
TELKOMNIKA, Vol.17, No.3, June 2019, pp.1447~1454
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i3.12232 1447

Received October 11, 2018; Revised January 9, 2019; Accepted January 29, 2019

Exploration of genetic network programming with
two-stage reinforcement learning for mobile robot

Siti Sendari*1, Arif Nur Afandi2, Ilham Ari Elbaith Zaeni3, Yogi Dwi Mahandi4,
Kotaro Hirasawa5, Hsien-I Lin6

1,2,3,4Department of Electrical Engineering, Universitas Negeri Malang,
Jalan Semarang No. 5 Malang, Jawa Timur 65145, Indonesia

5Graduate School of Information, Production and Systems, Waseda University,
Hibikino 2-7, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan

6Graduate Institute of Automation, National Taipei Univeristy of Technology,
Rm 801A, Integrated Technology Complex, I, Sec. 3, Chung-Hsiao E Road, Taipei 106, Taiwan

*Corresponding author, e-mail: siti.sendari.ft@um.ac.id

Abstract
 This paper observes the exploration of Genetic Network Programming Two-Stage Reinforcement

Learning for mobile robot navigation. The proposed method aims to observe its exploration when
inexperienced environments used in the implementation. In order to deal with this situation, individuals are
trained firstly in the training phase, that is, they learn the environment with ϵ-greedy policy and learning rate α
parameters. Here, two cases are studied, i.e., case A for low exploration and case B for high exploration.
In the implementation, the individuals implemented to get experience and learn a new environment on-line.
Then, the performance of learning processes are observed due to the environmental changes.

Keywords: genetic network programming, inexperienced changes, two-stage reinforcement learning

Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
A mobile robot using reactive strategies determines its behavior based on the sensory

information, where the robot carries out a simple task, such as the wall following, obstacle
avoidance or object following behaviors. Futhermore, the main mobile robot navigation problem
is to follow the wall are the wall and its enviromenment changes. In order to build navigation
systems based on the reactive strategies workable in unknown environments, the robustness to
the changes of the environments should be considered.

Reinforcement Learning (RL) [1] is an attractive method to provide adaptation
mechanisms in the dynamic environments through trial and error, where the rewards are given by
the environments depending on the actions taken by the agent. The objective of the agent is to
maximize the rewards, and RL learns a policy to maximize the accumulated rewards. Many
researches [2–5] show that RL is well suited to learn control policies for mobile robot navigations.

State of the art in this research can be seen that the integration of RL to Evolutionary
Algorithms (EA), such as Genetic Algorithm (GA) [6–8], Genetic Programming (GP) [9–11] and
Genetic Network Programming (GNP) [12] were studied in many researches [13–17], where the
integration can improve the performance as shown in GNP with RL (GNP-RL) which was
implemented to navigate the mobile robot [18]. EA has the evolving ability for capturing the
environment using selection, crossover and mutation, while the integration of RL to EA improves
the adaptability to the dynamic environments.

The aim of this research is to observe the robustness to the changes of the environments
by using Genetic Network Programing, several effective mechanisms were studied, such as (1)
adding noises during the training phase [14, 19, 20]; (2) introducing the two-stage reinforcement
learning structure [21, 22]; and (3) controlling parameter learning [23–25]. The first method
improves the exploration ability of the agent in the training phase, then the agent becomes more
robust when facing inexperience situations in the implementation with noises. Here, the proposed
method is to get the effectiveness of the learning mechanisms of RL. The learning mechanism is
applied to the second method, where a large search space is separated in two stages, so that the
actions can be determined more appropriately. The third method introduces a mechanism to
control the duality of exploitation and exploration, which have the ability of re-learning quickly and
flexibly when sudden changes occur in the environments [26].

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 3, June 2019: 1447-1454

1448

The proposed navigation system of the mobile robot in this paper is based on GNP,
where GNP has advantages [12] such as (1) re-usability of the nodes which make the structures
more compact and (2) applicability to Partially Observable Markov Decision Problem (POMDP).
Compared to the other methods, such as Evolutionary Neural Network (ENN) and GP, GNP has
better performance [12, 18]. Here, GNP with Two-Stage Reinforcement Learning (GNP-TSRL)
to face inexperienced changes of the environments was studied. TSRL has two kinds of RLs
represented by two Q-tables, that is, a Q-table for sub node selection (SS method) and Q-table
for branch connection selection (BS method). The actions selections of SS and BS methods are
carried based on ϵ greedy policy. This paper is organized as follows. Section 2 describes a
mechanism of GNP-TSRL with ϵ-greedy policy and learning rate α. Section 3 shows the
simulation conditions and results. Finally, conclusion and future work are given in section 4.

2. Two Stage Reinforcement Learning (TSRL) with Changing Mechanism

This section describes a mechanism of changing ϵ and α of GNP-TSRL structures.

2.1. Structures of GNP-TSRL
The structures of GNP-TSRL consist of a start node and a fix number of processing

nodes and judgment nodes, which are connected to each other as a directed graph as shown in
Figure 1. The start node has no function and its only role is to determine the first node to be
executed, while the judgment nodes have functions to judge the assigned inputs (sensor
values), return the judgment results and determine the next node in the transitions. In the former
paper [20], it is found that the integration of fuzzy logic into the judgment nodes (fuzzy judgment
nodes) can perform well in the noisy environments to determine the node transitions
probabilistically, therefore the fuzzy judgment nodes are still used in the proposed method.
On the other hand, the function of the processing nodes is for agent to do the actions, that is, to
set the speed of the wheels of a Khepera robot. In order to do the effective learning using
GNP-TSRL, the structures of the nodes of the conventional GNP-RL are modified, i.e., while the
conventional GNP-RL has sub nodes for the the alternative functions [15], GNP-TSRL has not
only sub nodes for the alternative functions, but also several branches for the alternative
connections. The structures of the judgment nodes and processing nodes of GNP-TSRL are
shown in Figure 2. The gene structure of node 𝑖 is shown in Figure 3, which is divided into the
macro node part, sub node part and branch part.

Figure 1. Phenotype structure of a fuzzy GNP-TSRL

 (a) (b)

Figure 2. Fuzzy judgment node and processing node of GNP-TSRL
(a) judgment node structure, (b) processing node structure

TELKOMNIKA ISSN: 1693-6930

Exploration of genetic network programming with two-stage reinforcement... (Siti Sendari)

1449

Figure 3. Genotype of GNP-TSRL

The macro node of node 𝑖 is defined by 𝑁𝑇𝑖 and di. 𝑁𝑇𝑖 represents a node type, that is,
𝑁𝑇𝑖=0, 1, 2 encodes the start node, judgment node and processing node, respectively.

𝑑𝑖 represents the time delay spent on executing node 𝑖, for example in this paper, 𝑑𝑖=0 on the

start node, 𝑑𝑖=1 on the judgment node and 𝑑𝑖=5 on the processing node. When the sequence of
nodes called node transition uses at least 10 time units, it is defined as one time step of the
GNP-based agent behavior. For example, after executing three judgment nodes and one
processing node, if another processing node is executed, the total time delay is 13 time units,
it means that one time step of GNP is executed.

The node 𝑖 has 𝑚 sub nodes as shown in Figure 2 whose functions are described in the

sub node part as shown in Figure 3. The node function of sub node 𝑖𝑝 ∈ {𝑖1, . . . , 𝑖𝑚} is defined
by 𝐼𝐷𝑖𝑝, 𝑎𝑖𝑝 and 𝑄𝑆𝑆(𝑖, 𝑖𝑝). 𝐼𝐷𝑖𝑝 is a code number of the judgment/processing node, which is

represented by a unique number shown in the function library. When the node is a judgment
node, 𝐼𝐷𝑖𝑝 represents the sensor number of a Khepera robot, e.g., 𝐼𝐷𝑖𝑝 = 0 means that sensor

number 0, etc. However, when the node is a processing node, 𝐼𝐷𝑖𝑝 = 0 means the speed of the

right wheel of a Khepera robot, while 𝐼𝐷𝑖𝑝 = 1 means that of the left wheel. 𝑎𝑖𝑝 is a parameter of

the judgment/processing nodes. Because the fuzzy judgment nodes are used in the proposed
method, 𝑎𝑖𝑝 = {𝛽𝑖𝑝 , 𝛼𝑖𝑝} represents the parameters of fuzzy membership functions. On the other

hand, when the node is a processing node, 𝑎𝑖𝑝 represents the speed of the wheel of a Khepera

robot. 𝑄𝑆𝑆(𝑖, 𝑖𝑝) means the 𝑄 value of 𝑆𝑆 method, which is assigned to each state-action pair,
i.e., the state is node 𝑖, and the action is sub node 𝑖𝑝 selection. Here, the 𝑄𝑆𝑆 value is updated
using Sarsa learning in the first stage of RL.

The branch part of GNP-TSRL has a unique feature [23]. When the number of the
judgment results is 𝑢, sub node 𝑖𝑝 has the branch of 𝐵𝑖𝑝(1), . . . , 𝐵𝑖𝑝(𝑞), . . . , 𝐵𝑖𝑝(𝑢). On the other

hand, the processing node has only 𝐵𝑖𝑝(1). While the conventional GNP-RL has only one

branch connection for each branch, GNP-TSRL has several branch connections for each
branch, i.e., 𝑤. Branch 𝐵𝑖𝑝(𝑞) has branch connections of 𝑏𝑖𝑝(𝑞1), . . . , 𝑏𝑖𝑝(𝑞𝑟), . . . , 𝑏𝑖𝑝(𝑞𝑤).

The Q-value of branch connection 𝑏𝑖𝑝(𝑞𝑟) 𝜖 {𝑏𝑖𝑝(𝑞1), . . . , 𝑏𝑖𝑝(𝑞𝑤)} is represented by

𝑄𝐵𝑆(𝐵𝑖𝑝(𝑞), 𝑏𝑖𝑝(𝑞𝑟)), which is updated using Sarsa learning in the second stage of RL.

2.2. Reinforcement Learning (RL)

RL studies the interaction between agents and the environments to adapt to the
dynamic environments based on trial and error. The goal of RL is to learn a policy 𝜋(𝑠, 𝑎) by

selecting action 𝑎 at state 𝑠 to maximize expected cumulative reward 𝑅𝑡. In the POMDP, the
agent observes the state using incomplete information on the state, where the actions are more
appropriately determined by 𝜖-greedy policy to learn the near optimum behavior, where on-line

learning by Sarsa algorithm [1] estimates 𝑄𝜋(𝑠, 𝑎) as follows,

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟(𝑡) + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (1)

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 3, June 2019: 1447-1454

1450

where, 𝛼 is learning rate such that 0 < 𝛼 ≤ 1. In GNP-RL, the current state is current node 𝑖 and

the action is sub node selection 𝑖𝑝 [15].

2.3. Algorithm of GNP-TSRL

In order to improve the adaptability of agents in the dynamic environments, the effective
learning is done using TSRL [21]. In GNP-TSRL, the following two RLs are combined, that is, (1) RL
with Sub Node Selection (SS method) and (2) RL with Branch Connection Selection (BS method) as
shown in Figure 4. Thus, GNP-TSRL has two Q-tables, that is, 𝑄𝑆𝑆-table and 𝑄𝐵𝑆-table. SS Method.
SS Method is carried out in the first stage of RL using GNP-RL, where the current state is
current node 𝑖 and the action is sub node selection 𝑖𝑝.

BS Method. After executing the sub node selected in SS method, one of the several
branches from the sub node is determined. Then, the branch connection is determined in the

second stage of RL by using BS method. Here, the state is represented by branch (𝐵𝑖𝑝(𝑞)) ∈

 {𝐵𝑖𝑝(1), . . . , 𝐵𝑖𝑝(𝑢)}, while the action is represented by branch connection selection 𝑏𝑖𝑝(𝑞𝑟) ∈

 {𝑏𝑖𝑝(𝑞1) , . . . , 𝑏𝑖𝑝(𝑞𝑤)} . The procedure of updating GNP-TSRL using Sarsa learning is explained

in Figure 5.

Figure 4. Sarsa learning for TSRL

Figure 5. The procedure of updating GNP-TSRL

TELKOMNIKA ISSN: 1693-6930

Exploration of genetic network programming with two-stage reinforcement... (Siti Sendari)

1451

3. Simulations Settings
The proposed method is used to navigate a Khepera robot in the dynamic

environments. This section describes the simulation settings and the results in the training and
implementation phases.

3.1. Khepera Robot

The proposed method is simulated to Khepera robot. It has eight infrared distance
sensors which are used to perceive objects in front of it, behind of it, to the right and left of it by
its reflection. Each sensor returns a value ranging between zero and 1023. Zero means that no
object is perceived, while 1023 means that an object is very close to the sensor (almost
touching the sensor). Intermediate values may give an approximate idea of the distance
between the sensor and object. Two motors turn the right and left wheels of the robot,
respectively. The range of 𝑣𝑅 and 𝑣𝐿 is between -10 to +10, where 𝑣𝑅 is the speed of the right

wheel and 𝑣𝐿 is that of the left wheel. Negative values rotate the wheel backward, while positive
values rotate the wheel forward.

3.2. Reward and Fitness in Wall Following Behaviors

GNP-TSRL judges the values of the sensors and determines the speed of the wheels
depending on node function 𝐼𝐷𝑖𝑝 and parameter 𝑎𝑖𝑝, while the robot moves in the environment

and gets rewards. A trial ends when the individual uses 1000 time steps, then the fitness is
calculated. In this simulation, GNP-TSRL learns the wall following behavior, i.e., the robot must
move along the wall as fast as and as straight as possible. The reward 𝑟(𝑡) at time step 𝑡 and
fitness are calculated by the following equations [15]

r(t) =
vR(t)+ vL(t)

20
 × (1 − √

|vR(t)− vL(t)|

20
) × C, (7)

Fitness = ∑ r(t)/1000,1000
t=1 (8)

where, 𝑣𝑅(𝑡) and 𝑣𝐿(𝑡) are the speed of the right and left wheels at time step 𝑡, respectively.

The range of 𝑣𝑅(𝑡) and 𝑣𝐿(𝑡) is between -10 to +10. If all the sensors have values less than

1000 and at least one of them is more than 100, then 𝐶 is equal to 1, otherwise 𝐶 is equal to 0.

3.3. Simulation Conditions

The node functions of the judgment nodes and processing nodes are shown in Table 1.
Each judgment function, 𝐽0, . . . , 𝐽7, judges the sensor value and determines the next node in the
node transitions probabilistically [20]. Each processing node determines the speed of the left or
right wheel. The simulation conditions of GNP-TSRL in Table 2, where these values are
selected appropriately through the simulations. In this paper, Gaussian noises (µ = 0, 𝜎 = 50)
are added to the sensor values in the training phase to improve the generalization ability of
GNP-TSRL in noisy environments of the implementation phase [20].

In the training phase, 300 individuals are evolved, where at the end of each generation,
300 individuals are generated to form a new population for the next generation; 179 individuals
are generated by mutation, 120 individuals are generated by crossover, and one individual is
the elite. Each individual uses 61 nodes including 40 fuzzy judgment nodes (5 for each kind), 20
processing nodes (10 for each kind) and one start node. Each of the fuzzy judgment nodes and
processing nodes of GNP with TSRL has 2 sub nodes, and each branch of the sub nodes has 2
branch connections which are determined by the evolution. The best individual in the last
generation is selected for the implementation. Figure 6 shows the flowchart of the proposed
method of GNP-TSRL. The performance of GNP-TSRL is studied in two aspects, that is, in the
training phase and implementation phase. The successful trajectories of the robot in the training
and implementation environments are shown in Figure 7.

Evolution phase. The evolution of GNP-TSRL starts from the initialization of individuals.
Each individual has one start node and a fix number of judgment nodes and processing nodes.
The function of node (𝐼𝐷𝑖𝑝) is assigned by a unique number which is shown in the function

library. The parameter of node (𝑎𝑖𝑝) is set at a randomly selected integer. When the node is a

judgment node, its parameter is 𝑎𝑖𝑝 = {𝛽𝑖𝑝 , 𝛼𝑖𝑝}, where 𝛼𝑖𝑝 is larger than 𝛽𝑖𝑝; that is 𝛼𝑖𝑝 is set at

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 3, June 2019: 1447-1454

1452

between 0 and 1023, and 𝛽𝑖𝑝 is set at between 0 and 𝛼𝑖𝑝, while when the node is a processing

node, its parameter is set at between -10 and 10. The initial connection of the node by branch
𝑏𝑖𝑝(𝑞𝑟) is determined randomly. All 𝑄 values (𝑄𝑆𝑆 and 𝑄𝐵𝑆) are set at zero initially.

The connections between nodes, node functions and parameters of the individuals are changed
by crossover and mutation whose rates are 𝑃𝑐 and 𝑃𝑚, respectively. The reader can refer to [20]
for genetic operators in details.

Table 1. Node Functions Used in the
Function Library

Symbol ID Content

𝑗0, . . . 𝐽7 0, ..., 7 judge the value of the
sensor 1,2,..., 8

𝑃0
𝑃1

0
1

determine the speed of
the right wheel
determine the speed of
the left wheel

Table 2. Simulation Conditions
The number of individuals 300 (mutation: 179,

crossover: 120, elite: 1)
The number of nodes 61 (20 processing nodes, 40

fuzzy judgment nodes, and
1 start node)

The number of sub nodes 2 for each fuzzy judgment and
processing node

The number of branch connections 2 for each branch
Parameter of evolution 𝑃𝑐 = 0.1,

𝑃𝑚 = 0.01,
Tournament sizes = 7

Parameter of learning (Training
phase)

𝛾 = 0.9,
∈𝐴= 0.01, 𝛼𝐴 = 0.10 (CaseA)
∈𝐵= 0.15, 𝛼𝐵 = 0.70 (CaseB)

Parameter of learning
(Implementation phase)

𝛾 = 0.9,
∈𝑠𝑡𝑒𝑝= 0.01, 𝛼𝑠𝑡𝑒𝑝 = 0.10,

Figure 6. Flowchart of GNP-TSRL

(a)

(b)

Figure 7. Successful trajectories of
the robot in the training and

implementation environments
(a) training environment,

(b) implementation environment

Learning phase. The learning processes of GNP-TSRL is observed by using cases for
high exploration and low explorations. These cases are used during learning phase and are
implemented in the implementation phase. In the training phase, the individuals learn the
environments using two cases A and B, where case A for low exploration and case B for high
exploration. In case A, parameters use 𝜖𝐴 = 0.01 and 𝛼𝐴 = 0.10, while in case B, parameters

use 𝜖𝐵 = 0.15 and 𝛼𝐵 = 0.70. In the implementation phase, the effects of 𝜖𝑠𝑡𝑒𝑝 and 𝛼𝑠𝑡𝑒𝑝 are

studied using learning parameters with values of ∈𝑠𝑡𝑒𝑝= 0.01 and 𝛼𝑠𝑡𝑒𝑝 = 0.10 with its life time

step, i.e., 3000 time-steps.

TELKOMNIKA ISSN: 1693-6930

Exploration of genetic network programming with two-stage reinforcement... (Siti Sendari)

1453

3.4. Training Results
Firstly, the adaptability of GNP-TSRL is studied in the training phase, where the

parameters of ϵ and are choose appropriately in order to learn the environments. The average

fitness of GNP-TSRL trained (𝑇𝑆𝑅𝐿) is compared when it is use constant ϵ and . In the training

phase, the values of ϵ and are shown in Table 2, i.e., 𝑇𝑆𝑅𝐿(𝐴) use 𝜖𝐴 = 0.01 and 𝛼𝐴 = 0.10
and 𝑇𝑆𝑅𝐿(𝐵) use 𝜖𝐵 = 0.15 and 𝛼𝐵 = 0.70. The average fitness is shown in Figure 8, which is
calculated over 10 best individuals of 10 independent training simulations.

The average fitness of 𝑇𝑆𝑅𝐿(𝐴) converges faster and higher than that of 𝑇𝑆𝑅𝐿(𝐵),
because the actions with higher 𝑄-values can be selected more frequently in 𝑇𝑆𝑅𝐿(𝐴), while

𝑇𝑆𝑅𝐿(𝐵) carries out random action selections more frequently than 𝑇𝑆𝑅𝐿(𝐴). In the other words,

𝑇𝑆𝑅𝐿(𝐴) and 𝑇𝑆𝑅𝐿(𝐵) carry out higher and lower exploitation, respectively. In this case, when
the random action selections are carried out with high probability, the actions cannot be
reinforced well, then the 𝑄-values are small, while when the exploitation of action selections is
carried out with high probability, the good act ions are reinforced, but the alternative actions
cannot be reinforced well.

3.5. Implementation Results

In the implementation phase, the performace of the proposed method is studied when
the individuals are implemented with parameters of 𝜖𝑠𝑡𝑒𝑝 and 𝛼𝑠𝑡𝑒𝑝 as shown in Table 3.

The simulations are done 3000 times, that is, 10 best individuals from 10 independent runs in
the training phase are implemented 300 times using 10 different start positions.

Figure 8. Average fitness in the training phase

Table 3. Average reward of TSRL(A),
TSRL(B) in Testing phase

Individual Average Stdev
T-test one tail

(p-value)

TSRL(A)
TSRL(B)

0.070
0.112

0.030
0.031

-
0.0065

The results shows that, the individuals trained by 𝑇𝑆𝑅𝐿(𝐴) and 𝑇𝑆𝑅𝐿(𝐵) are
implemented using constant 𝜖𝑠𝑡𝑒𝑝 and 𝑠𝑡𝑒𝑝, i.e., 𝜖𝑠𝑡𝑒𝑝 = 0.01 and 𝛼𝑠𝑡𝑒𝑝 = 0.10. When an

inexperienced environment used in the implementation, the action selections are selected
considering situations learned in training phase, while the 𝑄-values of the current transition, are

used to leceted actions due to the changes of the environments. Here, 𝑇𝑆𝑅𝐿(𝐴) has the lower

average reward as shown in Table 3, because it was trained with higher exploitation, and the 𝑄-
values of the alternative actions had small values. Thus, due to the changes of the
environments, the actions of 𝑇𝑆𝑅𝐿(𝐴) cannot be selected appropriately, while as 𝑇𝑆𝑅𝐿(𝐵) was

trained with higher exploration, although the performance of 𝑇𝑆𝑅𝐿(𝐵) in the training phase is

worse than 𝑇𝑆𝑅𝐿(𝐴), the average reward of 𝑇𝑆𝑅𝐿(𝐵) is higher than 𝑇𝑆𝑅𝐿(𝐴) in the
implementation phase, because the 𝑄-values of the alternative actions had larger values. Thus,

due to an inexperienced of environments, the actions of 𝑇𝑆𝑅𝐿𝑐𝑜(𝐵) can select be selected more

appropriately. The proposed method, 𝑇𝑆𝑅𝐿(𝐵) has the better result than 𝑇𝑆𝑅𝐿(𝐴), which means
the two-stage reinforcement learning can reinforce good actions and the alternative actions.
Here, 𝑇𝑆𝑅𝐿(𝐵) shows more efficient and effective compared to 𝑇𝑆𝑅𝐿(𝐵).

4. Conclusion
The two stage reinforcement learning of Genetic Network Programming (GNP-TSRL) has

been proposed to improve the performance of conventional GNP-RL. In the training phase,
the average fitness of 𝑇𝑆𝑅𝐿(𝐴) converges faster and higher than that of 𝑇𝑆𝑅𝐿(𝐵), while 𝑇𝑆𝑅𝐿(𝐵)

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 3, June 2019: 1447-1454

1454

has the better result than 𝑇𝑆𝑅𝐿(𝐴) in testing phase, which means the two stage reinforcement
learning can reinforce good actions and the alternative actions. It shows that the exploration of
learning two stage RL (GNP-TSRL) can improve the performance of GNP-TSRL efficiently and
effectively by providing alternative connections. In the future work, we will study the performance
of the proposed method by studying the adaptability when severe conditions occur.

References
[1] Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press. 1998.
[2] Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A survey. J Artif Intell Res 1996; 4:

237–285.
[3] Smart WD, Kaelbling LP. Effective reinforcement learning for mobile robots. Robotics and

Automation 2002 Proceedings, ICRA’02. IEEE International Conference. 2002: 3404–3410.
[4] Dong D, Chen C, Chu J, et al. Robust quantum-inspired reinforcement learning for robot navigation.

IEEEASME Trans Mechatron 2012; 17(1): 86–97.
[5] Khriji L, Touati F, Benhmed K, et al. Mobile robot navigation based on Q-learning technique. Int J

Adv Robot Syst 2011; 8(6): 4.
[6] Anual SN, Ibrahim MF, Ibrahim N, Hussain A, Mustafa MM, Huddin AB, Hashim FH. Ga-based

optimisation of a lidar feedback autonomous mobile robot navigation system. Bulletin of Electrical
Engineering and Informatics. 2018; 7(3): 433-441.

[7] Patle BK, Parhi DRK, Jagadeesh A, et al. Matrix-Binary Codes based Genetic Algorithm for path
planning of mobile robot. Comput Electr Eng 2018; 67: 708–728.

[8] Santiago RMC, De Ocampo AL, Ubando AT, et al. Path planning for mobile robots using genetic
algorithm and probabilistic roadmap. Humanoid, Nanotechnology, Information Technology,
Communication and Control, Environment and Management (HNICEM), 2017 IEEE 9th International
Conference. 2017: 1–5.

[9] Koza JR. Genetic programming II, automatic discovery of reusable subprograms. Cambridge, MA:
MIT Press. 1992.

[10] Contreras-Cruz MA, Ayala-Ramirez V, Hernandez-Belmonte UH. Mobile robot path planning using
artificial bee colony and evolutionary programming. Appl Soft Comput 2015; 30: 319–328.

[11] Yang X, Cai M, Li J. Path planning for unmanned aerial vehicles based on genetic programming.

Control and Decision Conference (CCDC), 2016 Chinese. 2016: 717–722.
[12] Hirasawa K, Okubo M, Katagiri H, et al. Comparison between genetic network programming (GNP)

and genetic programming (GP). Evolutionary Computation, 2001. Proceedings of the 2001 Congress.
2001: 1276–1282.

[13] Yao X. Evolving artificial neural networks. Proc IEEE. 1999; 87(9): 1423–1447.
[14] Ito T, Iba H, Kimura M. Robustness of robot programs generated by genetic programming.

Proceedings of the 1st annual conference on genetic programming. 1996: 321–326.
[15] Mabu S, Hirasawa K, Hu J. A graph-based evolutionary algorithm: Genetic network programming

(GNP) and its extension using reinforcement learning. Evol Comput 2007; 15(3): 369–398.
[16] Yan XY, Wu QW, Liu H. An improved robot path planning algorithm. TELKOMNIKA

Telecommunication Computing Electronics and Control. 2012; 10(4): 629-36.
[17] Liu F, Liang S, Xian DX. Optimal Path Planning for Mobile Robot Using Tailored Genetic Algorithm.

TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014; 12(1): 1-9.
[18] Mabu S, Hatakeyama H, Thu MT, et al. Genetic network programming with reinforcement learning and

its application to making mobile robot behavior. IEEJ Trans Electron Inf Syst. 2006; 126: 1009–1015.
[19] Watabe H, Kawaoka T. Automatic generation of behaviors for mobile robot by GA with automatically

generated action rule-base. Industrial Electronics Society, 2000. IECON 2000. 26th Annual
Confjerence of the IEEE. 2000: 1668–1674.

[20] Sendari S. Fuzzy Genetic Network Programming with Noises for Mobile Robot Navigation. J Adv
Comput Intell Intell Inform. 2011; 15(7): 767–776.

[21] Zaragoza JH, Morales EF. A two-stage relational reinforcement learning with continuous actions for
real service robots. Mexican International Conference on Artificial Intelligence. 2009: 337–348.

[22] Sendari S, Mabu S, Hirasawa K. Two-Stage Reinforcement Learning Based on Genetic Network
Programming for Mobile Robot. SICE Annual Conference (SICE), 2012 Proceedings. 2012: 95-100.

[23] Ishii S, Yoshida W, Yoshimoto J. Control of exploitation–exploration meta-parameter in reinforcement
learning. Neural Netw. 2002; 15(4-6): 665–687.

[24] Tokic M. Adaptive ε-greedy exploration in reinforcement learning based on value differences. Annual
Conference on Artificial Intelligence. 2010: 203–210.

[25] Osugi T, Kim D, Scott S. Balancing exploration and exploitation: A new algorithm for active machine
learning. Data Mining, Fifth IEEE International Conference. 2005: 8.

[26] Murakoshi K, Mizuno J. A parameter control method inspired from neuromodulators in reinforcement
learning. Computational Intelligence in Robotics and Automation, 2003. Proceedings. 2003 IEEE
International Symposium. 2003: 7–12.

