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Abstract
This paper presents an overview of customizable microcontroller using a Xilinx Zynq XC7Z020

FPGA as an alternative to increase its performance as user need. This alternative arises due to many of
the systems, which developed mostly by using microcontroller are not giving any room for customization to
increase its performance or I/O ports. There is any possibility that the system designed to be used by using
general processor such as PC to increase its performance but it will give another problem such as interface
difficulty for high speed I/O, real time processing, increases complexity, and many more. Customization is
introduced by combining hard IP processor and FPGA in one chip instead of practicing two separate devices,
processor and FPGA, which is commonly use in high performance embedded design. This approach allows
seamless design development and development time reduction for customization.
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1. Introduction
The advancement of semiconductor technology has been reaching in nanometer scale

which shown by Intel that has achieved 22nm process technology in 2011 for their processor
products line [1]. This advancement has been giving an opportunity to put many functions on a
chip beside main function such as a processor and their peripherals can be placed on a single
chip. This development is rising some technics and methodologies for designing a silicon chip into
a full functionality integrated circuit. One of the methods is Full Custom Design. In this method,
an engineer designs some or all of the logic cells, circuits, or layout specifically for one design [2].

The other development of this advancement is possibility of customizing logic circuit on
semiconductor without following expensive semiconductor fabrication processing technology due
to all primitive gates have been implemented on it then users or developers only need to route
interconnection between gates to create digital circuit and system. This technology is known as
Field Programmable Gate Array or FPGA.

Giving that ability of FPGA technology creates a concept of soft processor. Soft proces-
sor is a processor, implemented in FPGA, which can be customized to meet application needs
[3]. Xilinx and Altera have been developing MicroBlaze and NIOS II respectfully for their soft
processor. MicroBlaze [4] is RISC Pipelined Big-Endian 32-bit processor developed by Xilinx in
2002. It has 32 32-bit general purpose registers and special registers such as Program Counter
register. Microblaze has three and five pipeline stages which can be configured in development
stage depending on area optimization which requires bigger area when using five stages pipeline.

The limitations of soft processor compared to hard processor, which is implemented per-
manently on the chip, are on area size, performance, and power consumption but soft processor
has advantage by customization such as flexibility and special instruction for special application
[3]. Soft processor has been used for many application. For example, worm robot [5], automotive
application [6], increasing chipering algorithm performance [7], increasing application execution
by moving part of the application usually executed by microprocessor into FPGA [8], increas-
ing floating point performance in soft processor [9], FPGA based Programmable Logic Controller
(PLC) [10, 11], and many more.

Recently in late 2011, Xilinx developed Zynq R©–7000 All Programmable SoCs [13]. This
is the answer from Xilinx to include two application grade ARM R© processors and FPGA on single
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chip thus increasing computing performance than soft processor and, from designer perspective,
maximizing precious FPGA resources only for custom design. The drawback of this approach
is the architecture of the processor is permanently etched on chip hence giving no possibilities
to customize its architecture as opposite of soft processor approach. This method will be called
as System-on-Chip (SoC) approach in this paper as per definition all aspects of a digital system:
processing, high-speed logic, interfacing, memory, and so on can be combined on same chip [14].

The purpose of this paper is giving a demonstration to develop custom microcontroller by
using System-on-Chip (SoC) approach. As it is known that the architecture of a microcontroller in
the market such as PIC Microchip [15, 16, 17], Intel MCS–51 [18, 19], and Atmel AVR Microcon-
troller [20, 21, 22] are permanently etched on a silicon. Consequently closing any possibilities to
alter or enhance their structure. Those microcontrollers have an advantage in price point of view
due to very low price which is around 36 cent US dollars and satisfy for less complex requirement
[23]. When the requirements and need of flexibility of the systems are raising, such as video
processing [24, 25], then those microcontrollers, due to their limitations, are not capable to tackle
the demands [26].

2. The Architecture
In general the architecture of System-on-Chip or SoC is combination of Processing Sys-

tem, in this case ARM based processor, and programmable logic depicted in figure 1. The pro-
cessing system has some interfaces to interact with outside environment which are Processing
System I/O and DDR Memory Controller. Processing System I/O consists on several common
interfaces that usually appears on small computer such as laptop or tablet PC. On Zynq plat-
form, it has two USB ports, two Ethernet controller, SD controller, General Purpose I/O, and serial
interface. Its DDR memory controller supports DDR3, DDR3L, DDR2, and LPDDR2 on Zynq
platform hence Processing System can directly communicate to memory. There are interfaces
to communicate between Processing System and Programmable Logic, which named Processor-
Programmable Logic Interfaces showed in figure 1. For this, Xilinx uses AXI Interconnect for the
interfaces [27].
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Figure 1. System-on-Chip architecture [14]

Figure 2 shows the architecture of the demonstration system. It consist of four main
blocks and two supporting blocks. The main blocks are ARM Processing System with DDR Mem-
ory Controller, Interconnection block, Timer and General Purpose Input Output (GPIO). The sup-
porting blocks are Reset Control System and Clock Multiplier. ARM Processing System with
DDR Memory Controller is hard implemented on the chip consequently their logic are permanent.
Therefore, this blocks is placed and named as Processing System. The rest of blocks is placed
on programmable logic.

Between Processing System and Programmable Logic in figure 2 is a block named In-
terconnection Block that connect them. The block is used to facilitate data transfer and com-
munication between processor and the devices attached to them. In this design, the block uses
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Figure 2. System architecture of custom microcontroller

master-slave approach for them hence the processor becomes the master and the rest of devices,
timer and GPIO, become slave.

The design employs two devices which are timer device with interrupt and General Pur-
pose Input Output (GPIO). Timer is intended to demonstrate how processor in Processing System
responds with interrupt request from timer device and GPIO becomes an interface from the sys-
tem to external port which is connected to LEDs and switches. The other devices are serial
terminal which is connected to Processing System I/O and DDR3 SDRAM which is connected to
DDR Memory Controller. This two devices, Processing System I/O and DDR Memory Controller,
are not implemented in Programmable Logic which is in FPGA but instead is implemented directly
on the chip.

Two supporting devices in the design are clock multiplier and reset control system. Clock
multiplier is required to supply processor and all the devices including memory with required clock
signal from relatively low frequency input from clock generator. This usually can be implemented
by using Phase Locked Loop [28]. The other role of clock multiplier is supplying clock for DDR
SDRAM that requires 90◦ lead from main clock. Reset control system is required to synchronise
reset all devices in the system from uncertainty states to initial state. Listing 1 shows port map of
top level design of the system in VHDL.

begin

system_1_i : system_1
port map (

LEDs_8Bits_TRI_IO => LEDs_8Bits_TRI_IO ,
processing_system7_0_MIO => processing_system7_0_MIO ,
processing_system7_0_PS_CLK => processing_system7_0_PS_CLK ,
processing_system7_0_DDR_Clk => processing_system7_0_DDR_Clk ,
processing_system7_0_DDR_Clk_n => processing_system7_0_DDR_Clk_n ,
processing_system7_0_DDR_CKE => processing_system7_0_DDR_CKE ,
processing_system7_0_DDR_CS_n => processing_system7_0_DDR_CS_n ,
processing_system7_0_DDR_RAS_n => processing_system7_0_DDR_RAS_n ,
processing_system7_0_DDR_CAS_n => processing_system7_0_DDR_CAS_n ,
processing_system7_0_DDR_WEB_pin => processing_system7_0_DDR_WEB_pin ,
processing_system7_0_DDR_BankAddr => processing_system7_0_DDR_BankAddr ,
processing_system7_0_DDR_Addr => processing_system7_0_DDR_Addr ,
processing_system7_0_DDR_ODT => processing_system7_0_DDR_ODT ,
processing_system7_0_DDR_DRSTB => processing_system7_0_DDR_DRSTB ,
processing_system7_0_DDR_DQ => processing_system7_0_DDR_DQ ,
processing_system7_0_DDR_DM => processing_system7_0_DDR_DM ,
processing_system7_0_DDR_DQS => processing_system7_0_DDR_DQS ,
processing_system7_0_DDR_DQS_n => processing_system7_0_DDR_DQS_n ,
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processing_system7_0_DDR_VRN => processing_system7_0_DDR_VRN ,
processing_system7_0_DDR_VRP => processing_system7_0_DDR_VRP

) ;

end archi tecture STRUCTURE;

Listing 1. Top level port map of the system

3. Software Model
The software of this system is directly coded to the processor. This means, it does not

need any operating system for running an application which is using the system. To access the
devices or peripherals, it uses memory mapped I/O. Hence, the application can directly control
it by accessing the address for the corresponding devices and sending the necessary values
to it. This has some drawbacks that only one process can be executed by the processor at a
time. By using memory mapped I/O for accessing the devices then the address of the devices is
consecutive to memory address which shown in figure 3.

Giving an memory mapped I/O of the system in figure 3 shows a division of main memory
and its corresponding devices. Main memory starts from address 0x00000000 to 0x1FFFFFF
which gets 512 MB. This is where application software will be stored and executed by the system.
Consequently, reset vector of the processor must be addressed to low address of the main mem-
ory which is 0x00000000. The other devices, GPIO, is addressed at 0x41200000 to 0x4120FFFF
which gets 64KB and Timer is addressed at 0x42800000 to 0x4280FFFF, which gets same as
GPIO, 64KB. The memory is divided by two sections, PS-Section and PL-Section. PS-Section is
part of Processing System then all devices in the PS-Section is fixed then it can not changed its
structure. The other section is PL-Section which is part of Programmable Logic.
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Figure 3. Memory Map of the system.

Accessing the GPIO can be fulfilled by using function that directly instruct it through mem-
ory. For example, to write AXI GPIO made for Xilinx, the instruction [29, 30] is,

XGpio_DiscreteWrite(*gpioAddress, channel, state);

and to read AXI GPIO is,

XGpio_DiscreteWrite(*gpioAddress, channel);

These functions use two parameters in common. First parameter is gpioAddress which point to
the address of GPIO device and second parameter is channel of the GPIO. All of these functions
are included in xgpio.h.
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The other device, Timer, is treated as same as GPIO which is directly configured by using
direct memory instruction. In this system, Timer is using interrupt to notice the processor that
counting process in the Timer has been ended. When the interrupt is asserted then program
counter in the processor moves to special region in memory which named is interrupt or excep-
tion region. The region will be filled with functions to respond what behaviour of the processor
to expect. After the functions are finished executed then program counter will move to original
location where main program is placed. Such example is from Xilinx, which uses AXI Timer [31]
as implementation of this device. AXI timer uses four functions to control it [30]. First function to
control the device is,

void XTmrCtr_Start(XTmrCtr *InstancePtr, u8 TmrCtrNumber)

This function is required to start the specified timer counter of the device such that it starts running.
The timer counter is reset before it is started and the reset value is loaded into the timer counter
[30]. The parameters of the function are InstancePtr which point to XTmrCtr instance to be
worked on and TmrCtrNumber is the timer counter in the system to be worked on [30]. Second
function to control it is,

void XTmrCtr_Stop(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

This function is required to stop the Timer from counting. The parameters of the function are
InstancePtr which point to XTmrCtr instance and TmrCtrNumber is the timer counter in the
system to be worked on [30]. Third function is,

void XTmrCtr_Reset( XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

which required to reset the Timer. And the last required function is,

void XTmrCtr_SetResetValue(
XTmrCtr *InstancePtr,
Xuint8 TmrCtrNumber,
Xuint32 ResetValue

)

This function is to set the reset value for the specified timer counter. The value is loaded into the
timer counter when it is reset and also loaded when the timer counter is started. The parameters
of the function are InstancePtr which point to XTmrCtr instance, and TmrCtrNumber is the timer
counter of the device to operate on, and ResetValue contains the value to be used to reset the
timer counter [30]. The value can be achieved by using this equation,

ttmr =
1

fclk
×

i<32∑
i=0

(n× 2i) (1)

When the Timer uses interrupt then several functions is required to service the request
from it. Listing 2 depicts the functions to handle interrupt request from Timer device.

void Timer_ In te r rup tHand le r ( void ∗data , u8 TmrCtrNumber )
{

p r i n t ( " I ns ide Timer ISR \ r \ n " ) ;
XTmrCtr_Stop ( data , TmrCtrNumber ) ;
XTmrCtr_Reset ( data , TmrCtrNumber ) ;
p r i n t ( " Outside Timer ISR \ r \ n " ) ;
p r i n t ( " \ r \ n " ) ;
I n t e r r u p t F l a g = 1;

}

i n t SetUpInterruptSystem ( XScuGic ∗XScuGicInstancePointer )
{

X i l_Except ionReg is te rHand le r (
XIL_EXCEPTION_ID_INT ,
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( X i l_Except ionHandler ) XScuGic_InterruptHandler ,
XScuGicInstancePointer

) ;

X i l_Except ionEnable ( ) ;

return XST_SUCCESS;
}

i n t S c u G i c I n t e r r u p t _ I n i t ( u16 DeviceId , XTmrCtr ∗TimeInstancePtr )
{

i n t s ta tus ;
GicConf ig = XScuGic_LookupConfig ( DeviceId ) ;
XScuG ic_C fg In i t i a l i ze (& I n t e r r u p t C o n t r o l l e r , GicConfig ,

GicConfig−>CpuBaseAddress ) ;
SetUpInter ruptystem (& I n t e r r u p t C o n t r o l l e r ) ;

XScuGic_Connect (& I n t e r r u p t C o n t r o l l e r ,
XPAR_FABRIC_AXI_TIMER_0_INTERRUPT_INTR ,
( X i l_Except ionHandler ) XTmrCtr_InterruptHandler ,
( void ∗ ) T imeInstancePtr

) ;

XScuGic_Enable (& I n t e r r u p t C o n t r o l l e r ,
XPAR_FABRIC_AXI_TIMER_0_INTERRUPT_INTR) ;

return XST_SUCCESS;
}

i n t main ( )
{

. . .
XTmrCtr_Start (& Timer InstancePtr , 0 ) ;
p r i n t ( " Wait Timer to t r i g g e r I n t e r r u p t \ r \ n " ) ;
while ( I n t e r r u p t F l a g != 1) ;
I n t e r r u p t F l a g = 0;
return 0;

}

Listing 2. Interrupt Handler functions

4. Result and Discussion
The system was implemented at Xilinx Zynq-7000 All Programmable SoC XC7Z020-

CLG484-1 on ZedBoard development board [32] and Xilinx ISE 14.7 EDK as design tool. The
development board is shown in figure 4c. Table 1 presents the utilization of register resource in
XC7Z020-CLG484-1 gets around 0.13%, Look up Tables (LUT) which constitute logic resource of
the FPGA get around 0.45%. Clock buffer gets around 3.125%, and I/O gets around 41.81%. The
maximum frequency of this system is 216.973 MHz for -1 speed grade. This resources represents
the architecture shown in figure 2 which implemented on programmable logic.

Table 1. Resource utilization of the system.

Resources Utilization
Registers 418 of 319200
LUT 728 of 159600
Clock Buffer 1 of 32
I/O 138 of 330

To demonstrate the system, the software was developed to show timer interrupt and GPIO
capability. The action of the software was responding interrupt request when the timer has been
reaching zero by turning on or off LEDs (LD0 – LD7), which connected to GPIO, as shown in figure
4c and showing some messages on terminal through serial port. The software used LD0 to LD3
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(a) (b)

(c)

Figure 4. ZedBoard development board of the implemented system (figure 4c) and LEDs appearance of
interrupt execution (figure 4a) and (figure 4b).

to show that the request has been executed which were initially 0x04, which LD2 was turned on
and the others were turned off (figure 4b) and 0x0A, which LD3 and LD1 were turned on and the
rest were turned off showing that it has been executed successfully (figure 4a). The C statement
that writes the GPIO into the value is,

XGpio_DiscreteWrite(&gpio,LED_CHANNEL, 0x04);

for initial status and this statement,

XGpio_DiscreteWrite(&gpio,LED_CHANNEL, 0x0A);

is executed when the request has been executed. The GPIO was initialized by using following
statements shown in listing 3,

#define GPIO_LED_DEVICE_ID XPAR_LEDS_8BITS_DEVICE_ID
#define LED_CHANNEL 1
XGpio gpio ;
. . .
i n t main ( )
{

. . .
xStatus = X G p i o _ I n i t i a l i z e (& gpio , GPIO_LED_DEVICE_ID) ;
i f ( xStatus != XST_SUCCESS) {

p r i n t ( "GPIO I n i t Fa i led \ n " ) ;
return 1;

}
. . .

}

Listing 3. GPIO initialization

which XPAR_LEDS_8BITS_DEVICE_ID points to GPIO ID which has address of 0x41200000.
As discussed before that changing LD’s values from 0x04 to 0x0A were based on inter-

rupt request, which executed when the timer reaches zero. This was achieved by implement-
ing interrupt handler from listing 2. Listing 2 shows that InterruptFlag variable stays on 0
until Timer_InterruptHandler function is requested by Timer device by stating that the value
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has been reaching zero then execute the function by sending interrupt signal to processor and
changes the InterruptFlag variable to 1 followed by,

XGpio_DiscreteWrite(&gpio,LED_CHANNEL, 0x0A)

statement. The timer itself was configured by using XTmrCtr_SetResetValue function followed by
0xf0000000 as its parameter. The parameter took around 40.3 seconds for timer, which supplied
by 100 MHz clock signal to reach zero.

Comparing the approach developed by Yang et.al [12] which combining two separate
devices, ARM processor and FPGA, on a PCB, this approach gives less PCB footprint, simplified
PCB design and gives better signal integrity.

5. Conclusion
FPGA combined by hard core processor gives a better customization for microcontroller

to increase its performance. Hence, this model gives an alternative from conventional micro-
controller. Sometimes, due to higher cost of FPGA comparing to conventional microcontroller,
it becomes not so competitive hence a designer should weigh up which requirement needs for
this model comparing to conventional microcontroller to get trade off between performance and
product cost. For the system, it only use around one percent resource of XC7Z020-CLG484-1 to
implement it, and the maximum frequency which can be used is 216.973 MHz.
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