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Abstract 
 When the Autoregressive Moving Average (ARMA) model is fitted with real data, the actual value 

of the model order and the model parameter are often unknown. The goal of this paper is to find an 
estimator for the model order and the model parameter based on the data. In this paper, the model order 
identification and model parameter estimation is given in a hierarchical Bayesian framework. In this 
framework, the model order and model parameter are assumed to have prior distribution, which 
summarizes all the information available about the process. All the information about the characteristics of 
the model order and the model parameter are expressed in the posterior distribution. Probability 
determination of the model order and the model parameter requires the integration of the posterior 
distribution resulting. It is an operation which is very difficult to be solved analytically. Here the Simuated 
Annealing Reversible Jump Markov Chain Monte Carlo (MCMC) algorithm was developed to compute the 
required integration over the posterior distribution simulation. Methods developed are evaluated in 
simulation studies in a number of set of synthetic data and real data. 
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1. Introduction 

Suppose n21 x,,x,x   is a time series data. Time series n21 x,,x,x   is said to be an 

ARMA  q,p   model, if n21 x,,x,x   satisfy following stochastic equation [3] :  

 

tx ,xzz
q

1j

p

1i itijtjt         n,,2,1t                                               (1) 

 

where tz  is the random error at the time t, i  (i = 1, 2, ..., p) and j  (j = 1, 2, ..., q) is the 

coefficient-coefficient. Here tz  is assumed to have the normal distribution with mean 0 and 

variance 
2 . ARMA model   zttx   is called stationary if and only if the equality of polynomial 
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must lie outside the unit circle. Next ARMA model   zttx   is called invertible if and only if the 

equality of polynomial              
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must lie outside the unit circle [4]. 

The order  q,p  is assumed to be known, parameter estimation of the ARMA model 

has been examined by several researchers, for example [3], [4] and [12]. In practice when we 

match the ARMA model to the data, in general order  q,p  is not known.  
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While for the order  q,p  is not known, the order identification and the parameters 

estimation are done in two stages. The first stage is to estimate the coefficients and error 

variance with the assumption of order  q,p  is known. Based on the parameter estimation in 

the first stage, the second stage is to identify the order  q,p . A criterium used to determine 

order  q,p  has been proposed by many researchers, among others are the Akaike Information 

Criteria Criterion (AIC), Bayesian Information Criterion (BIC), and the Final Prediction Error 
Criterion (FPE).  

Based on the data tx , n,,2,1t  , this research proposes a method to estimate the 

value )q()p( ,,q,p  , and 
2  simultaneously. To do that, we will use a hierarchical Bayesian 

approach [10], which will be described below. 
 
 
2. Research Method 
2.1 Hierarchical Bayesian 

Let  n2qp1qp x,,x,xs   be a realization of the ARMA  q,p  model. If the value  

 qp210 x,,x,xs    is known, then the likelihood function of s  can be written approximately 

as follows :  
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where   jt
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)q()p( zxx,,q,p,tg     for n,,2qp,1qpt   

with initial value 0xxx qp21    [11]. Suppose pS and qI  are respectively stationary 

region and invertible region. By using the transformation 
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the ARMA model   zttx   stationery if and only if     p
p21

)p( )1,1r,,r,rr    [2] and the 

ARMA model    zttx   invertible if and only if    q
p21

)q( )1,1,,,    [1]. Then the 

likelihood function can be rewritten as: 
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The prior distribution determination for parameters are as follows:  
a) Order p have Binomial distribution with parameters  : 
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b) Order q have Binomial distribution with parameters  : 
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c) Order p is known, the coefficient vectors )p(r  have uniform distribution on the interval 

 p1,1 . 

d) Order q is known, the coefficient vectors )q(  have uniform distribution on the interval 

 q1,1 . 

e) Variance 
2  have inverse gamma distribution with parameter 

2
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Here, the parameters   and   are assumed to have uniform distribution on the 

interval (0,1), the value of   is 2 and the parameters   is assumed have Jeffrey distribution. 

So  the prior distribution for the parameters  2)q()p(
1 ,,r,q,pH   and   ,H2  can be 

expressed as:  
 

    21 H,H    prp )p(    qq )q(       ,2                   (5) 

 
According to Bayes theorems, then the a posteriori distribution for the parameters H1 

and H2 can be expressed as:  
 

    sH,H 21    211 H,HHs                                                          (6) 

 
A posteriori distribution is a combination of the likelihood function and prior distribution. 

The prior distribution is determined before the data is taken. The likelihood function is objective 

while this prior distribution is subjective. In this case, the a posteriori distribution   sH,H 21
has the form of a very complex, so it can not be solved analytically. To handle this problem, 
reversible jump MCMC method is proposed. 
 
 
 
2.2 Reversible Jump MCMC Method 

Suppose  21 H,HM  . In general, the MCMC method is a method of sampling, as 

how to create a homogeneous Markov chain that meet aperiodic nature and irreducible ([9]) 

m21 M,,M,M   to be considered such as a random variable following the distribution 

 sH,H 21 .  Thus m21 M,,M,M   it can be used to estimate the parameter M. To realize 

this, the Gibbs Hybrid  algorithm ([9]) is adopted, which consists of two phases: 

1. Simulation of the distribution  s,HH 12   

2. Simulation of the distribution  s,HH 21  

Gibbs algorithm is used to simulate the distribution  s,HH 12  and the hybrid 

algorithm, which combine the reversible jump MCMC algorithm [5] and the Gibbs algorithm, 
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used to simulate the distribution  s,HH 21 . The reversible jump MCMC algorithm is generally 

of the Metropolis-Hastings algorithm [6], [8]. 
 
 

2.2.1 Simulation of the distribution  s,HH 12  

The conditional distribution of H2 given (H1,s), writen  s,HH 12 , can be expressed as 
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This distribution is inversion gamma distribution with parameters 
2


 and 

22

1


. So the Gibbs 

algorithm is used to simulate it. 
 
 

2.2.2 Simulation of the distribution  s,HH 21  

If the conditional distribution of H1 given (H2, s), writen  s,HH 21 , is integrated with 

respect to 
2 , then we get 
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then we get  
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On the other hand, we have also  
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So that we can express the distribution  s,HH 21  as a result of multiplication of the 

distribution  s,H,r,q,p 2
)q()p(   and the distribution,  s,H,,r,q,p 2

)q()p(2   : 

 



TELKOMNIKA  ISSN: 1693-6930  
 

Hierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm (Suparman) 

91

   s,HH 21   s,H,r,q,p 2
)q()p(    s,H,,r,q,p 2

)q()p(2 
 

 

Next to simulate the distribution  s,HH 21 , we use a hybrid algorithm that consists of two 

phases: 

• Phase 1: Simulate the distribution of  s,H,,r,q,p 2
)q()p(2    

• Phase 2: Simulate the distribution  s,H,r,q,p 2
)q()p(   

The Gibbs algorithm is used to simulate the distribution  s,H,,r,q,p 2
)q()p(2  . 

Conversely, the distribution  s,H,r,q,p 2
)q()p(   has a complex form. The reversible jump 

MCMC is used to simulate it.  

When the order  q,p  is determined, we can use the Metropolis Hastings algorithm. 

Therefore, in the case that this order is not known, Markov chain must jump from the order 

 q,p  with parameters  )q()p( ,r   to the order   q,p  with the parameter  )q()p( ,r


 . To 

solve this problem, we use the Reversible Jump MCMC algorithm.  
 
 
2.2.3 Type of jump selection  

Suppose  q,p  represent actual values for the order, we will write: AR
p  the probability 

to jump from the p to 1p  , AR
p  the probability to jump from the p to 1p  , AR

p  the probability 

to jump from p to p, MA
q  the probability to jump from q to 1q  , MA

q  the probability to jump 

from the q to 1q   and MA
q  the probability to jump from q to q. For each component, we will 

choose the uniform distribution on the possible jump. As an example for the AR, this distribution 
depends on p and satisfy  
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2.2.4 Birth / Death of Order  

As for the AR example, suppose that p is the actual value for the order of the ARMA 

model,   p21
)p( r,.r,rr    is the coefficient value. Consider that we want to jump from p to 

1p  . We take the random variable u according to the triangular distribution with mean 0  

 









1u0,u1

0u1,1u
)u(g

 
 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 1, March 2014: 87 – 96 

92 

We complete the vector )p(r  random variables with u. So the new coefficient vector is 
proposed  

 

 u,r,.r,rr p21
)1p( 

 
 
Note that this transformation will change the total value of all. It is clearly seen that the 

Jacobian of the transformation of value is 1. 
Instead, to jump from 1p   to p is done by removing the last coefficients in 
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   . So the new coefficient vectors that is proposed become 
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Finally, we get  
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2.2.5 Changes in coefficients  

Suppose now that the AR part is selected to jump from p to p without a order change, 

but only the coefficient is changed . If  p21
)p( r,.r,rr   is the coefficient vector, we modify 

the coefficient vector. Consider that p21 r,,r,r   is courant point and supposing that 

p21 u,,u,u    new point, we define the point ui in the following way:  
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 If  p1ii1i21
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2.3 Simulated Annealing Algorithm  

Simulated Annealing algorithm [7] is obtained by adding a line in the temperature 

m21 T,,T,T   at the top of the MCMC method. Next simulated annealing algorithm will produce 

a Markov chain )T(M,),T(M),T(M m21   which is no longer homogeneous. With a 

hypothetical on a certain m21 T,,T,T   [14] will be convergent to maximize the value of a 

posteriori distribution  sH,H 21 . 

 
 
3. Results and Analysis 

In As an illustration, we will apply this method to identify the order and estimate the 
parameter synthesis ARMA data and real ARMA data. Simulation studies are done to confirm 
that the performance of simulated annealing algorithm is able to work well. While case studies 
are given to exemplify the application of research in solving problems in everyday life. 

 For both synthesis ARMA data and real ARMA data, we will use the simulated 
annealing algorithm to identify order and estimate the parameters of the ARMA model. For this 
purpose, the simulated annealing algorithm is implemented for 70000 iterations with a value of 
initial temperature T0 = 10 and the temperature is derived with the temperature factor  0.995 up 
to the end temperature T1400  = 0.01. Value of order p and q is limited to a maximum of 10. So 

that 10qp maxmax  .  

 
 
3.1 Synthetic ARMA data 

Figure 1 shows a synthetic ARMA data. The data are made according to the equation 

(1) above, with the number of data n = 250, order p = 2, order q = 1,  7.0,36.1)2(  , 

 7.0)1(  ,  and 12  . 
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Figure 1. ARMA Synthetic Data 
 
 

Based on the synthetic data in Figure 1, next order p, q order, ARMA model parameter 

and variance 
2  are estimated by using the SA algorithm. The order p, q order, ARMA model 

parameter and variance 2  produced by the simulated annealing algorithm are 2p̂  , 1q̂  , 

 75.0,41.0ˆ )2(  ,  72.0ˆ )1(   and 06.1ˆ 2  . When we compare between the actual value 

and the estimator value, it shows that simulated annealing algorithm can work well. 
 
 
3.2 Real ARMA Data  

The real data in Figure 4 below is a passenger service charge (PSC) at the Adisutjipto 
International Airport in Yogyakarta Indonesia for the period 55 from January 2001 to July 2005. 

 
 

 
 

Figure 2. First distinction of PSC data at the Adisutjipto International Airport Yogyakarta. 
 
 

Clearly visible in Figure 4, the data are not stationary very day. To get stationary data  
the first  distinction is made and the results shown in Figure 3. 
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Figure 3. Second distinction of PSC data at the Adisutjipto International Airport. 
 
 
Based on the data in Figure 3, next order p, q order, ARMA model parameter and 

variance are estimated by using the simulated annealing algorithm. The results are 1p̂  , 

0q̂  ,  38.0ˆ )1(   dan 
72 1075.6ˆ  . 

 
 
4. Conclusion 

The description above is a study of the theory of  simulated annealing algorithms and its 

application in the identification of order p and q, coefficient vectors estimation )r(  and 
)q( , 

and variance estimation 
2  from the ARMA model. The results of the simulation show that the 

simulated annealing algorithm can estimate the parameters well. Simulated annealing algorithm 
can also be implemented with good results on Synthetic Aperture Radar image segmentation 
[13].  

As the implementation, the simulated annealing algorithm is applied to the PSC data at 
the Adisutjipto International Airport. Its result is that the PSC data can be modeled with the 
ARIMA model (1,0). The model can be used to predict the number of PSC at the Adisutjipto 
International Airport in the future. 
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