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Abstract 
 At the essence of video surveillance, there are abnormal detection approaches, which have been 

proven to be substantially effective in detecting abnormal incidents without prior knowledge about these 
incidents. Based on the state-of-the-art research, it is evident that there is a trade-off between frame 
processing time and detection accuracy in abnormal detection approaches. Therefore, the primary 
challenge is to balance this trade-off suitably by utilizing few, but very descriptive features to fulfill online 
performance while maintaining a high accuracy rate. In this study, we propose a new framework, which 
achieves the balancing between detection accuracy and video processing time by employing two efficient 
motion techniques, specifically, foreground and optical flow energy. Moreover, we use different statistical 
analysis measures of motion features to get robust inference method to distinguish abnormal behavior 
incident from normal ones. The performance of this framework has been extensively evaluated in terms of 
the detection accuracy, the area under the curve (AUC) and frame processing time. Simulation results and 
comparisons with ten relevant online and non-online frameworks demonstrate that our framework 
efficiently achieves superior performance to those frameworks, in which it presents high values for  
the accuracy while attaining simultaneously low values for the processing time. 
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1. Introduction 

Owing to its widespread applications in today’s world, video-based surveillance 
research considers as one of the most current hot topics in computer vision field. Detecting 
abnormal events from surveillance videos is an important task because of the increasing need 
for public security [1-3].  Despite that, the complication of the scenario and the unpredictability of 
the abnormalities make it a difficult and challenging task. A widespread solution is firstly by 
learning normal events from training data, and then identify abnormalities by measuring their 
resemblances or reconstruction errors in light of the learned normal models [4]. Those normal 
models could depend on feature distribution [5], trajectory [6], graph model [7], or sparse 
representation [8]. Currently, many methods have been proposed to detect abnormal incidents 
with very high accuracies, but only very few of these methods seek to detect abnormalities once 
they occur [9]. To accomplish online performance, the current frame must be processed before 
the next new frame depending on the sequence’s frame rate [10]. Unfortunately, acquiring high 
processing speed always comes at the expense of detection accuracy or vice versa. Therefore, 
the big challenge in the abnormal detection field is to balance these two-performance metrics 
appropriately. Recently, there is a lot of research, which have been proposed to detect 
abnormalities [11-13].  

Authors in [14] propose an approach to detect video-based anomalies using a 
determined entropy measure, which is calculated based on statistical processing of  
the spatiotemporal information for a group of interest points inside an area of interest by 
measuring and analyzing their randomness of both displacements and directions. Building a 
model based on raw video sequences is hard since the model intricacy would be considerably 
high. One solution extensively used to address this matter is to partition the video into small  

https://www.google.com.my/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&cad=rja&uact=8&ved=2ahUKEwj-94Pw3fndAhVIPo8KHd3NCJkQFjAKegQIARAB&url=http%3A%2F%2Fscholar.google.com.my%2Fcitations%3Fuser%3DDisam4QAAAAJ%26hl%3Den&usg=AOvVaw3y4QO0nCIfmAhj-Yjd-mcS


                     ISSN: 1693-6930 

TELKOMNIKA  Vol. 17, No. 4, August 2019:  2039-2047 

2040 

spatial-temporal patches [10-12, 14-16], after that, some subsequent operations, as well as 
abnormal detection algorithm, are applied on these patches. However, this approach 
experiences several problems. One of these problems is that the patches only consist of 
information about the background, which does not assist in individual behavior modeling. 
Another problem, as mentioned in [15], is that all abnormal detection methods that employ this 
approach only partition the video into uniform patches, without taking into account the moving  
objects as a whole.  

Authors in [17] proposed a method based on densely constructed spatiotemporal video 
volumes that are organized into large contextual graphs. For the dominant behaviors, a 
hierarchical codebook model is constructed. This method is able to model low-level and  
high-level spatial behaviors at the same time as well as the temporal and spatiotemporal pixel 
level changes.  Subsequently, in [18], these spatiotemporal compositions are enhanced in terms 
of frame processing times, by taking into account the temporal variations of frame volumes as a 
descriptor. Authors in [19] proposed a fast-sparse method to detect anomalies by learned 
sparse combinations to quicken the coding phase. Although this approach improves  
the processing time of detection up to, on average,140–150 frames per second, the accuracy is 
significantly influenced by the threshold, which frequently differs for different scenes.  
Cong et al. [20] proposed a method to use a sparse coding model and multi-scale histograms of 
optical flow as well as the reconstruction error as a metric for anomaly detection. Authors in [21] 
proposed a method to detect abnormalities by employing cues from the movement vectors in 
H.264/AVC compressed videos. The method suggests hierarchical processing in which  
the detection begins at coarsest level up to the final one. To classify the abnormal behavior from 
the normal one, the Gaussian Mixture Model (GMM) is utilized. Further improvement of this 
method is done by [22]. The authors adding orientation information for the movement vectors.  
In addition, they used non-parametric modeling in opposition to the previous parametric one, 
which assisted in enhancing the detection accuracy. The main differences between our 
framework and the other existing frameworks are as follows: 
a) Drawing out highly descriptive features, our framework utilizes two efficient motion 

algorithms while maintaining online-performance. In particular, it utilizes optical flow and 
background subtraction features, both of which effectively and independently utilized in  
the past [10, 23]. 

b) The proposed framework is different from [24] in three aspects: the first one is that  
the proposed framework utilizes from extracting foreground features besides the ones from 
optical flow. This is very useful in the cases when the features extracted from optical flow 
energy are not descriptive sufficiently. Thus, the foreground features assist the proposed 
framework to detect abnormal incident properly. The second one is that our framework 
uses an adaptive threshold based on the training dataset. We also propose to use standard 
deviation measure to measure the deviation of data from the normal rate. 

The remainder of this paper is organized as follows. The proposed framework in detail 
is described in Section 2. Section 3 sheds light on the public datasets, experimental setup and 
performance metrics, which use to evaluate the performance of the proposed framework. 
Section 4 presents the results and comparison experiments to demonstrate the advantages of 
the proposed framework. Finally, Section 5 concludes this study and suggests future work. 
 
 
2. Research Method 

This study proposes a new framework for online detection of abnormal behavior by 
relying on the foreground and optical flow energy features. The block diagram of the proposed 
framework is shown in Figure 1. 

 
2.1. Pre-Processing 

For simplicity, we resize all the frames into 240×320. After that, we convert all  
the frames to grayscale images. Changes in lighting conditions have an important effect on  
the performance of abnormal detection algorithms [1, 25]. One way to handle disparate 
illumination is to utilize illumination normalization as a pre-processing phase. In the proposed 
framework, we apply the illumination normalization algorithm using histogram equalization 
technique to control lighting conditions. After that, we apply Gaussian filtering to remove 
unwanted small objects.  
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Figure 1. Block diagram of the proposed framework 
 
 
2.2. Feature Extraction 

There are various algorithms for motion detection in live stream videos [1, 10]. Almost, 
all of them depend on comparing the current frame of video with the previous one.  
In the proposed framework, we use two efficient motion detection algorithms to detect and 
extract motion features, namely, background subtraction and optical flow. Further details on 
these algorithms are in the following paragraphs:  

Foreground features: Foreground features are very beneficial to determine long-term 
incidents [10]. Foreground features points out to the information that represents the size of 
objects and their corresponding time in a certain scene [26]. They are obtained by making use 
of background subtraction approach on video frame [27]. Implementing background subtraction 
produces one binary mask for each video frame, in which the true logical values constitute  
the foreground features. 

Optical flow energy features: Optical flow is employed to represent the global visible 
motion of the objects between consecutive frames [28]. For estimating optical flow there are 
three popular approaches: Lucas-Kanade [29], Pyramid Lucas-Kanade [30] and  
Horn–Schunck [31], the last one is used in our framework because it is the best approach that 
gave us practically the best results to compute efficiently dense flow fields.  The optical flow 
energy features are computed as in the following: 

 

𝑂𝑝(𝑖𝑝 , 𝑗𝑝, 𝑡𝑝) =  
1

𝑁
 ∑ ‖𝑣𝑖

(𝑛)
, 𝑣𝑗

(𝑛)
‖

2

𝑁
𝑛=1   (1) 

 
where 𝑣𝑖 and 𝑣𝑗 refer to the horizontal and vertical components of optical flow in  

the space location (𝑖𝑝 , 𝑗𝑝), respectively at the frame difference 𝑡𝑝. N indicates the number of 

pixels for each video frame. 
 

2.3. Frame Difference Map (FDM) 
Frame Difference Map (FDM) is created based on the differences in the generative 

masks of the consecutive frames. Firstly, we obtain the generative masks for the two 
consecutive frames, the previous generative mask (PGM) and current generative mask (CGM). 
Then, we compute the difference between them as in the following: 

 
FDM = CGM −  PGM (2) 

 
We also apply the morphological filter to remove small objects or noisy objects from the FDM. 
Figure 2 describes how to compute the FDM. As shown in Figure 1, the computed FDM will be 
employed to calculate the EOS statistical measure as in the next subsection.  
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Figure 2. Frame difference map (FDM) 
 
 
2.4. EOS Statistical Measure to Detect Abnormal Behavior Detection 

Abnormal behavior detection in the spotted scene is carrying out by applying statistical 
analyses on the FDM. We propose to use the following three statistical measures: entropy, 
occupancy, and standard deviation, we refer to these measures by Entropy-Occupancy-
Standard deviation (EOS). Figure 3 presents an instance wherein the EOS measure increases 
in the case of occurring an anomaly incident.  
a) Entropy Measure (EM): It is a statistical measure of randomness that may be utilized to 

obtain the suspicion values of an image. It counts the quantity of information, on average, 
desired to encode the values of an image. The scene behavior entropy for an image 𝐹𝐷𝑀 
can be calculated using the following equation: 
 

𝐸𝑀(𝐹𝐷𝑀) = − ∑ 𝑓𝑧 
𝑘
𝑧=1 𝑙𝑜𝑔2𝑓𝑧 (3) 

 
where k refers to the number of independent symbols and fz is the frequency of the z-th pixel in 
the image [24, 32]. 
b) Occupancy Measure (OM):  This measure refers to the area occupied by the detected 

objects over time. The more OM value gets up, the more changing in the scene. We 
presume that in case of a significant difference in the OM value, a suspicious incident is 
occurring. Occupancy measure can be computed as in the following:  
 

𝑂𝑀(𝐹𝐷𝑀) =  
∑(𝐹𝐷𝑀)

𝐻×𝑀
 (4) 

 
where 𝐻 × 𝑀 = 240 × 320 is the size of the frame. 
c) Standard Deviation Measure (SM):  For a random matrix FDM made up of N observations, 

the standard deviation is defined as: 
 

𝑆𝑀 =  √
1

𝑁−1
∑ |𝐹𝐷𝑀𝑖 − 𝜇|𝑁

𝑖=1  (5) 

 
where 𝜇 is the mean of FDM, which can be calculated as follows: 

 

𝜇 =  
1

𝑁
∑ 𝐹𝐷𝑀𝑖

𝑁
𝑖=1  (6) 

 
2.5. Adaptive Thresholding and Inference Phase  

To obtain an adaptive threshold to be used in our proposed framework, we use 
quantiles algorithm (QA) [33] on the training datasets to find all measures explained in detail in 
the previous section for each frame difference map (FDM). QA will return quantiles of the values 
in a vector of data for the cumulative probability p in the range [0, 1].  The following steps 
describe how to find the threshold using quantiles for the three measures: 
a. First, we will find the Entropy, Occupancy and Standard deviation measures for each FDM 

in the training datasets. Consequently, this will provide us three vectors for Entropy (EV), 
Occupancy (OV), and Standard deviation (SV) measures, respectively.   
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Figure 3. EOS variation in the indoor scene from the UMN dataset 
 
 
b. Applying quantile function on the three vectors (EV, OV, and SV). Quantiles are specified 

using cumulative probability p from 0 to 1. For each m-element vector (EV, OV, and SV), 
which have the same length, quantile calculates quantiles as in the following:  

- The sorted values in EV, OV, and SV are taken as the (0.5/m), (1.5/𝑚), … . ([𝑚 −  0.5]/

𝑚) quantiles. 

- Calculate quantiles for probabilities between [(
0.5

𝑚
) and (

[𝑚 – 0.5]

𝑚
)]using linear interpolation. 

Here, in our framework, we choose 𝑝 =  0.80 ∈  [(0.5/𝑚) and ([𝑚 −  0.5]/𝑚). 

- Consider the values resulted from quantile function as QE, QO, and QS for EV, OV, and 

SV, respectively. Hence, these are the three adaptive thresholds for the three measures. 

c. For inferring an abnormal behavior in the testing datasets, we first calculate EV, OV, and 
SV measures for each testing FDM. The abnormal incidents can be found as in  
the following: 
 

𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 =  {

𝑖𝑓 𝐸𝑉(𝑖) > 𝑄𝐸 𝑜𝑟

𝑖𝑓 𝑂𝑉(𝑖) > 𝑄𝑂 𝑜𝑟

𝑖𝑓 𝑆𝑉(𝑖) > 𝑄𝑆       

} , 𝑖 = 1, 2, … , 𝑛 (7) 

 
where n is the number of frames.  

 
 

3.    Performance Evaluation 
3.1. Benchmark Datasets 
a. University of Minnesota (UMN) Dataset: This dataset [34] is a commonly used benchmark. 

It comprises eleven video footages for three different escape views, one indoor view, and 
two outdoor views.  The total length of this dataset is 7,739 frames. In addition,  
the resolution of the frames is 320×240 pixels. 

b. UCSD-PED1 Dataset: This dataset [35] includes 34 and 36 video clips for training and 
testing, respectively. The testing clips have different abnormal incidents such as carts, 
skaters, bicycles. Each video clip contains 200 frames for 20 seconds, with a resolution of 
158×238. The total number of frames in this dataset is 14,000 frames.  

 

Normal                                Abnormal  
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3.2. Experimental Setup and Performance Metrics 
The experiments on this study have been implemented and simulated using MATLAB 

R2017b (9.3.0.713579) x64 and OpenCV libraries on Linux platform with an Intel Core i7-4600U 
CPU working at 2.10 GHz with a 4 MB cache and 8 GB RAM. There are no GPU arrays in the 
implementation code to accelerate the computations, also the code is not parallelized. When the 
proposed framework encounters an abnormal incident like the one shown in Figure 4 (a). 
Automatically the framework will display an alert with "ALARM". Extracted foreground features 
are illustrated in Figure 4 (b). Also, the FDM between two consecutive generative masks is 
shown in Figure 4 (c). 

The performance of the proposed framework was evaluated in terms of accuracy, 
receiver operating characteristic (ROC) and area under the curve (AUC). To measure the 
accuracy, we use the confusion matrix [18]. ROC curves and AUC are very useful for scholars 
in the fields of science, machine learning, computer vision and many others. The ROC curves 
are the most frequent manner that is used to demonstrate the performance of a binary classifier, 
while AUC is the best manner to sum the performance of the classifier in one single value. The 
ROC curve draws both the true positive rate (TPR) and the false positive rate (FPR) by applying 
several threshold values. The TPR is also known in machine learning as the probability of 
detection, recall, or sensitivity. Similarly, the FPR is also known as the probability of false alarm 
or fall-out.  The area under the curve (AUC) is computed using trapz (FPR, TPR) in MATLAB. 
AUC value ranges between [0-1] and it describes how well the algorithm can correctly classify 
the behavior [36, 37]. 
 

 

   
(a) (b) (c) 

 
Figure 4. An example shows sample abnormal incident from UMN dataset that is detected by 

the proposed framework (a) abnormal event, (b) foreground features,  
(c) frame difference map 

 
 

4. Results And Analysis 
To evaluate and compare the proposed framework with other frameworks, we used  

the codes available in [38, 39], for Lu et al. [19] and Biswas and Babu [21], respectively.  
The results of the other methods are taken from state-of-the-art papers in [10, 19]. The results 
of the proposed framework are shown in Table 1 employing UMN and UCSD ped1 datasets. 
Because of the nature of the two-class confusion matrix, there are four possible combinations: 
True Negative (TN), False Negative (FN), False Positive (FP), and True positive (TP), as shown 
in Table 1.  

Table 2 demonstrates the average AUC applying our proposed framework besides 
different anomaly detection approaches using UMN dataset.  Since the non-online frameworks 
seek mostly to attain detection accuracy in the account of the processing time, we compare our 
framework with non-online frameworks to prove that our framework offers very competitive 
results in terms of both mentioned criteria.  As noted in Table 2, our framework presents  
the best results in terms of the AUC values comparing to all online methods. Moreover, 
comparing to non-online methods, the proposed framework achieves very competitive results to  
Li et al. [16] and Zhu et al. [40], while the frame processing time in the proposed framework is 
much less. In addition, we record the frame-level ROC curve applying this dataset.  
The outcomes are illustrated in Figure 5 (a). It can be noticed that the proposed framework is 

(a) Abnormal event (b) Foreground features (c) Frame difference map(a) Abnormal event (b) Foreground features (c) Frame difference map(a) Abnormal event (b) Foreground features (c) Frame difference map
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superior to the online approaches proposed by Pennisi et al. [24], Leyva et al. [10], and Biswas 
and Babu [21], respectively. Also, our framework achieves great competitive results in 
comparing to other non-online approaches that have been designed in particular for attaining 
high performance in terms of accuracy, and not processing times, such as the one proposed by 
Li et al. [16]. With our framework, the overall average accuracy for UMN dataset reaches up to 
97.393%. Similarly, in Figure 5 (b), comparing our framework with Biswas and Babu [21], 
Mahadevan et al. [35], and Adam et al. [41] in UCSD-PED1, our framework achieves  
the best performance.  
 
 

Table 1. The Proposed Framework Results on UMN and UCSD-Ped1 Datasets  
(TN: Normal Patterns that are Correctly Detected, FN: Normal Patterns that are Wrongly 

Detected, FP: Abnormal Patterns that are Wrongly Detected, TP: Abnormal Patterns that are  
Correctly Detected) 

Dataset Number of Frames 
Actual Detected  

Accuracy 
Normal Abnormal 

Normal Abnormal 
TN FN FP TP  

UMN (Lawn scene) 1423 1239 184 1183 0 60 563 96.6777% 
UMN (Indoor scene) 3912 3233 679 3173 116 60 563 95.5010% 
UMN (Plaza scene) 2081 1865 216 1865 0 0 216 100% 
UCSD Ped1 7200 4240 2960 3705 532 535 2428 85.18% 

 
 
Table 2. AUC Values Applying Different Anomaly Detection Approaches on the UMN Dataset6 
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Figure 5. Comparisons of frame-level roc curves for: (a) UMN dataset, (b) UCSD-PED1 dataset 
 
 
5. Conclusion 

The main goal of intelligent video-based surveillance systems is to distinguish efficiently 
any suspected incident from a large number of videos to prevent risky cases.  Mostly, to achieve 
this, two significant tasks should be employed. Firstly, feature extraction, which aims to detect 

(a)                                                                        (b)

Authors AUC Frame-Processing Time (ms) On-Line Performance 

Hu et al. [42] 
1
 0.9770 200  

Li et al. [16]
2
 0.9960 1100  

Cong et al. [20]
3
 0.9730 3800  

Zhu et al. [40]
4
  0.9970 4600  

Lu et al. [19]
5
 0.7010 6  

Biswas and Babu [21]
6
 0.7360 14  

Leyva et al. [10]
7
 0.8830 31  

Pennisi et al. [24]
8
 0.9500 30  

Ours 0.9867 20  
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and extract an interesting area in a scene. Then, primitives based on these visual features are 
created to describe the interest area. Secondly, apply an inference method based on the 
provided semantic information about the human motion and determine whether the behavior is 
normal or abnormal.  

In spite of the outstanding development in the area of anomaly behavior detection, there 
are some obstacles that make it complicated and challenging. For instance, the choice of 
features that are utilized to describe the moving object is a hard task as it affects drastically the 
characterizing and the analysis of the behavior. Furthermore, there are only a few online 
frameworks for video abnormal detection. To overcome these limitations, in this study, we 
proposed an efficient-online framework for abnormal behavior detection in surveillance videos. 
We tested our framework on the common datasets, UMN and UCSD. During conducting the 
simulation experiments, we noted that there is a trade-off between both the accuracy and frame 
processing time. Therefore, we design the proposed framework to be able to achieve high 
detection accuracy while attaining online performance by employing highly descriptive features, 
specifically, foreground and optical flow energy features as well as utilizing different statistical 
measures to efficiently analysis them. The proposed framework attains comparable 
performance to both online and non-online state-of-the-art abnormal detection approaches. Our 
future work could be to extend the proposed framework to other video applications. 
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