. Introduction 

Compare to a conventional radio, cognitive radio introduces two main different features, 
cognitive capability and reconfigurability [1],[2]. Cognitive radio allows same frequency bands to 
be used simulaneously by primary user and secondary user [3]. Primary user, as the owner of 
spectrum license, has the first usage priority. Secondary user may only use the vacant spectrum 
that is not being used by primary user. This spectrum sharing cognitive radio has been 
proposed to be used in TV’s white space bands opportunistically [4]. A new radio access 
standard IEEE 802.22 has been issued lately [5]. A cognitive radio platform may transmit at the 
spectrum holes in the TV bands as long as the channel is not being used by the primary user.  

As required by the standard, before transmitting, secondary user has to ensure that its 
transmission will not cause harmful interference to the primary user by its sensing capability. 
The spectrum sensing has to accurately detect the existing spectrum holes to avoid harmful 
interference. In the other hand, mistaken detection will result in lower spectrum holes utilization. 
The main challenging of cognitive radio spectrum sensing is its requirement to be able to detect 
a signal even at very low level with a stringent acceptable performance. The performance 
usually is measured by probability of detection (Pd) and probability of false alarm (Pf). IEEE 
802.22 demands a stringent sensing requirement. For maximum probability of false alarm of 10 
%, a sensing algorithm should achieve probability of detection 90 % for signal as low as -20 dB 
signal to noise ratio (SNR) [5],[6]. This means that some licensed signals have to be sensed at 
a very low SNR. In addition, wireless channel fading and noise fluctuation will also bring 
difficulties. 

Several sensing methods have been proposed to combat the above mentioned 
challenges such as matched filtering [7],[8], feature detection approach [9,[10] and energy 
detection [8],[11]-[14]. The matched filtering can maximize the SNR. It can detect signal at very 
low SNR. However, matched filtering method requires information such as pilot and frame 
structure of primary signal. For the feature detection method which relies on cyclostationarity, 
the sufficient signal information must be given as well. The required information introduces 
complexity in implementation, such as if the cognitive radio has to detect several different 
primary signals. On the other hand, energy detection does not require information about the 
signal to be detected. This method exploits energy difference between occupied and vacant 
channel condition. It compares the energy of received signal with pre-defined threshold. Due to 
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this low complexity, energy detection is the most preferable method. However, this method 
would be prone to the false detection since it only relies on the signal energy features [13],[14]. 
When signal fluctuates or noise is large, this method is likely to fail to distinguish between the 
absence and the presence of the signal [8],[13]. Eventhough it gives a good performance at 
high SNR, but its performance is very poor at low SNR.  

Many methods have been proposed to overcome the shortcomings of the energy 
detection approach. Some methods based on the eigenvalues from the covariance matrix of the 
received signal were proposed in [15]-[17]. Same as in energy detection, the methods also do 
not require primary signal information. However, the corresponding computational complexities 
are quite large. In this paper, we proposed a simpler method using 4th order moment, i.e. its 
kurtosis value. Kurtosis of received signal is used as test statistics. Their values are compared 
with a predefined threshold to distinguish between occupied spectrum and white space. A 
threshold is calculated from empirical estimation of system’s noise. Without knowledge of 
signal’s parameters, the target of kurtosis analysis is the output of signal’s FFT. Our experiment 
shows that it provides optimal performance, enabling detection at very low SNR primary signal 
as verified by simulation results. The rest of this paper will describe subsequently about 
formulation of spectrum sensing problem followed with explanation of proposed sensing 
method, results of performance evaluation by simulation using real DTV signal and conclusion. 
 
 
2. Research Method 

When spectrum sensing works to detect white space based on the received signal, 
there will be 2 possible conditions, channel is vacant or occupied. Decision has to be be made  
if the received signal is comprise of primary signals with inherent noise or it just comprise of 
sytem noise. Denote the discrete time received signal by r(n) during the sensing stage. The 
underlying primary signal is denoted by s(n) while w(n) is additive white Gaussian noise 
(AWGN). Signal received by spectrum sensing is   . There are two possible 
condtions. If there is no primary signal, detector will only receive noise. If primary user occupied 
channel by transmitting signals, detector will receive signal and noise. There are 2 different 
conditions on each time instance, H0: signal is absent and H1: signal is present. Suppose there 
are N samples for detection, the problem can then be modeled as equation of binary hypothesis 
testing:  

 
:  0, 1, … , 1 (1) 

 
:    0, 1, … , 1 (2) 

 
It is assumed that signal and noise are uncorrelated and each is an i.i.d. sequence. The 

spectrum sensing problem is therefore to determine whether the signal s(n) exists or not, based 
on the received signal samples r(n) [11],[15]. 

Spectrum sensing has to be accurately making a decision whether a channel is vacant 
or occupied. Deciding occupied as vacant will result in prohibited transmission which causes 
harmfull interference to primary user. While wrong decision of occupied for vacant makes lower 
spectrum holes utilization. A spectrum sensing method’s performance is evaluated by its  
probability of detection  and probability of false alarm . The 
detection algorithm in spectrum sensing works based on Neyman-Pearson’s theorem, which 
states that the objective is to maximize probability of detection  in a fixed probability of false 
alarm  = . The detector makes decision of H1 if it fulfills likelihood ratio test (LRT) of: 

 
|

|
  (3) 

 

Where threshold  is calculated by: 
 

|
:

  (4) 
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Suppose the primary signal is a wide-sense stationary Gaussian random process with 
variance of   and noise is additive wide Gaussian noise with variance of , likelihood ratio of 

 of equation 3 can be expressed as: 
 

∑

∑
     (5) 

 

Taking the natural logatitmic of  , we will get the log-likelihood ratio: 
 

  ln ∑        (6) 

 

Detector will make dicision of H1 if ∑ . This detector calculates energy of 
received data and compares it with a predefined threshold. It’s called energy detection or 
radiometer. Energy of the received signal will be composed of energy of signal and noise’s 
variance if the channel is being ouccupied. But if the primary signal is absent it will be equal to 
noise variance. To get its performance metrix (Pf and Pd), we need to define the distribution for 
both conditions. For the large samples, we can make assumption on the statistical distribution of 

  for both conditions to be Gaussan, then, the probability of false alarm and the probability 
of detection can be expressed as: 

 

   ;                                                                 (7) 

 
Where Q( ) is a q-function. As a class of Nyeman-Person detector, we set the threshold from 
equation 7 as: 
  

1                                        (8) 
 
where  is set to certain acceptable required value, mostly set at 0,1. We can see from 
equation 8 that the threshold is a function of the noise’s variance and the number of samples. A 
primary signal in the target frequency band will be easier to be detected if its level is received 
higher than noise’s variance. Signal to noise radio (SNR) is used to measure a ratio between 
the power level of received signal ( ) and noise’s variance. Probability of detection is a 
function of the SNR, and can be expresed as: 
 

 

                                      (9) 

 
 Energy detection is quite powerful spectrum sensing method when the signal is stronger 
than noise’s variance (high SNR). But, its performance will be poor at low SNR. At low SNR, 
noise uncertainty makes it impossible to detect the presense of signal even with high number of 
samples [8],[14].  

We consider another feature to improve the energy detection’s performance. In wireless 
communication, received signal will be faded due to multipath channel. If we check the 
distribution of received signal, mostly they will have a certain non Gaussian such as a Rayleigh 
distribution. The distribution of the received signal (contaminated with noise) will be different 
from noise only. Spectrum sensing problem then can be drawn as hypotheses testing of two 
conditions, a vacant channel as a Gaussian distribution received samples, and occupied as a 
non-Gaussian distribution: 
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:       ~  ̅, ; :      ̅,  (10) 
 

Then we can deduce condition based on the signal’s distribution, a Gaussian or not.                  
Kurtosis is one of quite easy measure of gaussianity [12]. Kurtosis is defined as: 
 

  3                           (11) 
 
Suppose that r has zero mean, and r has been normalized so that its variance is equal to 
one:  1.  Equation 16 will be: 

 
  3                                        (12) 

 
Since r is gaussion, its fourth moment equal to: 

 
3 3                                                         (13) 

 
So, for the samples with Gaussian distribution, they will have kurtosis equal to 0.  

The Kurtosis value of Guassian samples will not exactly equal to 0 if the number of 
samples is not long enough. For the limited samples of N: ̅       ……  , estimation of 
the kurtosis is: 

 

∑ ̅ 3 ∑ ̅               (14) 

 
Since, the sensing methods mostly perform detection in frequency domain, received 

samples r(n) is transformed to frequency domain R(f) by an FFT block. The result is complex-
value samples R(f). The FFT output comprised of real and imaginary parts. For the purpose of 
out sensing methods, we set the test statistics (T) into 3 kinds, and its respective performance 
will be evaluated:  

 

; ;   (15) 

 
We performed the non-Gaussianity test for the real parts and imaginary parts.  The 

proposed spectrum sensing algorithm is performed as follows: 
Step 1.  R(f) is got by performing N-point FFT to the received sample frame x(n). FFT is 

currently widely used for communication system employing multicarries (OFDM), the 
system which is also used by digital broadcasting system. 

Step 2.  Kurtosis is calculated for each frame of M samples of real part as well as imaginary part 
using equation 20.  

Step 3.  Calculation of the test statistics (T) using equation 21. 
Step 4. Reject the null hypothesis H0 in favor of the presence of primary signal transmission if T 

> threshold. Otherwise, accept H0 and declare the absence of the primary user’s signal. 
 
In the application of energy detection for spectrum sensing, initial sensing phase will be 

started by noise calibration to measure its variance in order to be able to set the threshold. This 
is also applied in our proposed method. The threshold is taken empirically from noise samples. 
To get the threshold, the detector will perform detection in the condition of H0. Detection events 
will be counted to get the detecton rate which shows the probability of false alarm.. As required 
by the standard, its value should be under 10 %. Adjustment of threshold will be made until the 
probability of false alarm achieve 10 %. This threshold then will be taken as detection threshold 
to be compared with test statistic in equation 10. In this proposed method, the detector works 
blindly as it doesn’t need information of signal parameters. 
 
 
3. Results and Discussion  

The performance was measured from its detection rate in low signal-to-noise ratios 
(SNR). This shows the sensitivity of proposed method in detecting a low level primary signal 
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existence. The primary signal source for the experiment was taken from real captured digital 
television (DTV) signal [20].  The reason for the choise is twofolds, for the type and its 
characteristics. For the DTV signal type, it represents one the spectrum sharing cognitive radio 
standard, IEEE 802.22, which operates in the TV whitespace. And the signal which was taken 
from real broadcasting signals carrier also will represent the real environment of the wave 
propagation especially its multipath fading channel’s effect. The captured signal’s frequency is 
545 MHz with 6 MHz bandwidth. Given the samping rate 50 MHz and the oversampling factor 
8/7 x bandwidth, we can calculate the sample rate or number of samples per second. The 
output of ADC is samples with speed equal to 6857 samples per 1 ms.  Number of samples 
taken for sensing is particularty important since our method works based on the received 
samples distribution. Even for the absent of primary signals, the distribution of received signal 
will not be Gaussian if the number of samples we took is not sufficienty long.  

Prior to test the proposed detection method, we need to set up the threshold. As in the 
energy detection, to define the threshold for our detector, we performed a kind of noise 
calibration. The purpose of noise calibration in the energy detection is to measure the noise’s 
variance. In order to get it, the energy detector works in the condition of no primary signal (H0). 
Once we get its value, the variance’s then used to set up the threshold for the detector. In the 
proposed method, instead of measure the variance, we took the noise’s kurtosis. Since the 
measured signal is taken at the output of fast Fourier transform (FFT), each sample will have 
real and imaginary parts. Kurtosis values were taken from both parts. According to equation 22, 
test statistics of T1, T2, and T3 for noise only are calculated. Calculation was performed 
sequently to each frame of M number of samples. The test statistic for each frame’s then 
compared with a predefined threshold. We set the threshold to 0.04. False decision (H1) will 
occur when the test statistic is above the threshold. The number of false decision devided by 
total number of test statistics shows the false alarm rate or the probability of false alarm (Pf). We 
set the number of FFT points to 2048 and 8192, the same number used by the DTV standard.  

 

 
 

Figure 1. False alarm rate as a function of M 
 
 
Figure 1 shows the result, the false alarm rate as a function of the number of samples. 

False alarm rate shows the number of times the detector made wrong decision of vacant 
channel as occupied. This will miss the opportunity for cognitive radio to maximize spectrum 
holes ulitization. This will be mainly a function of the threshold. If we set the threshold higher, 
this will result in lower false alarm, but will also make lower detection rate when later it has to 
work to detect primary signals. As a general spectrum sensing requirement, false alarm rate 
should not exceed Pf maximum of 10 %, as shown in the figure as a dashed line. By setting the 
fixed threshold, we intend to measure the other factors, including number of samples in a frame 
used in the test statistics calculation and also the effect of FFT size. The six lines in the figure 
show the result of experiment for each number of FFT points and for 3 test statistics. False 
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alarm rate will decrease as number of samples increase. In means that for a fixed threshold, 
increasing number of samples will make detector perform better due to the closer to its Gausian 
distribution for large samples. As we mentioned before, for the real Gausssian noise samples, 
output of the FFT will comprise of the real part and imaginary part, each will have Gaussian 
distribution and its kurtosis should be 0. Since we have 2 kurtosis values of the real and 
imaginary part, we can use both or omit one of them. From the figure, if we compare the 
performance of the test statistics, we will get that the test statistic of T1 performs better than T2 
and T3.  Using the both part by averaging give the highest performance, i.e. the lowest false 
alarm rate for the same number of samples (M). Since the variance of kurtosis estimates will 
decrease with the inceasing number of samples (M), we need to get the M minimum which 
fulfills the requirement. And if we used the T1, an average kurtosis of the real and the imaginary 
samples as the test statistic, the result also sugest that the number of sample should at least 
30000 to achieve false alarm rate below 10 %. 

After we set the threshold and it had been confirmed its respective probability of false 
alarm is under 10 %, we performed simulation to get the main performance metric, the detection 
rate. A captured DTV Signal is as primary signal. The main purpose of simulation is to measure 
the detector’s sensitivity. The sensitivity here means how low the level of primary signal can be 
detected by the proposed method. The primary signal was added by generated sequences of 
white Gaussian noise. Signal’s level was adjusted to represent the intended signal-to-noise ratio 
(SNR) values particulary to represent the samples value at low SNR. For each samples in a 
frame, fast Fourier transform (FFT) was performed. Estimation of kurtosis was calculated for 
each real samples and imaginary samples, and then used for test statistic (T1). The test statistic 
of frames (M) of 60,000 samples each was calculated. The test statistics (T1) for each frame 
then’s compared to the threshold above (0.04). The proposed detector will make decision of 
channel is being occupied if the test statistic is above the threshold. The total number of test 
statistics which are above the threshold devide by the total number of frames or the ratio of test 
statistic above threshold to the all available test statistic values is a detection rate for the 
respective SNR (probability of detection).  
 

 
 

Figure 2. Detection Rate for N-FFT=8,192, M=60,000 
 
 

Figure 2 shows the result of the experiment. The detection rate of proposed method 
was compared with the energy detection, both using simulation for several signal to noise ratio 
(SNR). The propose method’s performance’s better than energy detection and It also gives 
acceptable performance. They perform well for low SNR of under -20 dB. As the energy 
detection measures the energy difference, its performance deteriores rapidly once the primary 
signal’s power is close or below the noise’s variance. Our method which based on kurtosis 
measures the difference of its statistical distribution. The distribution of noise is Gaussian. We 
can say that in the condition of H0, the distribution of the FFT output should be Gaussian. The 



TELKOMNIKA  ISSN: 1693-6930  
 

A Cognitive Radio Spectrum Sensing Algorithm to Improve Energy Detection …. (Agus Subekti) 

723

approach will result in robust result as long as the number of samples is sufficient, so that its 
distribution will remain as in the original distribution. 

 

 
 

Figure 3. Detection rate comparison on number of samples 
   

 
 

Figure 4. Detection Rate for Several N-FFTs 
 
 

Number of samples to calculate the test statistic also has impact on probability of 
detection. Since the variance of kurtosis estimation is a function of 1/M, we conduct an 
experiment to compare the performance for different number of samples in a frame (M). If we 
modify the number of samples to be twice we get a comparison result. In Figure 3, we plot 
simulation result for M=30,000 and M=60,000 respectively. This figure shows that the sample 
size of 60,000 is acceptable to detect primary signal at low SNR. The 60,000 samples is equal 
to sensing time of 10 ms. We also conducted an experiment to measure the effect of FFT. 
Figure 4 shows the effect of N-FFT to the detector performance. When number of FFT set as 
variable, we can see that probability of detection increases with the increasing of FFT points. 
This resul come from the fact that the higher the FFT point the more accurate it will represent 
the signal in time domain, including its distribution. The N-FFT of 8192 gives acceptable 
performance. It performs well for low SNR of under -20 dB. 
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4. Conclusion 
In this paper we proposed a new spectrum sensing method based on kurtosis. Our 

method is able to work blindly without primary signal knowledge. Its performance improves the 
energy detection and it is comply with the standard requirement without adding much 
complexity. Two main factors have been investigated, number of FFT points and number of 
sample per testing frame. Number of FFT points gives more significant impact on the 
performance with minimum value is 8,192 points. Since threshold is got from real measurement 
of noise samples, our method can adapt to various noise characteristics.  
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