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Abstract 
In this paper, the quality performance of several filters in restoration of images corrupted with 

various types of noise has been examined extensively. In particular, Wiener filter, Gaussian filter, median 
filter and averaging (mean) filter have been used to reduce Gaussian noise, speckle noise, salt and pepper 
noise and Poisson noise. Many images have been tested, two of which are shown in this paper. Several 
percentages of noise corrupting the images have been examined in the simulations. The size of the sliding 
window is the same in the four filters used, namely 5x5 for all the indicated noise percentages. For image 
quality measurement, two performance measuring indices are used: peak signal-to-noise ratio (PSNR) and 
structural similarity (SSIM). The simulation results show that the performance of some specific filters in 
reducing some types of noise are much better than others. It has been illustrated that median filter is more 
appropriate for eliminating salt and pepper noise. Averaging filter still works well for such type of noise, but 
of less performance quality than the median filter. Gaussian and Wiener filters outperform other filters in 
restoring mages corrupted with Poisson and speckle noise. 
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1. Introduction 

Image processing is concerned of changing characteristics of images to improve their 
qualities. This includes various areas such as noise reduction, image enhancement and object 
recognition. In image restoration in particular, images are usually corrupted by noise during 
image acquisition and transmission. For example, images captured by today's cameras typically 
include some kind of noise or blur. There are several types of noise such as Poisson noise (also 
known as photon noise), salt and pepper noise (also known as impulse noise or spike noise), 
Gaussian noise (also known as electronic noise) and speckle noise (also known as 
multiplicative noise). In reducing these types of noise, numerous filters have been proposed by 
researchers such as Wiener filter, Gaussian filter, median filter and averaging filter.  

In [1], the proposed model to recover images corrupted by Poisson noise is based on 
sparse representations of images where an alternating minimization scheme together with 
variable splitting have been used to solve the resulted optimization problem. In [2], properties of 
variance stabilization have been used in images to estimate unknown Poisson noise 
parameters.  

The proposed algorithm in [3] for Poisson noise reduction is based on alternating 
direction optimization method. A fast and effective method is proposed in [4] to solve a Poisson-
modified total variation model in which a large time step is used in discretizing the gradient 
descent flow. In [5], the Poisson-distributed measurement noise components are included in the 
proposed filter that is based on minimum-variance. In [6], the proposed work for recovering 
images corrupted by Poisson noise is based on confocal microscopy typically used for 3-D 
imaging of biological living specimens which produce images with high resolution. The Poisson 
noise is reduced through the method proposed in [7] using the Anscombe variance stabilizing 
transform. 

A new quaternion filter for restoring color images corrupted with Gaussian noise is 
introduced in [8] based on a tight bound optimization of the quaternion mean square error 
(MSE) between the resultant (restored) image and the noise-free one. A fuzzy method based on 
weighted averaging is proposed in [9] to reduce mixed impulsive and Gaussian noise in color 
images. The method introduced in [10] is based on singular values to estimate the noise level of 
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images corrupted with Gaussian noise. In [11], the proposed method for restoring images 
corrupted with Gaussian-impulse mixed noise is based on minimizing an objective function that 
includes a content-dependent fidelity term. In [12], a method is proposed to reduce Poisson-
Gaussian noise mixture based on optimization of a linear expansion of thresholds. The 
introduced method in [13] works for mages corrupted with impulse noise as well as for those 
corrupted by impulse-Gaussian mixed noise. This method is based on both a modified total 
variation minimization scheme and median filtering.  

In [14], the proposed method is based on image subspaces to reduce speckle noise 
from synthetic aperture radar (SAR) images. Various multiscale nonlinear thresholding methods 
for elimination of ultrasound speckle noise is proposed in [15]. The method introduced in [16] 
uses an adaptive data-driven exponential operator that is based on wavelet coefficients of the 
ultra sound images to reduce the effects of speckle noise. A generalized framework based on 
Bayesian nonlocal means is proposed in [17] to reduce speckle noise from synthetic aperture 
radar images corrupted with multiplicative speckle noise. The proposed scheme in [18] is based 
on Gamma distribution to improve quality of ultrasound images corrupted with speckle noise. 

An iterative algorithm in which two decisions are required in each iteration to detect 
impulsive noisy pixels is proposed in [19]. Many two-stage algorithms for filtering of images 
corrupted particularly with impulse noise are proposed [20-25] where detection of noisy pixels is 
carried out in the first stage and reduction of this noise is accomplished in the second. A 
comprehensive overview of image filtering schemes and algorithms is introduced in [26].  
This paper is mainly concerned with measuring the quality of performance of these filters in 
removing some types of noise, and finding the most optimum imaging filter, in terms of 
eliminating each type of such noises, using two performance measuring indices. 

 
 

2. Research Method 
The typical two dimensional (2-D) filters that are commonly used in image filtering 

techniques are the median filter, averaging (mean) filter, Gaussian filter and Wiener filter. In the 
median filter, the processed pixel is replaced by the median value of its  x  neighborhood ( x  
is the size of the sliding window or kernel). In contrast, the averaging filter replaces each pixel at 
the center of the sliding window by the average (mean) value of its  x  neighborhood.  

On the other hand, the Gaussian filter replaces each processed pixel at the center of 
the kernel by another value based on the Gaussian (normal) distribution with more weights for 
pixels close to the center of the kernel and less weights in the outward direction from the center 
of the sliding window. The Wiener filter is an adaptive filter that replaces each processed pixel at 
the center of the kernel by a computed value based on statistical approach (estimates of local 
mean and variance around).  

 
2.1. Image Quality Metrics 

Numerous performance measuring indices are typically used by researchers to evaluate 
the quality of the image filtering techniques, i.e., the similarity or closeness between the filtered 
(de-noised) image and the original uncorrupted image, and the capability of preserving image 
edges and details. In this paper, peak signal to noise ratio (    ) and the structural similarity 
(SSIM) are used. These performance measuring quality metrics are defined as follows. 

 

    
 

  
∑  ∑ (         )

  
   

 
          (1) 

 

             (
(   ) 

   
)           (2) 

 
where     is the mean squared error between the restored resultant image (R) and the original 

image(G),      and   is the bit depth or the number of bits in each pixel (for  -bit images, for 

example,  =8 and  =256), M and N are the total number of pixels in the horizontal and vertical 
dimensions of the image (rows and columns of the matrix representing the image), and      and 

     are the pixel values in the (   )   locations of the filtered image and the original clean image, 

respectively.  
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The structural similarity (SSIM) index is a full reference metric that is commonly used to 
measure the similarity between two images. In other words, it is used for measuring the quality 
of the restored image with the original clean image used as a reference. Unlike peak signal-to-
noise ratio (PSNR), the SSIM metric is based on visible structures in the image. It is claimed to 
be an improvement over other traditional metrics such as PSNR and MSE, which might not be 
consistent with human eye perception. It combines the luminance, contrast, and structure of the 
images into one single performance metric. In particular, the SSIM quality metric between two 
image signals   and   is a function of three components: luminance (l), contrast (c), and 
structure (s), where the luminance is a function of the mean intensities of these two images, the 
contrast is a function of their standard deviations, and the structure is a function of their 
covariance. The SSIM quality index can be defined as follows [27].  
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where;  (   ) is the luminance comparison function defined as 
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included to avoid instability when (  
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 (   ) is the contrast comparison function defined as 
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   and    are the standard deviation values of the   and   images, respectively, and    is a 

constant included to avoid instability when (  
    

 ) is very close to zero. 

 (   ) is the structure comparison function defined as 
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    is the covariance of the   and   images, and    is a constant included to avoid instability 

when the product (     ) is very close to zero. The parameters       are chosen to adjust the 

relative importance of the three components indicated above. If we choose        , and 

       , the SSIM is simplified to 
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3. Results and Analysis 
Simulations in this paper were performed in MATLAB using many images two of which 

are shown in the results in this section, namely Jet Plane image (512x512) and Walk Bridge 
image (512x512) as shown in Figure 1 and Figure 2, respectively. Wiener, Gaussian, median 
and averaging filters have been used to reduce Gaussian, Poisson, speckle and impulse noise. 
PSNR in decibels (dB) and SSIM were used to measure the quality of the filtered image after 
being corrupted by numerous types of noise with different densities (percentages). The size of 
the sliding window was chosen to be 5x5 for all filters being used. This size in particular has 
been chosen because it results in better performance for the maximum level of noise used in 
this paper (better performance with minimum blur). 

In Tables 1 and 2, the Jet Plane and Walk Bridge images, respectively, are corrupted 
with Gaussian noise of zero mean and different noise variances that range from 0.05 to 0.25. 
The two tables show that the four filters have comparable results in removing Gaussian noise 
with a little better performance quality of the averaging filter. 
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Figure 1. Jet plane image Figure 2. Walk bridge image 
 
 

Table 1. PSNR in dB and SSIM of restored Jet Plane Image after being Corrupted with 
Gaussian Noise of Zero Mean and different values of variances Using Several Filters  

(V=noise variance) 
Jet Plane image corrupted 

with Gaussian noise 
Wiener Filter 

(5x5) 
Gaussian Filter 

(5x5) 
Median Filter (5x5) 

Averaging Filter 
(5x5) 

V PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

0.05 14.15 0.1194 23.41 0.5310 23.71 0.4736 23.05 0.4541 23.38 0.5674 
0.10 11.78 0.0778 20.77 0.4120 20.84 0.3642 20.67 0.3383 21.21 0.4671 
0.15 10.53 0.0596 19.30 0.3558 19.18 0.3067 19.29 0.2780 19.76 0.4102 
0.20 9.75 0.0499 18.32 0.3235 18.07 0.2740 18.26 0.2428 18.69 0.3741 
0.25 9.22 0.0442 17.63 0.3026 17.31 0.2516 17.52 0.2195 17.96 0.3484 

 
 

Table 2. PSNR in dB and SSIM of restored Walk Bridge Image after being corrupted with 
Gaussian Noise of Zero Mean and different values of Variances Using Several Filters (V=noise 

variance) 
Walk Bridge image 

corrupted with Gaussian 
noise 

Wiener Filter (5x5) 
Gaussian Filter 

(5x5) 
Median Filter (5x5) 

Averaging Filter 
(5x5) 

V PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

0.05 13.80 0.2082 21.77 0.4754 22.17 0.5259 21.13 0.4120 21.72 0.4554 

0.10 11.44 0.1309 20.08 0.3877 20.13 0.4195 19.56 0.3353 20.46 0.3910 
0.15 10.31 0.0996 19.06 0.3409 18.90 0.3617 18.42 0.2880 19.52 0.3513 
0.20 9.60 0.0826 18.47 0.3159 18.09 0.3218 17.59 0.2533 18.82 0.3196 
0.25 9.08 0.0697 17.85 0.2880 17.45 0.2947 16.85 0.2246 18.20 0.2987 

 
 

In Tables 3 and 4, the Jet Plane and Walk Bridge images, respectively, are corrupted 
with speckle noise of zero mean and different noise variances ranging from 0.05 to 0.25. As 
shown in these two tables, the Gaussian and Wiener filters, in order, have the best performance 
in removing the speckle noise while the median filter has the worst results in removing such 
type of noise. It is worth mentioning that the Wiener filter adaptively restores the original image 
based on the local image variance by performing little smoothing when the variance is large and 
more smoothing when the variance is small. On the other hand, the Gaussian filter works by 
convolving the 2-D Gaussian distribution function with the noisy image. It is somewhat similar to 
the averaging filter, however, central pixels in the Gaussian filter have a higher weighting than 
those on the periphery. 

In Tables 5 and 6, the Jet Plane and Walk Bridge images, respectively, are corrupted 

with Poisson noise of different scales ranging from 1    to 1    . These two tables show that 
for lower quantities of noise, the Wiener and Gaussian filters have the best performance. For 
higher values of this noise, the median filter has the worst performance and the other filters 
have almost comparable results.  
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Table 3. PSNR in dB and SSIM of restored Jet Plane Image After being Corrupted with Speckle 
Noise of Zero Mean and Different Values of Noise Variance Using Several Filters (V=noise 

variance) 
Jet Plane image 

corrupted with speckle 
noise 

Wiener Filter (5x5) 
Gaussian Filter 

(5x5) 
Median Filter (5x5) 

Averaging Filter 
(5x5) 

V PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
0 .05 16.53 0.2068 25.75 0.6177 25.92 0.5715 23.40 0.4692 24.49 0.6318 
0.10 14.10 0.1465 23.13 0.4996 23.16 0.4670 21.14 0.3688 22.84 0.5505 

0 .15 12.65 0.1167 21.29 0.4302 21.29 0.4081 19.71 0.3151 21.46 0.4975 

0.20 11.60 0.0966 19.92 0.3879 19.91 0.3644 18.71 0.2788 20.22 0.4566 
0.25 10.77 0.0835 18.81 0.3528 18.75 0.3322 17.91 0.2521 19.21 0.4203 

 
 

Table 4. PSNR in dB and SSIM of Restored Walk Bridge Image after being Corrupted with 
Speckle Noise of Zero Mean and Different Values of Noise Variance Using Several Filters 

(V=noise variance) 
Walk Bridge image 

corrupted with speckle 
noise 

Wiener Filter (5x5) 
Gaussian Filter 

(5x5) 
Median Filter 

(5x5) 
Averaging Filter 

(5x5) 

V PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

0.05 19.53 0.5231 23.72 0.5829 25.03 0.7025 22.65 0.5075 22.85 0.5370 
0.10 16.70 0.3910 22.06 0.5128 23.65 0.6395 21.53 0.4543 22.28 0.5068 
0.15 15.07 0.3176 20.93 0.4684 22.57 0.5944 20.76 0.4156 21.72 0.4829 
0.20 13.92 0.2691 20.05 0.4379 21.72 0.5587 20.10 0.3893 21.22 0.4621 
0.25 13.05 0.2325 19.43 0.4138 20.98 0.5257 19.53 0.3674 20.72 0.4439 

 
 

Table 5. PSNR in dB and SSIM of Restored Jet Plane Image after being Corrupted with Poisson 
Noise of Different Scales Using Several Filters 

Jet Plane image corrupted with            
Poisson noise 

Wiener Filter (5x5) Gaussian Filter (5x5) Median Filter (5x5) 
Averaging Filter 

(5x5) 

Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

1    31.55 0.7330 33.03 0.8949 32.21 0.9185 29.31 0.8663 26.13 0.8281 

5    24.58 0.4473 30.84 0.8432 30.78 0.8336 28.45 0.8002 25.94 0.7929 

1     21.57 0.3379 29.33 0.7945 29.51 0.7572 27.61 0.7367 25.71 0.7548 

5     14.57 0.1520 24.05 0.5123 24.61 0.4963 23.81 0.4867 24.18 0.5762 

1     11.54 0.1000 21.32 0.3824 21.96 0.3816 21.21 0.3562 22.85 0.4669 

 
 

Table 6. PSNR in dB and SSIM of Restored Walk Bridge Image after being corrupted with 
Poisson noise of Different Scales Using Several Filters 

Walk Bridge image corrupted with 
Poisson noise 

Wiener Filter (5x5) Gaussian Filter (5x5) Median Filter (3x3) 
Averaging Filter 

(3x3) 

Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

1    33.48 0.8537 29.58 0.8537 26.90 0.7956 27.07 0.8016 26.31 0.7801 

5    26.51 0.7755 28.23 0.8164 26.59 0.7762 26.26 0.7534 25.962 0.7547 

1     23.52 0.6643 27.00 0.7747 26.23 0.7543 25.49 0.7099 25.55 0.7279 

5     16.51 0.3508 21.97 0.5676 24.14 0.6408 22.01 0.5262 23.22 0.5909 

1     13.50 0.2329 19.25 0.4516 22.44 0.5531 19.62 0.4033 21.45 0.4976 

 
 

In Tables 7 and 8, the Jet Plane and Walk Bridge images, respectively, are corrupted 
with salt and pepper noise of different percentages varying from 5% to 40%. As depicted in 
these two tables, the median filter has the superior performance over the other filters in 
removing this type of noise. It should be noted that the median filter has a better performance in 
removing salt and pepper noise than the averaging filter since the median value, in general, is 
much less sensitive to outliers than the average (mean) value.  
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Table 7. PSNR in dB and SSIM of Restored Jet Plane Image After being Corrupted with Salt & 
Pepper Noise of Different Densities Using Several Filters (D=noise density)  

Jet Plane image 
corrupted with salt & 

pepper noise 

Wiener Filter 
(5x5) 

Gaussian Filter 
(5x5) 

Median Filter 
(5x5) 

Averaging Filter 
(5x5) 

D PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

5% 17.94 0.3479 23.33 0.5711 26.72 0.6712 29.31 0.8864 24.66 0.6868 
10% 14.93 0.1887 21.41 0.4720 23.96 0.5285 28.51 0.8807 23.30 0.5895 

15% 13.13 0.1286 20.36 0.4140 22.09 0.4412 27.73 0.8734 21.99 0.5240 

20% 11.91 0.0973 19.51 0.3709 20.55 0.3772 26.58 0.8643 20.84 0.4716 
25% 10.95 0.0771 18.73 0.3392 19.37 0.3317 25.44 0.8549 19.77 0.4249 
30% 10.17 0.0640 17.98 0.3117 18.28 0.2950 24.63 0.8448 18.82 0.3898 
35% 9.45 0.0522 17.21 0.2898 17.41 0.2668 23.83 0.8334 17.99 0.3561 
40% 8.90 0.0430 16.61 0.2674 16.53 0.2371 23.08 0.8165 17.11 0.3289 

 
 

Table 8. PSNR in dB and SSIM of restored Walk Bridge Image After being Corrupted with salt 
and Pepper Noise of Different Densities Using Several Filters (D=noise density) 

Walk Bridge image 
corrupted with salt & 

pepper noise 

Wiener Filter 
(5x5) 

Gaussian Filter 
(5x5) 

Median Filter 
(5x5) 

Averaging Filter 
(5x5) 

D PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
5% 18.26 0.5118 22.26 0.5329 24.59 0.6755 24.22 0.6212 22.73 0.5222 

10% 15.25 0.3216 20.91 0.4603 22.90 0.5834 24.04 0.6161 22.00 0.4799 

15% 13.55 0.2300 20.11 0.4121 21.59 0.5132 23.70 0.6088 21.19 0.4364 
20% 12.27 0.1731 19.38 0.3733 20.42 0.4519 23.51 0.6034 20.46 0.4013 
25% 11.27 0.1341 18.78 0.3410 19.43 0.4011 23.15 0.5945 19.76 0.3713 
30% 10.48 0.1082 18.28 0.3199 18.59 0.3587 22.79 0.5854 19.09 0.3447 
35% 9.81 0.0897 17.70 0.2910 17.83 0.3215 22.38 0.5737 18.44 0.3189 
40% 9.23 0.0738 17.22 0.2649 17.12 0.2906 21.88 0.5581 17.79 0.2915 

 
 

4. Conclusion 
This paper is mainly focused on measuring the quality of some filters in removing some 

types of noise and which filter better suits eliminating each type of such noises using some 
common performance measuring indices. Several filters have been used to restore images 
corrupted with various types of noise. In particular, Wiener, Gaussian, median and averaging 
filters have been used to eliminate Gaussian noise, speckle noise, salt and pepper noise and 
Poisson noise. Simulation results for images corrupted with a wide range of noise quantities 
have been examined using both peak signal to noise ratio and structure similarity as 
performance measuring indices using the same size of sliding window. The results show that 
the four filters have almost comparable performance in eliminating Gaussian noise. The median 
filter has a superior performance in comparison with other filters in reducing salt and pepper 
noise, and has the worst performance for other types of noise. Wiener and Gaussian filters 
show good performance in restoring images corrupted with speckle and Poisson noise. 
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