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Abstract 
Channel selection is an improvement technique to optimize EEG-based BCI performance.  

In previous studies, many channel selection methods—mostly based on spatial information of signals—have 
been introduced. One of these channel selection techniques is the energy calculation method. In this paper, 
we introduce an energy optimization calculation method, called the energy extraction method. Energy 
extraction is an extension of the energy calculation method, and is divided into two steps. The first step is 
energy calculation and the second is energy selection. In the energy calculation step, l2-norm is used to 
calculate channel energy, while in the energy selection method we propose three techniques: “high value” 
(HV), “close to mean” (CM), and “automatic”. All proposed framework schemes for energy extraction are 
applied in two types of datasets. Two classes of datasets i.e. motor movement (hand and foot movement) 
and motor imagery (imagination of left- and right-hand movement) were used. The system used a Common 
Spatial Pattern (CSP) method to extract EEG signal features and k-NN as a classification method to classify 
the signal features with k=3. Based on the test results, all schemes for the proposed energy extraction 
method yielded improved BCI performance of up to 58%. In summary, the energy extraction approach using 
the CM energy selection method was found to be the best channel selection technique. 
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1. Introduction 

Electroencephalography (EEG) is the most preferred technology for BCI over other BCI 
modalities. This is because EEG is more commonly used due to its high temporal resolution, 
affordability, availability, and portability [1]. However, EEG produces noisy and non-stationary 
signals [2–4] that cause poor performance in BCI applications. Many techniques have been 
introduced to solve this problem. One of the techniques to improve brain signal information 
redundancy is channel selection and reducing or eliminating irrelevant information in  
channels [5]. There are many reasons why the channel selection method is important in 
optimizing BCI. Firstly, one drawback of EEG signals is that over fit to noise increases with  
the number of task-irrelevant features [6, 7]. Secondly, it is difficult to understand which part of 
the brain generates class-relevant activity [8, 9]. Thirdly, applying a large number of channels is 
time consuming [10, 11]. Fourthly, it is crucial to reduce the number of EEG channels as well as 
to maintain good reliability to improve the portability and practicability of BCI systems [12]. 
Therefore, this study introduced a channel selection method to improve BCI performance, 
namely the energy extraction method. 

In a previous study, the energy extraction method was known as spatial filtering [13] or 
the energy calculation method [14]. Two previous studies basically used similar methods for 
energy selection i.e. the highest energy of channels. However, this study proposes energy 
extraction as a method for optimizing previous studies via the use of different channel selection 
techniques. In general, the energy extraction method is divided into two processes, which are 
energy calculation and energy selection. In the energy calculation process, we used l2-norm to 
generate the energy for all channels, while in energy selection we introduced two techniques to 
select and define the composition of active channels i.e. “close to mean” and automatic 
selection, and the “high value” technique, which is a similar method to that of previous studies. 
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This paper is organized as follows: section 2 covers previous related works on BCI and 
channel selection. Section 3 discusses the methodology of the proposed BCI framework via  
the energy extraction process. Section 4 presents the test result and discussion of BCI 
performance using the energy extraction method. Finally, concluding remarks and future works 
are given in section 5. 
 
 

2. Research Method 
EEG is the most widely used device in BCI applications. There are many types of EEG 

signal actions such as motor action [15, 16], imagination [17–19], emotion [20–22],  
speech [23–25], visual [26, 27], audio [28–30] etc., all of which simplify the measurement of 
brain signals. However, the generated EEG signals have less favorable characters that make it 
easily translatable such as non-linearity [31–33], non-stationary [3, 4, 34] and noisy  
features [2, 35]. One technique for optimizing EEG signals is channel selection, which can 
reduce or eliminate irrelevant information in channels [5].  

Based on one study [36], the channel selection method can be divided into five 
methods, which are filtering, wrapper, embedded, hybrid, and human-based. In the filtering 
method, channel selection is generated via a search algorithm. This method has been used in 
past studies [9, 37]. The wrapper method uses a classification algorithm to evaluate candidate 
channels [38, 39]. The embedded method facilitates the interaction between channel selection 
and classification. The hybrid method is a combination of the filtering and wrapper  
techniques [40]. The human-based method uses humans in the feedback task for  
channel selection. 

A new channel selection technique using the energy calculation method was presented in 
one study as an optimized signal to improve BCI performance [14]. Basically, the energy 
calculation method uses a l2-norm to generate channel energy [13, 14]. However, this technique 
has been used previously in other fields to generate specific information [41]. The EEG signal was 
generated using l2-norm in a CUR matrix decomposition to prevent ‘out of memory’ problems 
because of the large size of the data matrix in non-negative matrix factorization (NMF) [42]. 
 
 

3. Research Method 
This study is related to the BCI system processes and is basically structured into three 

main processes, which are preprocessing, feature extraction, and classification. The energy 
extraction process was introduced in BCI as a channel selection method to optimize and 
improve BCI performance. The process of energy extraction occurs in between  
the preprocessing and feature extraction, as shown in Figure 1. 

 
 

 
 

Figure 1. Block diagram of the BCI system 
 

 

3.1. Dataset 
This study used two types of dataset, namely dataset I and dataset II. Dataset I consists 

of two classes of physical motor movement EEG signals, which were provided by  
the Biomedical Instrumentation Engineering Laboratory of Tokyo City University, Japan. Motion 
signals such as grasping of the right hand and raising of the right foot were recorded using 
seven channels of EEG (C2, Cz, C1, C3, C5, FC3, and FC5) from three healthy adult subjects 
(sbjA, sbjB, and sbjC) sitting on a chair. Both datasets are explained in Table 1. 

Similar to dataset I, dataset II also has two classses of motor imagery EEG signals for 
left hand imagery (LH) and right hand imagery (RH). This dataset was provided by brain signal 
researchers at Dr. Cichocki's Lab (Lab. for Advanced Brain Signal Processing), BSI, and via 
RIKEN collaboration with Shanghai Jiao Tong University. The motor imagery signal was 
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recorded using 6 EEG channels (C3, Cp3, Cz, Cpz, C4, Cp4) involving five healthy adult 
subjects (S1, S2, S3, S4, S5). 

 
 

Table 1. The Dataset Table 
Datasets Subjects Class Channel Number Trial number Sample rate 

Dataset I SbjA Hand 
Movement/Leg 

Movement 
7 

40 
200Hz SbjB 40 

SbjC 40 
Dataset II S1 Left Hand 

Imagery/Right 
Hand Imagery 6 

170 

256Hz 
S2 158 
S3 48 
S4 120 
S5 90 

 
 

3.2. Energy Extraction 
This study mainly focuses on energy extraction as a channel selection method.  

The framework starts with a filtered signal in preprocessing using a second-order Butterworth 
filter at a frequency of 3-14 Hz. The energy extraction method was divided into two processes: 
the energy calculation process and energy selection process. 

 

3.2.1. Energy Calculation 
The purpose of this process is to calculate the energy in the channels using an l2-norm 

equation. The process begins by calculating the channel energy, as per (1). 
 

C =  c:, pj  , where   𝑝𝑖  =
∑ 𝐴(𝑖,𝑗)2𝑛

𝑗=1

∑ ∑ 𝐴(𝑖,𝑗)2𝑛
𝑗=1

𝑚
𝑖=1

 (1) 

 

where, C is a matrix with selected channels, c denotes the columns which later identified as 

channels, m and n are the number of row and column of matrix C, respectively, and 𝑝 is  
the average channel energy. The calculation was applied in all training trials and sessions of 
subjects, so that every channel is represented by an energy, which later known as channel 
energy. The next process is energy selection, where the channel energy is selected based on 
the three techniques to have the best selected channels. 

 

3.2.2. Energy Selection 
The energy selection process is the most important process in the energy extraction 

method for channel selection. This process determines the energy value in the channel to be 
selected as active channels in regard to the task of class type in a dataset. In this study, we 
introduced two approaches for the energy selection technique, which are manual and automatic 
selection. The main difference between the manual and automatic energy selection is  
the technique used to define the energy combination criteria. 
a. Manual selection 

The main point of the manual energy selection is to sort channel energy. This paper 
proposed two techniques for sorting channel energy, where the first is based on the highest 
energy of selected combination channels called the “highest value” method, and the second is 
based on the adjacency of channel energy, which is called the “close to mean” method. 
- Highest Value (HV) 

This energy selection technique was introduced in previous studies [13, 14].  
The combination of active channels is selected sequentially following a number of channel 
rankings sorted by decreasing energy value. The form of channel combination is further tested 
for performance accuracy. The combination of channels with the highest accuracy will be  
the best combination of selected active channels. 
- Close to mean (CM) 

The CM energy selection technique sorts energy in increasing order, which has  
the smallest difference between channel energy and average channel energy in the first rank. 
Using this technique, the entire channel energy is first calculated on average and used as a 
reference threshold to create channel energy order. This is done by calculating the difference in 
energy between the reference and each channel energy. The “close to mean” selection method 
is not that different from the “highest value” method, as it selects a number of channel 
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combinations following the rankings in the order that has been established. The selected 
channel is generated by the highest performance test outlined by (2): 

 

Ɛsc = min|∑ Ɛ̅n − Ɛi
n
i=1 | (2) 

 
where, Ɛ is the channel energy, which is the “sc” selected channel energy that represents  

the selected channels, and “n” is the number of channels, while Ɛ̅n is the average of all  
channel energy. 
b. Automatic Selection 

The main difference between the process of automatic and manual energy selection is 
the technique used for determining energy threshold value. The automatic selection process 
defines the combination of selected channels by the boundary of threshold energy value based 
on a defined region. This method determines the combination of active channels based on 
channel energy calculation, which is higher than the average channel energy (energy threshold) 
as denoted by (3). Based on this method, the selected channels will be the channels with a 
higher energy than the threshold. 

 

Ɛsc ≥ Ɛ̅n (3) 
 

3.3. Common Spatial Pattern (CSP) 
CSP is known as a popular and powerful method for discriminating two classes of  

EEG [43]. It generates maximum variances in one-multi channel signal and at the same time 
minimizes other variances [44]. The main idea of the Common Spatial Pattern (CSP) is to use a 
linear transformation to project multi-channel EEG data into a low-dimensional matrix.  
The normalized covariance matrix can be calculated using (4): 

 

Cy =
1

ny
∑

Ej (y)Ej
T(y)

trace (Ej (y)Ej
T(y))

 (4) 

 

where, Ej denotes the EEG signal for the j-th trial, ny represents a number of trials for the y 
class, and y is a class (e.g. left and right). T is the transpose operator and trace is the diagonal 
sum operation of matrix elements. The covariance matrix is computed over trials in each class 
of EEG data. The combination of spatial covariance can be computed using (5), where C is  
the average spatial covariance and 1 and 2 are the name of classes (in this case, 1 is for the left 
class and 2 is for the right class, while t is the combination of spatial covariance). 

 

Ct = C1 + C2 (5) 
 

The combination of spatial covariance is used as a factorized formula in (6) to whiten  
the transformation process in (7): 

 

Ct = ÛÂÛT (6) 
 

P = Â-1/2ÛT (7) 
 

the notation Û represents the eigenvector matrix and Â is the diagonal matrix of  
the corresponding eigenvalues. Transformations of the covariance matrices as whitened signals 
for both classes are carried out by using (8) and (9): 

 

S1 = PC1 PT     S2 = PC2 PT (8) 
 

S1 = B̅λ1 B̅T      S2 = B̅λ2 B̅T      λ1 + λ2 = I (9) 
 

where S1 and S2 share common eigenvectors and the sum of corresponding two matrices will 
always be one. The eigenvectors with the highest eigenvalues for S1 have the smallest 
eigenvalues for S2 and vice versa. The projection matrix W is denoted by (10): 
 

W = B̅T P (10) 
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using the projection matrix of W, the original EEG can be transformed into uncorrelated 
components in the X matrix, as per (11): 
 

X = W-1Z (11) 
 

Z is known as an EEG source that contains common and specific components in different tasks. 
W-1 is the inverse matrix of W. The columns of W-1 can be considered as EEG source 
distribution vectors. The first and last columns of W-1 are the most important spatial patterns that 
explain the highest and smallest variance of a task. 

 

3.4. K-Nearest Neighbor (k-NN) 
 The k-Nearest Neighbor (k-NN) is a method that uses a supervised algorithm in which 

the results of a new instance query are classified according to the majority categories in k-NN. 
The aim of the k-NN technique is to classify new objects based on attributes and training 
samples. In BCI, the k-NN is usually obtained using a distance metric [45]. This method can 
approximate several functions in an adequate number of training samples which includes 
suitable value for k. Therefore, k-NN enables the reduction of nonlinear decision boundaries.  
k-NN may be efficient for BCI implementation with low-dimensional feature vectors. 

The k-NN method algorithm is simple, and only calculates the shortest distance from 
query instance to training sample in order to determine its k-NN. Training samples are projected 
onto a many-dimensional space, where each dimension represents a feature of the data. This 
space is divided into sections based on training sample classification. The neighbor distances 
are usually calculated based on Euclidean Distance, which is represented by (12): 

 

D(a, b) =  √∑ (ak
d
k=1 − bk)2 (12) 

 

where, the D(a,b) matrix is the scalar distance between the a vector and b vector from  
the matrix with d dimension. In the training phase, this algorithm only retains feature vectors and 
sample training data classification. In the classification phase, the same features are calculated 
for the testing data (unknown classification) which is in this study, we use use k = 3 for k-NN. 
 

3.5.    Performance Evaluation 
3.5.1. Accuracy Test 

The accuracy test is used to measure the performance of the system. It was calculated 
using Mean Squared Error (MSE) in (13) which calculates the initial accuracy parameter for  
the created system. 

 

MSE =
1

n
∑ (Ŷi − Yi)

2n
i=1  (13) 

 

where Ŷ is the vector of n predictions, and Y is the vector of observed values corresponding to 
the inputs to the function, which generated the predictions. The accuracy test was applied in  
the classification process, and output a value between 0 and 1. 

 

3.5.2. Power Spectrum Distribution 
This test finds the distribution of energy information in a channel. Energy signals take 

the form of a contour map in the range of 0 (black color) to 1 (white color), where a lighter color 
means a higher and more positive energy signal, and a darker color indicates an irrelevant 
signal. This test is equipped with the composition of selected active channels, which yielded  
the best performance in every energy extraction technique for foot movement and right hand 
imagery in dataset I and dataset II, respectively. 

 
 

4. Results and Analysis 
The result of this study is presented in terms of accuracy performance, power spectrum 

distribution, and selected active channels by energy selection method. Using these evaluation 
criteria, the proposed energy selection method can be evaluated as a part of energy extraction 
in the best channel selection method to improve BCI performance. All evaluation is then 
compared with the original BCI scheme (without the energy extraction scheme). 
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4.1.    Accuracy Test 
4.1.1. Manual Selection 

Firstly, the energy extraction method is applied in datasets without channel selection. In 
dataset I, the average accuracy of the HV method is the same to the original scheme, but  
the CM method has better accuracy of up to 58.7% with a range of subject accuracy 
enhancement from 36% to 81%. The highest improvement in accuracy was observed for sbjA. 
In the HV method, the arrangement of energy channel is similar to that of the original, while in 
the CM method, the channel energy arrangement is different for hand and foot movements; 
thus, the accuracy improved because it is easier to define the classes of the dataset in  
the energy channel arrangement of CSP.  

There is not much difference between the accuracy results of dataset II and dataset I. 
The average accuracy of the HV method in dataset II is similar to the original in six channels, 
but an improved accuracy of 6.3% was observed for subjects S2 and S3. Meanwhile, the CM 
method accuracy improved to 55.5% on average. 

In terms of channel selection, dataset I yielded the best improvement for four active 
channels using the HV method with an accuracy of 52.3% better than the original. Meanwhile, 
the CM method reached maximum accuracy because it did not apply channel selection and 
yielded an average accuracy value of 1.00. The accuracy of the CM method was still at its 
highest until the channel selection was applied in five active channels. Based on the test results 
for the manual channel selection of dataset I, the HV and CM energy selection methods showed 
better improvement for all numbers of channel combinations, except for 1 channel in which  
the accuracy was the same. The details of dataset I test result can be seen in Table 2.  

Meanwhile, in dataset II, the HV method generated the best accuracy for five active 
channels, where the average accuracy improved by 4.7%. Actually, the HV method did not 
show improved accuracy for all subjects in the dataset. Significant average improvement was 
observed in subjects S3 and S5, for which the improvement went up to 19.6%. In the CM 
energy selection method, the selected active channels, which yielded the best-improved 
accuracy was observed in the five channels. The accuracy improvement is similar to that of  
the CM method in six channels compared to the original. Overall, for the test results of dataset II 
as shown Table 3, improvement in accuracy performance with the CM method could be 
observed for all number of channel selections, except for 1 channel. The average accuracy 
improvement ranged from 3% to 55.56%. 

 
 

Table 2. Classification Accuracy of Dataset I in Manual Energy Selection Method 

Subj. 
Number of Channels 

7 6 5 4 3 2 1 
Ori. HV CM HV CM HV CM HV CM HV CM HV CM HV CM 

SbjA 0.55 0.55 1.00 0.75 1.00 0.80 1.00 1.00 1.00 0.93 0.77 0.85 0.50 0.50 0.50 
SbjB 0.73 0.73 1.00 0.88 1.00 1.00 1.00 1.00 1.00 0.90 0.82 0.75 0.47 0.50 0.50 
SbjC 0.60 0.60 1.00 1.00 1.00 0.90 1.00 0.88 0.92 0.85 0.92 0.50 0.35 0.50 0.50 
Avg 0.63 0.63 1.00 0.88 1.00 0.90 1.00 0.96 0.97 0.89 0.84 0.70 0.44 0.50 0.50 

 
 

Table 3. Classification Accuracy of Dataset II in Manual Energy Selection Method 

Subj. 
Number of Channels 

6 5 4 3 2 1 
Ori. HV CM HV CM HV CM HV CM HV CM HV CM 

S1 0.65 0.64 0.98 0.61 0.98 0.55 0.98 0.58 0.98 0.48 0.64 0.50 0.50 
S2 0.56 0.60 0.98 0.55 0.98 0.53 0.98 0.44 0.91 0.61 0.47 0.50 0.50 
S3 0.56 0.60 0.95 0.67 0.95 0.33 0.95 0.50 0.95 0.58 0.75 0.50 0.50 
S4 0.67 0.60 0.98 0.65 0.98 0.60 0.98 0.64 0.89 0.62 0.69 0.52 0.52 
S5 0.73 0.72 1.00 0.80 1.00 0.57 0.97 0.57 0.84 0.57 0.72 0.50 0.50 
Avg 0.63 0.63 0.98 0.66 0.98 0.52 0.97 0.55 0.91 0.57 0.65 0.50 0.50 

 
 

In general, the accuracy performance of the channel selection methods relatively 
decreased and was linearly proportionate to the number of selected channels in dataset I and 
dataset II, especially for the CM method as shown in Figure 2. A high accuracy was achieved 
with a high number of selected channels, and vice versa. The same could not be said for the HV 
method, however, which yielded the highest accuracy for only one of the selected channel 
combinations with no dependence on the number of selected channels. For example, in dataset 
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I and dataset II, the highest accuracy was observed in four selected channels, and five selected 
channels, respectively. 

The CM energy selection method defines active channels based on the energy that 
appears in most active channels. Therefore, every channel has an energy coverage that will 
give the best information to CSP to extract the best feature of the signals. When the channel is 
not selected (in manual selection), the energy coverage will be smaller and will reduce  
the accuracy. Hence, in the CM method, accuracy is affected by the number of selected 
channels. In addition, the HV method finds the best combination of selected channels by highest 
energy without calculating the difference in energy value between the closest energy values in 
the selected channels. Therefore, the HV method will yield the highest accuracy without being 
affected by the number of channels.  

 
 

 
 

(a) 
 

 
 

(b) 
 

Figure 2. Performance comparison of the selected channels number for  
the manual channel selection method: (a) Dataset I (b) Dataset II 

 
 

4.1.2. Automatic Selection  
The automatic energy selection method selects the best energy and combination of 

channels in one process selection. This method yields faster computation time compared to 
manual methods. Based on the accuracy performance test result, both datasets I and II showed 
better accuracy than the original method. An accuracy of 0.94 for dataset I with an average 
accuracy improvement of 49.2% was observed. Dataset II yielded an accuracy of 0.889 or 
33.3% better accuracy compared to the original. Although dataset I and dataset II experienced a 
significant improvement in accuracy, the accuracy is no better than the manual method, 
especially for the HV and CM methods in dataset I and the CM method in dataset II, when 
comparing the best accuracy of channel selections for all methods. This automatic method gives 
better performance than the same number of selected channels (3 channels) in the manual 
method, where on average, the performance of the automatic method is better than two of  
the manual methods in dataset I. Meanwhile, in dataset II, the accuracy of the automatic method 
is better than the HV manual method with the highest accuracy being observed for subject S3 at 
a value of 0.93. The accuracy result of automatic energy selection method is shown in Table 4. 
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Table 4. Classification Accuracy in Automatic Energy Selection Method 

Subjects 
Dataset I Dataset II 

SbjA sbjB sbjC S1 S2 S3 S4 S5 

Accuracy 1 1 0.825 0.98 0.73 0.96 0.98 0.53 
Acc. Avg. 0.94 0.89 
Num. of Selected Channels 3 3 3 3 3 3 3 3 

 
 

4.2. Selected Channel and Power Spectrum Distribution 
The selected channels are mapped onto the scalp in Figure 3 to determine the channels to 

be selected by the energy selection methods (HV, CM, and automatic). This mapping of selected 
channels as described in Table 5 comes from the active channels selected by HV, CM, and 
automatic methods for the foot movement of dataset I and the right-hand imagery of dataset II. 

In dataset I, two channels were selected of all the energy selection methods for foot 
movement, which are Cz and C1. Meanwhile, in dataset II, CP3 and CP4 were selected as  
the active channels for right hand imagery in all the energy selection methods. The result shows 
that the foot movement in dataset I and right-hand imagery in dataset II are defined by these 
selected channels. 

The power spectrum distribution mapping was generated from the foot movement of 
dataset I and the right-hand imagery of dataset II. The CM method was the best-performing 
energy selection method in dataset I and dataset II. One of the factors that made CM so 
powerful is its power distribution, which has a wider area of high energy than other methods. 
These areas or distribution energies were generated by the selected channels, where more 
selected channels would generate higher areas of energy and yield better performance, as 
explained before in test result of CM section. The power spectrum distribution maps are 
illustrated in Table 6.  

 
 

  
 

(a) 
 

(b) 
 

Figure 3. The intersection of selected active channel maps between HV, CM, and automatic 
energy selection methods; the dark gray color indicates the channels that were selected via all 
the energy selection methods, the light gray color indicates the selected channels selected by 

two methods, and the white color indicates channels selected by one method, where:  
(a) the active channel map for foot movement in dataset I and  

(b) the active channel map for right hand movement in dataset II 
 
 

Table 5. The Composition of Selected Channels of Foot Movement and  
Right Hand Imagery in All Energy Extraction Methods 

Datasets 
Selected Channels 

HV CM Auto 

Dataset I Cz-C1-C3-FC5 FC3-FC5-C2-Cz-C1 Cz-C1-C3 
Dataset II C3-Cp3-C4-Cp4-Cz C3-Cp3-C4-Cz-Cpz Cp3-Cp4-Cpz 
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Table 6. Power Spectrum Distribution 

Datasets 
Selection method Power Spectrum 

Index HV CM Automatic 

Dataset 1 

 

 

 

 

Dataset 2 

 

 

 

 
 

5. Conclusion 
In general, like what has been shown by previous studies, an energy extraction method 

with improved BCI performance has been achieved. Energy extraction via all energy selection 
methods in this study showed an enhanced performance of up to 50% compared to the original 
scheme for dataset I and dataset II. In line with the better performance, the CM energy selection 
method gives the best performance compared to the other energy selection methods. Besides 
that, CM technique also offer a better performance of BCI even though in complete number of 
channels. It can be assumed that BCI performance using CM technique in energy extraction 
method will be dependant on the number of channels. When less active channels are selected, 
it will reduce the BCI performance and vice versa. The framework in this study was applied on 
small number of channels and a specific location for motor and motor imagery location. 
Therefore, it is proven that the framework offered better BCI performance for EEG with a small 
number of channels. In the future, this framework could use datasets with a larger number of 
channels or electrodes. Besides that, because of the results of the test that yielded better and 
improved performance, the energy extraction method could also define the common channels in 
different subjects or sessions in a dataset to improve upon the results. 
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