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Abstract 
 The purpose of this paper was to discover an anomalous-free business process model from 

event logs. The process discovery was conducted using a graph database, specifically using Neo4J tool 
involving trace clustering and data filtering processes. We also developed a control-flow pattern to 
address, AND relation between activities named parallel business process. The result showed that the 
proposed method improved the precision value of the generated business process model from 0.64 to 0.81 
compared to the existing algorithm. The better outcome is constructed by applying trace clustering and 
data filtering to remove the anomaly on the event log as well as discovering parallel (AND) relation 
between activities. 
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1. Introduction 

Process discovery has been intensively used to generate business process model [1] 
as it is beneficial in supporting the companies to understand the business process, identify 
possible anomalies, monitor and control the executed operation [2]. The generated business 
process model represents the behavior of performed activities mined from event logs [3]. 

There are several algorithms introduced to mine the event logs, such as Alpha  
Miner [4], Heuristic Miner [5, 6], Alpha-T [7], Coupled Hidden Markov Model of Non-free Choice 
and Invisible Prime task (CHMM-NCIT) [8], Hidden Markov Model of Parallel Business Process 
(HMM-Parallel) [9], and Coupled Hidden Markov Model of Invisible Task (CHMM-Invisible) [1]. 

The recent researches on business process discovery are on anomaly detection. An 
Alpha algorithm is a basic algorithm to generate a business process model from the event  
logs [10], but it is limited to mining short loops [11]. Alpha+ algorithm was then introduced to 
solve Alpha algorithm problem, but it failed to mine non-free choice or implicit dependencies 
anomaly [12]. Alpha++ algorithm answered short loop mining and non-free choice problems, 
however, it was unable to mine invisible task anomaly which then addressed by Alpha# 
algorithm [13]. Alpha$ algorithm [14] was able to discover both invisible task and non-free 
choice anomalies simultaneously. However, Alpha miner algorithms as the above-mentioned 
processed event logs directly without data filtering, anomaly business process due to the 
existence of low-frequency values on several trace clusters. 

Therefore, this paper proposed a method to tackle this problem by using a graph 
database incorporating trace clustering and data filtering. Graph database was used since it is 
flexible to store interconnected activities of business [15], to show the relations among  
activities [16], and to adjust business needs [17]. Neo4J was employed along with Cypher 
Query Language (CQL) [18]. 
 
 
2. Research Method 

Figure 1 shows our proposed method to generate an anomalous-free business process 
model. It consists of two main stages. The first one is the anomaly deletion stage, while the 
second stage deals with business process discovery. 
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Figure 1. From event logs to generated anomalous-free business process model in  
the form of a graph model 

 

 

2.1. Anomaly Deletion Stage 
This stage is dedicated to removing all possible business process anomalies in the 

event log. First, a graph model is constructed from the event logs by loading the event logs into 
NEO4J. There are two functions to load the event logs, i.e., create and merge functions. The 
create function is used since it creates nodes based on all existing data in the event logs. The 
event logs are loaded into two labels, i.e., Activity and CaseActivity. Activity label contains all 
columns inside of event logs while CaseActivity label only contains CaseId and activity name. 
The Activity label is used for data filtering step, while CaseActivity label is used for case 
sequence discovery and trace clustering steps. Figure 2 shows the query structure of loading 
event logs into Neo4J. 

 
 

 
 

Figure 2. Load event log into neo4j using create function query 
 
 

Having loaded the event logs into nodes, they are connected by case ID and the order 
of activity in the associated event logs instead of attached by case. Therefore, in the second 
step, the case sequence is discovered. If a node is the successor of the other node, a NEXT 
label is put on the relation between them. Figure 3 depicts the case sequence construction 
query. 

 
 

 
 

Figure 3. Case sequence discovery query 
 

 

After connecting the nodes, the next step is performing trace clustering. The purpose of 
trace clustering is to group node sequences having the same trace and calculate its 
occurrences within each cluster. The query of trace clustering in Neo4J is shown in Figure 4. 
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Figure 4. Trace clustering query 
 
 

After traces are clustered, data filtering is conducted. The objective of this step is to 
remove the anomaly data. In this case, it is the two lowest frequencies of occurrence of the 
trace. Because the Neo4J cannot save the result of a query, automatic deletion cannot be done 
using Neo4J. To overcome this problem data deletion is performed by reading the trace length 
in each case ID and then the two lowest frequencies are deleted. The query removes the data 
based on the results of the trace clustering by changing Frequencies variable on where clause 
as depicted in Figure 5. 

 
 

 
 

Figure 5. Data filtering cipher query 
 
 

To obtain a correct business process model in the next stage, all nodes having the 
same activity name must be merged, and the existing case sequence relations must be 
removed. After both processes as mentioned above, it follows with deleting Case ID inside 
CaseActivity label since it leads to producing wrong event log sequence relations. Figure 6 
displays a Neo4J query to conduct the merging and deletion processes.  

 
 

 
 

Figure 6. Node merging and relation delete query 
 
 

2.2. Business Process Discovery Stage 
The second stage of the proposed method is discovering the business process as the 

continuation of the previous stage. First, an event log sequence needs to be created by 
connecting all nodes based on the order of activities. The Neo4J query of event log sequence 
discovery presented in Figure 7 is slightly similar to the one used for case sequence discovery 
used in the previous stage.  
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Figure 7. Event log discovery sequence query 
 
 

The second step of this stage is discovering the control-flow pattern. It consists of AND, 
XOR, OR SPLIT, and OR JOIN relations. The incoming and outgoing edges determine these 
relations. Figure 8 shows the added AND and XOR connection queries along with the existing 
OR relation queries. This step produces the final graph model. 

 
 

 
 

Figure 8. Control-flow pattern discovery query 
 
 
3. Results and Analysis 

The event log must contain Case_ID as a process instance, activities name, start 
timestamp and end timestamp. Table 1 describes the content of event logs of interlibrary loan 
application used in this research. In total, it contains 74 cases and 1293 activities which are 
divided into 31 types of activities.  

 
 

Table 1. The Fragment of Interlibrary Loan Event Log 
Case_ID Activity Start_Timestamp End_Timestamp 

PP1 Request material 02-05-17 07:05 02-05-17 07:10 
PP1 Check availability 02-05-17 07:10 02-05-17 10:15 
PP1 Confirm material availability 02-05-17 10:15 02-05-17 10:20 
PP1 Send material 02-05-17 10:20 02-05-17 14:15 
PP1 Confirm material arrival 02-05-17 14:15 02-05-17 14:20 
PP1 Take material 02-05-17 14:20 03-05-17 14:35 
PP1 Use material 03-05-17 14:35 15-05-17 07:15 
PP1 Return material before due time 15-05-17 07:15 15-05-17 07:30 
PP1 Send back material 15-05-17 07:30 15-05-17 10:07 
PP1 Confirm material send back the arrival 15-05-17 10:07 15-05-17 10:12 
PP1 Check material condition 15-05-17 10:12 15-05-17 13:12 
PP1 Confirm material in good condition 15-05-17 13:12 15-05-17 13:17 
PP1 Confirm loan finish 15-05-17 13:17 15-05-17 3:25 

 
 
Figure 9 depicts the implementation result of load data and case sequence discovery. 

This research limits the case sequence discovery on two Case IDs, i.e., PP1 and PP2. The 
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result of trace clustering which is the is the frequency of occurrences of traces is shown in  
Table 2. In Figure 9, the names of activities are aliases of the real names.  
 
 

 
 

Figure 9. Data loading and case sequence discovery limited on PP1 and PP2 case IDs 
 
 

Table 2. Trace Clustering Implementation using Neo4J 
Frequencies Trace_Type CaseId Trace_Length 

12 
RM, CA, CMA, SM, MA, TM, UM, UM, SBM, 

MSB, CMC, GC, LF 

PP34, PP16, PP1, PP48, PP15, 
PP18, PP68, PP50, PP47, 

PP20, PP67, PP52 
13 

8 
RM, CA, CMA, SM, MA, TM, UM, RMA, SBM, 
MSB, CMC, GC, DF, SFD, APF, PF, PAY, LF 

PP49, PP58, PP7, PP19, PP39, 
PP51, PP26, PP17 

18 

6 
RM, CA, CMA, SM, MA, TM, UM, RLE, LEA, 
ALE, UM, RLE, LEA, DLE, UM, SBM, MSB, 

CMC, GC, LF 

PP25, PP57, PP69, PP6, PP38, 
PP70 

20 

6 
RM, CA, CMA, SM, MA, TM, UM, RLE, LEA, 
DLE, UM, SBM, MSB, CMC, BC, DF, SFD, 

APF, PF, PAY, LF 

PP31, PP13, PP45, PP12, 
PP44, PP32 

21 

5 
RM, CA, CMA, SM, MA, TM, UM, RLE, LEA, 
ALE, UM, RMA, SBM, MSB, CMC, GC, DF, 

SFD, APF, PF, PAY, LF 
PP10, PP63, PP66, PP42, PP29 22 

5 
RM, CA, CMA, SM, MA, TM, UM, RLE, LEA, 
ALE, UM, RLE, LEA, ALE, UM, UM, SBM, 

MSB, CMC, GC, LF 
PP46, PP33, PP62, PP65, PP14 21 

5 
RM, CA, CMA, SM, MA, TM, UM, RLE, LEA, 
ALE, UM, UM, SBM, MSB, CMC, BC, DF, 

SFD, APF, PF, PAY, LF 
PP61, PP43, PP64, PP30, PP11 22 

4 RM, CA, CMA, SM, MA, EXT, SBM, MSB, LC PP37, PP24, PP56, PP5 16 

4 
RM, CA, CMA, SM, MA, TM, UM, RLE, LEA, 

DLE, UM, SBM, MSB, CMC, GC, LF 
PP55, PP4, PP36, PP23 18 

4 
RM, CA, CMA, SM, MA, TM, UM, RLE, LEA, 

ALE, UM, UM, SBM, MSB, CMC, GC, LF 
PP22, PP3, PP54, PP35 17 

4 
RM, CA, CMA, SM, MA, TM, UM, RMA, SBM, 
MSB, CMC, BC, DF, SFD, APF, PF, PAY, LF 

PP28, PP9, PP60, PP41 9 

4 
RM, CA, CMA, SM, MA, TM, UM, UM, SBM, 
MSB, CMC, BC, DF, SFD, APF, PF, PAY, LF 

PP40, PP27, PP59, PP8 18 

3 RM, CA, CMU, DR, LC PP21, PP53, PP2 5 
2 RM, PMR, BS, UBL, DR, LC PP72, PP71 6 
2 RM, BS, PMR, UBL, DR, LC PP73, PP74 6 

 
 

Mapping of aliases and real names can be seen on Table 3. Table 3 contains activity 
names as the real names of activities in the event log, and aliases are used to simplify those 
names of activities. 

Based on the results of trace clustering query in Table 2, the two smallest values are 
two and three which appears in ((PP72, PP71), (PP73, PP74)) and (PP2, PP21, PP53), 
respectively. By doing Node Merging, the relationship between nodes is stacked by the number 
of occurrences of the relation. In this paper, the number of NEXT relation between activity 
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Request material and Check availability activity is 70 relations. Therefore, it is necessary to 
delete NEXT relation and then redo sequence discovery to form the correct business process 
model. After deleting the NEXT relation, Case ID on the CaseActivity label must be removed to 
generate the correct business process model in the event log sequence discovery step. 
 

 

Table 3. Alias of Interlibrary Loan Event Log Activities 
Alias Activity Name Alias Activity Name 

RM Request material DR Deny request 
CA Check availability LC Confirm loan cancel 

CMA Confirm material availability RLE Request lending extension 
SM Send material LEA Ask lending extension availability 
MA Confirm material arrival ALE Allow lending extension 
TM Take material DLE Deny lending extension 

UM Use material EXT 
Requested material pickup exceed the time 

limit 
RMB Return material before due time RMA Return material after due time 
SBM Send back material DF Determine the amounts of fines to be paid 
MSB Confirm material send back the arrival SFD Send detail of the fines 
CMC Check material condition APF Ask the user to pay the fine 
GC Confirm material in good condition PF Pay the fines and confirm payment 
LF Confirm loan finish PAY Confirm payment 

CMU Confirm material unavailable BC Confirm material in a bad condition 
BS Check user blacklist status PMR Check user past material request 

UBL 
A user is blacklisted, or user has not 
returned material after the time limit 

  

 
 
The result of event log sequence discovery is shown in Figure 10. The event log 

sequence discovery connects entire nodes to an event log in the order of events. The relation 
created at this stage describes the overall activities from start to finish and branching activity if 
there are branches in the event log. In Figure 10, the activities that only exist on PP2, PP21, 
and PP53 are Deny Request and Confirm Unavailable Material Not Found. This indicates that 
anomaly data deletion has been successfully performed. The nodes formed in Figure 11 are 26 
nodes, in contrast to before the deletion of anomalous data the number of nodes is 31. 

 
 

 
 

Figure 1. Filtered graph model with sequence relation 
 

 

The result of discovering control-flow patterns is shown in Figure 11. In the filtered 
graph model of an interlibrary loan, only XOR pattern exists. Figure 11 is a modified Figure 10. 
Some sequence relations is deleted and replaced by XORSPLIT and XORJOIN as the results of 
control-flow pattern discovery. 
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Figure 2. Filtered graph model with control-flow pattern 
 

 

The result of modeling the event log without data filtering is shown in Figure 12. There 
are five more nodes or activities in Figure 12 compared to Figure 11. Some of the deleted nodes 
contain ANDSPLIT and ANDJOIN relation, and some nodes contained XORSPLIT and 
XORJOIN. 

 
 

 
 

Figure 3. Unfiltered graph model with a control-flow pattern 
 
 

After the graph model has been formed, the last step is to compare both graph fitness 
and precision. Fitness and precision are one of the measurement aspects to measure the 
quality of the business process model. Fitness measures how many processes that can be 
depicted in the model. Meanwhile, precision estimates how many traces in the event log can be 
depicted in the model. In (1), the number of captured cases in the model is stored in 
variable 𝑛 (𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑_𝐶𝑎𝑠𝑒𝑠), while the number of cases in the event log is stored in 

variable 𝑛(𝐶𝑎𝑠𝑒𝑠_𝑖𝑛_𝐸𝑣𝑒𝑛𝑡_𝐿𝑜𝑔). In (2), the number of captured traces in the model is stored in 

variable 𝑛(𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑇𝑟𝑎𝑐𝑒𝑠), while the number of traces in the event log is stored in 
variable 𝑛(𝑇𝑟𝑎𝑐𝑒𝑠_𝑖𝑛_𝐸𝑣𝑒𝑛𝑡_𝐿𝑜𝑔). 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥) =
𝑛(𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑_𝐶𝑎𝑠𝑒𝑠)

𝑛(𝐶𝑎𝑠𝑒𝑠_𝑖𝑛_𝐸𝑣𝑒𝑛𝑡_𝐿𝑜𝑔)⁄  (1) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥) =
𝑛(𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑_𝑇𝑟𝑎𝑐𝑒𝑠)

𝑛(𝑇𝑟𝑎𝑐𝑒𝑠_𝑖𝑛_𝐸𝑣𝑒𝑛𝑡_𝐿𝑜𝑔)⁄  (2) 

 
Both filtered and unfiltered model have the same fitness values of 1. But the precision 

value of the filtered model is higher than the precision value of the unfiltered model. Precision 
value of the filtered model is 0.81. Meanwhile, the precision value of the unfiltered model  
is 0.64. 
 
 

4. Conclusion 
This research proposed a methodology to discover a better business process model by 

conducting trace clustering. The event log is imported and modeled to form a business process 
model. There are several traces captured in the model. Some of the traces appeared with a low-
frequency value. The low-frequency value is considered as anomalous. Then, data filtering is 
done to remove the anomalous traces. After that, process discovery is made to form a new 
business process model. The result found improvement of the precision value of the proposed 
method. Therefore, trace clustering and data filtering can form a better business process model. 
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