
TELKOMNIKA, Vol.17, No.1, February 2019, pp.210~217
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i1.11590 210

Received 22 July, 2018; Revised October 2, 2018; Accepted November 12, 2018

Modelling and implementation of 9tka game with
Max

N
 algorithm

Dina Stefani*
1
, Frederikus J.

2
, Irene Astuti Lazarusli

3
, Samuel Lukas

4
, Petrus Widjaja

5

1,5
Mathematics Department Faculty of Science and Technology, Universitas Pelita Harapan,

UPH Tower, Lippo Karawaci, Tangerang, 15811, Indonesia
2,3,4

Computer Science Department Faculty of Computer Science, Universitas Pelita Harapan,
UPH Tower, Lippo Karawaci, Tangerang, 15811, Indonesia

*Corresponding author, e-mail: dina.stefani@uph.edu, irene.lazarusli@uph.edu, samuel.lukas@uph.edu,
petrus.widjaja@uph.edu, erikkeren@gmail.com

Abstract
 9tka is a board game created by Adam Kaluza. The game can be played with 2 up to 4 players,

with the goal of conquering as many areas in the board as possible. The aim of this research is to
implement the 9tka game into a digital game that can be played on a personal computer. The
implementation will include the feature to play against computer players. The rules and game’s play of 9tka
is modelled, and then implemented using Java. The Artificial Intelligence (AI) of the computer player is
implemented using the Max

N
 algorithm, which is an extension of the minimax algorithm. Several tests were

done to gauge the robustness of the implemented AI. The experiments show that the AI is capable to
make a move in time less than 541 milliseconds on average, across all types of players. Moreover, from
eight respondents, the average amount of human wins is 2.25 out of 5 matches, across all types of
players. This shows that the implemented AI on computer player has a better chance to defeat human
opponents.

Keywords: 9tka board game, max
N
 algorithm

Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

9tka("dziewiątka"=“nine” in Polish) game is a board game created by Adam Kaluza and
has its origins in Poland [1]. The game can be played with 2 players up to 4 players, using a 9x9
square board, 9 red counters, 18 yellow counters, 18 blue counters, 12 orange counters and 9
green counters as its components. The board is divided in 9 sections of 3x3 squares each as
depicred in Figure 1. In the Initial condition of the game, one red counter (neutral counter) has to
be placed randomly on each section but cannot be placed on the edge sections of the board.
Other colored counters are used as the player counters. If there are two players then each has
18 counters, yellow and blue. If it is played by three players then each has 12 counters yellow,
blue and orange. If four players involve then each has 9 counters, yellow, blue, orange and
green.

Figure 1. An example of initial condition of 9tka game played with four players

mailto:Dina.stefani@uph.edu
mailto:erikkeren@gmail.com

TELKOMNIKA ISSN: 1693-6930

Modelling and implementation of 9tka game with MaxN algorithm (Dina Stefani)

211

The game is played in 2 phases, placement and movement. In placement phase,
players take turns clockwise by placing freely their counters outside the board, next to the edge
fields. The placement phase ends when all slots are taken then the game continues to the
movement phase. Figure 1 shows an example of initial condition after placement phase ends
with four players.

During the movement phase, players take turns by picking one of their counters at the
edge of the board and moving it along its row or column until it hits any other counter or hits the
opposite edge of the board. If it hits the opposite edge, it will block one or two counters that are
not moved yet as shown in Figure 2. If player cannot move his counter, then that player passes
to move.

Figure 2. First player first movement, second player fourth movement and game end

The game ends when there are no more possible moves for every player. Each player
scores one point for every section they conquer. A section is conquered by a player when at
that section, player has more counters than that of any other player. In case of a tie, it means
there is no player has more counters than that of others player, no one scores for that tie
section. The winning player is the one who has the highest score. In case of a tie, the last of the
tied player wins. For example, if score of players tie in a two player game, the second player
wins the game. In Figure 2, the top left section is conquered by the yellow player because the
yellow player has 3 counters on that section while the blue player only has 2. The yellow player
has conquered totally 5 sections and the blue player has conquered 4 sections. Therefore, the
yellow player wins the game.

This game is quite simple but it is considered as one of interesting logic game. From the
beginning of the game, at placement phase, players should place their counters intelligently. In
movement phase, players should move their counters accurately to win the game. The problem
is this game played in a board and have to be played at least by two players.

The most famous algorithms in brute-force search are MiniMax [2], NegaMax [3],
Alpha-Beta [4], NegaScout [5], and Principle-variation [6]. This paper discusses on how this
game can be digitalized and being played by single person and computers by implementing
Max

N
 algorithm.

Minimax Algorithm is a depth-first search algorithm designed for zero-sum games that
involves 2 players. This algorithm is proven optimal strategy in Tic Tac Toe game [7]. Minimax
algorithm with alpha-beta modification has a time complexity of O(b

m
) in the worst case, O(b

3m/4
)

in the average case and O(b
m/2

) in the best case; where b is the branching factor and m is the
maximum depth of the search tree [8]. Minimax algorithm implements a nondeterministic
strength-adapted AI opponent for board games and behaves as expected [9, 10]. Researchers
agree that the goal of the minimax algorithm is to find the best move that can be made by the
current player, by searching the game tree. Minimax can use one of two basic strategies, either
by searching the entire game tree, or by searching the tree until a predefined depth before it is
evaluated [11]. The algorithm works by searching the game tree until a certain depth, and
evaluating every single node, child on that depth, using an evaluation function. Then, the
algorithm sets the value of the parent to be either the lowest estimated or the highest estimated

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 1, February 2019: 210-217

212

value of its children. The algorithm proceeds with this for all branches of the tree until the best
move to make is “bubbled” up to the root node [12].

The Max
N
 algorithm is an extension of the minimax algorithm for N-player games. The

algorithm works similar to the Minimax algorithm, except that the evaluation function now
returns an N-tuple of values, with each component corresponds to the estimated merit of the
position with respect to one of the players. Then, the value of each interior node where player k
is to move is the entire N-tuple of the child for which the k

th
 component is a maximum [13-15].

The purpose of this paper is to model and to implement the 9tka board game into a
digital game that can be played on PCs. The implemented game will include the feature to play
against up to three computer players with Artificial Intelligence using the Max

N
 algorithm.

2. Research Methodology

First step is creating mathematical model of the game. Since the game is a board game
and there are four possible players represented with the counter colour than it is perfectly
modelled with the 11x11- sized matrix A = {a(i,j)} where

𝑎(𝑖, 𝑗) =

{

0 𝐸𝑚𝑝𝑡𝑦
1 𝑌𝑒𝑙𝑙𝑜𝑤
2 𝐵𝑙𝑢𝑒
3 𝑂𝑟𝑎𝑛𝑔𝑒
4 𝐺𝑟𝑒𝑒𝑛
5 𝑁𝑒𝑢𝑡𝑟𝑎𝑙

𝑖 𝜖 {0,1, … ,9,10} ∧ 𝑗 𝜖 {0,1, … ,9,10}, 𝑎(0,0) = 𝑎(0,10) = 𝑎(10,0) = 𝑎(10,10) = 0

Second step is defining the 9 sections of the board in which each section consists of

3x3 squares in the board game. These sections are represented with matrix, R = {g(p,q)}, where
g(1,1) consists of the squares a(1,1), a(1,2), a(1,3), a(2,1), a(2,2), a(2,3), a(3,1), a(3,2), and
a(3,3). A function of g: R

2
→R

2
 needs to be created that charts position (i,j) in the game board

to (p,q) as g(p,q) where the values of p and q are determined by (1). Then a function of
f: R

2
→N

+
 is created to label (p,q) by (2)

p = div(i,3) + 1 and q = div(j,3) + 1 (1)

k = f(p,q) = 3(p-1) + q (2)

Third step is entering the first phase of the game, placement phase. There are 2 types

of counter placement, one for neutral counters (red counters) and another for player counters.
Neutral counters are placed randomly on each of the 3x3 sections. Neutral counter placement in
the matrix A={a(i,j)} uses the following 2 procedures:

RandomizeNeutralCounter ()

For i = 1 to 3

 For j = 1 to 3

 repeat

 Pos1 = (i-1) * 3 + 1 + random (0,2)

 Pos2 = (j-1) * 3 + 1 + random (0,2)

 Until (Pos1 ≠ 1 or Pos1 ≠ 9 OR Pos2 ≠ 1, Pos2 ≠ 9)
 PlaceCounter (Pos1, Pos2, 5)

PlaceCounter (i, j, counter)

 If (i < 0) OR (i > 10) OR (j < 0) OR (j > 10) return;

 Else IF (a(i,j) ≠ 0) return;

 Else a(i,j) = counter

Player counters are placed in the order of yellow, blue, orange, and then green by

clicking the position of placement square on the board, at the respective player’s turn. However,
for the AI players, the position of the counter placement will be decided at random from all the
available positions, with the following rules:

TELKOMNIKA ISSN: 1693-6930

Modelling and implementation of 9tka game with MaxN algorithm (Dina Stefani)

213

1. For the positions a(i, 0) or a(i, 10), the system will check whether those positions at the i
th

row have a counter or not. If it has then the position is invalid to place the counter.
2. The same rule (1) is applyed for the positions a(0, j) or a(10, j), with those positions at the j

th

column.
3. Each pair of the following eight pairs only has one computer counter {(1,0), (0,9)} {(1,10),

(0,1)} {(9,0), (10,9)} {(9,10), (10,1)} {(0,1), (9,0)} {(10,1), (1,0)} {(0,9), (9,10)} {(10,9), (1,10)}
If any of the conditions above are not fulfilled, then the AI will check another random

available position for those conditions. However, if there are no more available positions left, the
AI will place the counter on the last checked position, regardless of the conditions.

Fourth step is the second phase of the game, movement phase. In movement phase, a
counter at a(r1, c1) moves and stops at a(r2,c2) is defined by the following procedure.

MoveCounter (a(r1, c1), a(r2,c2))

 If (r1=0 or r1 = 10) then

 If (r1=0) then Up = 1 else Up = -1

 If (a(r1+Up,c1)=0) then

 r2 = r1

 Repeat

 r2 = r2 + Up

Until (a(r2, c1) ≠ 0) OR (r2 = 0) OR (r2 = 10)

r2 = r2 – Up

c2 = c1

a(r2, c2) = a(r1,c1)

a(r1, c1) = 0

Else

 If (c1 = 0 OR c1 = 10) then

 If (c1 = 0) then Up = 1 Else Up = -1

 If (a(r1, c1 + Up) = 0 then

 c2 = c1

 Repeat

 c2=c2+Up

 Until (a(r1, c2) ≠ 0) OR (c2 = 0) OR (c2 = 10)

c2 = c2 – Up

r2 = r1

a(r2, c2) = a(r1,c1)

a(r1, c1) = 0

Fifth step is the determining the best move of AI players. AI player moves a counter

a(i,j) using Max
N
 algorithm [16] is designed with the depth level of n + 3, where n is the number

of players in the game. The evaluation value of player m, moving a(i,j) counter to section k on
the board A, is value eva(m,i,j) stated as (7). However, it should be defined some functions.
Firstly, v(m,k) to save the amount counters of player m in section k. It is defined in (3) for every
counter of player m comes to section k.

v(m,k) = v(m,k)+1 (3)

Secondly, c(m,k) to indicate player m takes control of section k. If the amount of player

m counters is the largest in that section then c(m,k) = 1 otherwise c(m,k) = 0. It is stated in (4)

𝑐(𝑚, 𝑘) = {
1 𝑣(𝑚, 𝑘) > 𝑣(𝑝, 𝑘) ∀𝑝 ≠ 𝑚
0 𝑜𝑡ℎ𝑒𝑟𝑠

 (4)

Thirdly, y(k) to encourage or discourage the computer to move the counter to section k.
If v(m,k) is greater than 4 then that that section is no need to be filled with any counter since it
definitely belong to the player. However, if v(m,k)=0 that it should be encourage to fill that
section. It is stated in (5). Value C1 is set to 30 and C2 equals to 15

𝑦(𝑘) = {
𝐶1 − 𝐶2𝑣(𝑚, 𝑘) 0 ≤ 𝑣(𝑚, 𝑘) ≤ 4

−𝐶2 𝑣(𝑚, 𝑘) ≥ 5 (5)

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 1, February 2019: 210-217

214

Fourthly, r(k) and q(k) stand for number of blocked opponent’s counters and number of
blocked computer’s counters at section k.

Fiveth, eva(m,i,j) to save the evaluation value of player m, moving a(i,j) counter to
section k. It is stated in (6).

𝑒𝑣𝑎(𝑚, 𝑖, 𝑗) = ∑ 𝐶3 𝑐(𝑚, 𝑘)
9
𝑘=1 + 𝐶4(𝑟(𝑘) − 𝑞(𝑘)) + ∑ 𝑦(𝑘)9

𝑘=1 (6)

Later, how can the constantas C3 and C4 be valued. It is clear that first consideration is

by moving a(i,j) counter to section k then player can control that section. Therefore, C3 should
be the bigest. The more value r(k) and the lower value q(k) is the better, therefore C4 is the
second bigest. Since the value of 𝑦(𝑘)𝜀 {−30,−15,0,15,30}, then C3 is set to be 100 and C4 is 90
experimently.

Suppose initial condition of game played with 2 players is stated in Figure 3 (a) and one
possible game states at depth 5 after moving (1, 0) counter, is shown in Figure 3 (c). It is
reached by moving counters in order from (1, 0), (10, 1), (0, 2), (0, 3) and (0, 6).

(a)

(b)

(c)

Figure 3. Sample of 5 movement (a) Initial condition
(b) 5 movement after initial condition (c) Final 5 movement

It can be seen that the computer has conquered 2 sections k = 3 and k = 8 and has 1
counter each at section k=1, k = 3 and k = 8, and has blocked 2 opponent counters at (1,10),
(0,9) and no blocking computer counters. Therefore, the evaluation value eva(2,1,0) is as
follows. eva(2,1,0)=100×2+90×(2-0)+15×3+30×6=605.

Another possible movement is shown on Figure 4. The game state is reached by
moving counters consecutively (1, 0), (5, 0), (0, 1), (2, 0) and (0, 2). The computer has
conquered 2 sections, k = 3 and k = 7, has 1 counter each at section k=1, k=3 and k=7 and has
blocked 4 opponent counters and no computer counters. Therefore, the evaluation value is
eva(2,1,0)=100×2+90×4+30×6+15×3=785.

Figure 4. Another State after moving (1, 0) counter

TELKOMNIKA ISSN: 1693-6930

Modelling and implementation of 9tka game with MaxN algorithm (Dina Stefani)

215

By generating all possible movements, constructing the tree with depth 5 and using
Max

N
 algorithm with evaluation as its heuristic value then computer will determine which counter

is the best to be moved. Finally, Player m is the winner of the game in (7).

𝑠(𝑚) = max𝑘𝜖{1,2,3,4}{𝑠(𝑘)} (7)

3. Results and Discussion

The 9tka game is implemented using the Java programming language. User must first
determine the settings of the game on the start screen window, such as the number of players
and which counters are controlled by the player. As seen in Figure 5.

(a)

(b)

(c)

(d)

Figure 5. User interface design (a) # Players (b) 4 players (c) 2 players (d) board game

After it is done, the user clicks the Start Game button, and the main game window will
appear, as shown in Figure 6 (a). Placement phase is done by clicking on the white squares at
the edge side of the board to place a player’s counter, Figure 6 (b). Afterwords, clicking on the
counters inside the same squares to move it in the movement phase. Figures 6 (c) and 6 (d)
show the examples of first movement that can be made by a player and the end of the game.

First experiment is conducted to gauge the time needed for the AI to make a move in
the movement phase, in milliseconds. The test is conducted in 15 games, 5 games for each of
number of player. Each game consists of 18 steps for 2 players, 12 steps for 3 players and 9
steps for 4 players. The results are depicted at Table 1. Figure 7 shows that amount of time to
move a counter, drops exponentially according to number of steps and the more the number of
players, the amount of time is longer to move the first and second counters. On average for two,
three and four players, every move is less than 180, 270 and 541 respectively in milliseconds.

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 1, February 2019: 210-217

216

(a)

(b)

(c)

(d)

Figure 6. User interface of the game (a) Start game (b) first placement

(c) first movement (d) end of the game

Figure 7. Respond time needed for each step toward number of players

The second experiment is done to know how well the AI of the system comparing to the
human player. Eight respondents are selected to test the AI of the system. Each respondent is
asked to play the implemented 9tka game 15 times, 5 games each for 2, 3 and 4 players. The

TELKOMNIKA ISSN: 1693-6930

Modelling and implementation of 9tka game with MaxN algorithm (Dina Stefani)

217

number of wins that the respondent has achieved for each game type is tabulated at Table 1. It
shows that the average a human wins the game of two players is 2.25 out of 5 games. It means
the probability AI of computer player winning the game is 0.55. It has bigger chance to win the
game than that of the human. The more the number of computer player, the harder human can
defeat the computer players.

Table 1. Number of wins for each player

Respondent
Number of players

2 3 4

1 4 4 1
2 2 0 1
3 1 1 0
4 2 4 2
5 2 2 1
6 3 2 1
7 1 2 2
8 3 2 2

Average 2.25 2.125 1.25
Probability of Winning 0.45 0.425 0.25

4. Conclusion

The 9tka game has successfully been implemented into a digital game and able to be
played by 2, 3, and 4 players. The implemented AI is capable of making relatively good
decisions in a relatively short amount of time, using the Max

N
 algorithm. Even though system

has a few general rules at the placement phase, further research can be done to improve in
placing the computer counters in placement phase. If it is possible that the evaluation function
for the placement phase can be also modelled. The evaluation function for the movement phase
also needs several improvements such as using pruning algorithm so that it can speed up the
movement.

References
[1] A Kaluza, NR Andrés. 9 (Nine). A Game for 2 to 4 Players by Adam Kaluza. 2011.
[2] S Russell, P Norvig. Artificial intelligence: a modern approach. Prentice Hall Press. 2009: 1152.
[3] GT Heineman, G Pollice, S Selkow. Path Finding in AI in Algorithms in a Nutshell. O’Reilly Media.

2008: 213–217.
[4] D Knuth. Selected Papers on Analysis of Algorithms. California: Center for the Study of Language

and Information. 2000.
[5] HJ Chang, MT Tsai, T Hsu. Game Tree Search with Adaptive Resolution. Advances in Computer

Games SE–26. in HJ Herik, A Plaat. Springer Berlin Heidelberg. 2012; 7168: 306–319.
[6] MHM Winands, HJ van den Herik, JWHM Uiterwijk, ECD van der Werf. Enhanced forward pruning.

Inf. Sci. (Ny). 2005; 175(4): 315–329.
[7] K Kosciuk. Is Minimax Really an Optimal Strategy in Games? Zeszyty Naukowe Politechniki

Bialostockiej Informatyka. 2009.
[8] AA Elnaggar, M Gadallah, MA Aziem, H El-Deeb. A Comparative Study of Game Tree Searching

Methods. International Journal of Advanced Computer Science and Applications. 2014; 5(5): 68-77.
[9] SG Diez, J Laforge, M Saerens. Rminimax: An Optimally Randomized MINIMAX Algorithm. IEEE

Transactions on Cybernetics. 2013; 43(1): 385-393.
[10] P Borovska, M Lazarova. Efficiency of Parallel Minimax Algorithm for Game Tree Search.

International Conference on Computer Systems and Technologies (CompSysTech), Bulgaria. 2007:
II.7-1-II.7-6.

[11] MT Jones. Artificial Intelligence, A Systems Approach. Infinity science Press LLC. 2010.
[12] V Öberg. Evolutionary Ai in Board Games, Bachelor Degree Project in Informatics. University of

Skovde. 2015.
[13] M Fridenfalk. N-Person Minimax and Alpha-Beta Pruning. Nicograph International, Sweden. 2014:

43-52.
[14] RE Korf. Multi-player alpha-beta pruning. Artificial Intelligence. Elsevier. 1991; 48: 99-11.
[15] I Zuckerman, A Felner, S Kraus. Mixing Search Strategies for Multi-Player Games. Proceedings of

the Twenty-First International Joint Conference on Artificial Intelligence, Pasadena. 2009: 646-651.
[16] NR Sturtevant. Multi-Player Games: Algorithms and Approaches. A dissertation project in Computer

Science. University of Califormia, Los Angeles. 2009.

