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 One of the areas that have challenges in the use of internet of things (IoT) is 

the field of tourism and travel. The issue here is how to employ this 

technology to serve the tourism and managing the produced data. This work 
is focus on the use of tourists' trajectories that are collected from global 

positioning system (GPS) mobile sensors as a source of information.  

The aim of work is to predict preferred tourism places for tourists by tracking 

tourists' behavior to extract the tourism places that have been visited by such 
tourists. Density based clustering algorithm is mainly used to extract stay 

points and point of interest (POI). By projecting GPS location (for user and 

places) on the Google map, the type and name of places favored by  

the tourists are determined. K nearest neighbor (KNN) algorithm with 
haversine distance has been adopted to find the nearest places for tourists. 

The evaluation of the obtained results shows superior and satisfactory 

performance that can reach the objective behind this work. 
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1. INTRODUCTION 

It is frequently thought that the local authorities and tourism agencies have a adequate understanding 

of tourist's preferences, needs, and   how local people's interests can be integrated in tourism planning [1].  

A chief challenge in managing tourism system using IoT is how to track user behaviors and preference 

acquisition [2]. There is a need to know the details information of precise locations visited by tourists,  

the attracted locations by tourist, personal reflections on tourists’ experiences and future travel behavioral 

intentions [3].  

Many studies employed tourist GPS trajectories to classify and forecast the behaviors of tourists that 

visit locations by collecting their movements, choices and needs. Trajectory is a location sequence  

(spatial–temporal) with travel times. The relation among the sequences depends on the neighborhood 

function and the time tolerance [4].  The study in [5] designed dataflow mining structure for user’s mobile 

behavior trajectory depend on place services in mobile. The aim of the study of [5] was to get user path data 

that incorporates place information and social information. Another study in [6] proposed a heuristic method 

that combines dynamic time warping and the earth mover's distance, to accurately measure the similarity of 

tourist trajectories. The study of [7] expanded the application of tourist movements in the mobile Internet era, 

in which movement data (using GPS trajectories) could be collected more easily. This was done by proposing 

a method that improves prediction accuracy and trade-off between prediction accuracy and efficiency.  
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The study in [8] proposed method using tied ranking with ordinal logistic regression to predict the factors 

that can affect the tourism sector in Iraq and what are the factors influencing this field in order to focus on  

the development of this industry. The work in [9] extracted tourism POI from a vast quantity of applicant 

POIs based on tourist preferences. The research in [10] presented the use of location check-ins, which are 

available on mobile social media platforms, as an extra data supply to revise tourist behaviors.  In general, 

most existing approaches are not capable to tackle the challenge in integrated and widespread manner [11]. 

The aim of this work is to extract GPS points from trajectories data, analyze behavior patterns of 

tourist paths, and predict the preferred places for tourists. This is done using the google map information to 

determine the favorite places by tourist using clustering algorithms. These algorithms depend mainly on  

the density information and the POI for each tourist. The collected information is used for building  

the dataset for system prediction. 

 

 

2. DATA DESCRIPTION 

The proposed system uses GeoLife Trajectories dataset. This GPS dataset was composed in 

(Microsoft Research Asia) by 182 users in a period of over five years (2007-2012). A trajectory of this 

dataset is denoted by points sequences. Each one has the information of (latitude, longitude, and altitude). 

The GeoLife dataset was collected by user mobile devices over a time period of five years. It represents 

users’ movements history like going to work, returning to home, and all kinds of activities in the day life of 

underlying users [12]. In order to test the proposed algorithm over different dataset, GPS points for a group 

of Iraqi tourists are used to extract their behavior during their visit to tourism places in the city of Erbil. This 

city was chosen because it is considered the most important Iraqi provinces in terms of the diversity of 

tourism areas. 

 

 

3. PROPOSED SYSTEM 

As mentioned earlier, this work produces a tourist prediction system based on the POI of tourists 

using different trajectory datasets. For easing the reading flow of this paper, the proposed system can be 

explained according to the applied steps as follows: 

 

3.1.  Data cleaning (preprocessing) 

The first step is the analysis and preprocessing of the dataset to remove possible noise from the data. 

Data cleaning is a technique to detect and either remove or correct inconsistencies or missing data in a  

dataset [13]. Such inconsistent data may affect the results of the study. Noise in data may be caused by many 

different reasons, such as error in electronic devices (e.g. GPS loggers), software error or human mistake. 

After cleaning, the data must be consistent with the other similar data in the system. For example, it appears 

that there are points on the path, conflicting from the pattern of the path. At this point, the person suddenly 

takes a very high speed, for example more than 200 km/s, in less than 5 seconds, can be removed for 

invalidity. To remove this type of noise, a solution based on individual velocity is adopted along the path. 

This is done by calculate the velocity taken from the individual of each point on the tracks, and then checking 

whether the speed of the individual hesitates to a high value between any two points. 

 

3.2.  Feature extraction 

The next step is finding and extracting new features from the dataset. The new extracted features are 

stay points and POI. 

 

3.2.1. Extracting stay points 

Stay points: are geographic areas where the individual has spent a long time in their surroundings 

center point. Stay Point are extracted and grouped from user points based on the time and distance, taken on a 

route to a geographic area. Stay points can be detected automatically from a user’s GPS trajectory by seeking 

the spatial region where the user spent a period exceeding a certain threshold [14]. In this section, the stay 

points are detected from users' mobility paths by seeking the spatial region where the user stayed for while. 

The algorithm that has been proposed in [15] was adopted in order to extract stay points as shown in  

Figure 1. In the proposed system, if the tourist spent more than 35 minutes within a distance of 200 meters,  

the point is detected as stay point. In other words, a cluster is detected and allocated. The extracted stay point 

information contains mean coordinates, arrival time (S.arvT) and leaving time (S.levT) for each tourist, 

individually. At the other point, the threshold is selected based on the average time, computed from [16]  

and [17]. The first one takes time threshold = 20 minutes, while the other specified the optimal time in 
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between 10 to 60 minutes. Haversine Distance (HD) formula, presented in [12], is used in this research to 

calculate the distance between two points on a sphere. The formula is given by the following equation:  
 

Distance= 2 𝑅 sin−1 (√𝑠𝑖𝑛2 (
∅𝑖−∅𝑗

2
) + 𝑐𝑜𝑠(∅𝑖)𝑐𝑜𝑠(∅𝑗)𝑠𝑖𝑛2 (

𝜑𝑖−𝜑𝑗

2
))   (1) 

 

where (R) represents earth radius, ∅ and φ are correspondingly the latitudes and longitudes of points (i,j), 

respectively.  
 

 

 
 

Figure 1. Stay point detection algorithm 
 

 

3.2.2. Extract point of interest 

POI is an important venue/location in the physical world, such as a shopping mall or a theatre, lake. 

Generally, POI belongs to one or more categories like education, entertainment, arts, food and dining, 

government, health & beauty, home & family, shopping, sports, and nature [18]. After counting stay points in 

the previous phase, we should now be able to discover locations where people spend a lot of time frequently 

in their surroundings. To find such places, the following steps are applied: 

− Interesting points are collected using the density-based clustering algorithm to find groups containing at 

least k points within them. These clusters represent the regions that are frequently visited. Therefore, very 

likely to be region of interest. 

− Each region is represented by center point, which is a point of interest. These locations can be a 

restaurant, a shopping center, a university building, or a tourist attraction.  

DBSCAN algorithm of [19] is adopted in this work. This algorithm composes a group of points and 

clusters together as well as the points that are packed strongly within a given threshold distance in space and 

marks points as outliers that lie alone in low density regions. DBSCAN requires two parameters; the first one 

is epsilon, which is the maximum distance between two samples to be considered in the same neighborhood 

while the second one is the minimum number of points, required to form a dense region. To estimate these 

two parameter, the authors of [20] proposed a heuristic to determine them with regards to the “thinnest” 

cluster in the database. In their experiment, the authors indicate that the optimal value of for k > 4. Thus, in 

this work, we set k = Minimum Points in cluster = 4.  

 

3.3.  Find nearest places/prediction 

The finding of the nearest tourism places for the tourist is the next step in proposed system. This is 

to ease the prediction of the recommended places for the tourist that can satisfy his/her requests.  

The evaluation of nearest places is performed using KNN method. KNN search is one of the most 

fundamental problems, which has been extensively studied in various fields of computer science, such as data 

mining, information retrieval, and spatial databases [16]. Using the user GPS position and POIs, the KNN 

query can find the closest POI from that tourist (smallest distance from the tourist). In spatial databases,  

the KNN query can be used in finding the nearest POI, such as a restaurant to a tourist’s current location. In 

this work, Geopandas is used as an open source geospatial data processing method as an application  

in Python language [21]. As a result, the system is now able to predict the names of the tourist's favorite 
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places through the preferred type of tourism places (previously extracted) and the nearest tourism places form 

him/her. 

Figure 2 illustrates the working steps of the proposed system for predicting the recommended 

tourism places for interesting tourists using the information of GPS and POI for them. It is clearly shown that  

the importance of evaluating the POI for tourists in interesting area to predict the tourism place can be 

attended. The trajectory data for each user is collected. This data is cleaned up to remove any possible noise. 

This is to extract the POI for them, individually. The real Geolocation of the underlying users (tourists) is 

collected from their smart phones to evaluate the nearest distance between them and POI, which 

recommended as tourism places. 
 

 

 
 

Figure 2. Flow diagram of proposed system 
 

 

4. RESULTS 

After applying reprocessing operation on the considered datasets, stop points algorithm was applied 

on refined users' trajectories. The number of extracted stop points is equal to 13320 for 181 users (tourists). 

Figure 3 shows part of evaluated stop points after mining all the trajectories with extracted feature (user id, 

longitude, latitude of point, arriving time, leaving time and total spending time). Table 1 represents the users 

with their clustered points of POI that are detected by DBSCAN algorithm. Figure 4 shows the execution of 

the clustering algorithm for one tourist using Sklearn.cluster in python 3 [22] with charts that shows Number 

of points in each cluster with center position of cluster and  estimated number of clustered points of interest 

and the noise points. 
 

 

 
 

Figure 3. Extracted stay points 
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Table 1. Number of stop points and number of clusters/POI 
User id No of trajectories No of stop points Number of clusters/ POI 

0 171 186 5 

1 71 39 4 

2 175 135 5 

3 322 553 13 

4 395 587 13 

5 86 63 4 

12 77 66 4 

13 144 89 7 

17 391 361 16 

22 146 238 11 

23 34 42 6 

24 101 77 10 

30 296 514 11 

35 74 330 10 

38 110 163 6 

39 227 158 11 

42 150 36 5 

52 104 98 9 

84 215 100 8 

92 157 56 4 

104 115 67 5 

119 45 75 5 

126 263 85 7 

144 610 83 10 

163 809 145 17 

167 385 197 9 

 

 

  
 

(a) 

 

(b) 

 

Figure 4. Extracted POI for one user (a) Number of points in each cluster with center position of Cluster/POI 

(b) Estimated number of clusters 

 

 

The extracted POI of users are projected on dynamic map (from Google) with geonames of POI for 

Beijing as shown in Figure 5. Beijing POI were collected from website in [23]. Figure 6 shows the POI for 

each tourist and the type of each place. By Applying KNN the distances between tourist GPS points and 

Beijing POI are calculated to find K nearest interested places from tourist to finally predict the preferred 

places. The following assumptions are imposed when calculating a distance for region of interest: 

− Circular region of interest: the center of region represents POI 

− The Radiuses of regions are different from each other. Assuming lake area to be different in size 

compared with mall.  

To increase the validity of the proposed system an essential need for further test. A number of donor 

tourists are selected to extract their GPS stop points within Erbil city (one of the most famous cities in Iraq 

with its varied tourist places). In order to predict their preferred tourism type, the distances of these points 

from famous tourist places (can be considered as ROI) are calculated. A database is created for the most 
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well-known tourism locations in Iraq with their positions (latitude, longitude) and the type of interest for each 

place as shown in Figure 7. For example, the distance using KNN is calculated by assuming the radius from 

the center of Erbil Castle = 200 meters while Sersank Resort = 500 meters and Family Mall 50 meters.  

The results are shown in Figure 8. Table 2 represents the stop points of two users with their distances from 

the center point of region. 

 

 

 
 

 

Figure 5. Dynamic google map shown Beijing POI and user POI 

 

 

 
 

Figure 6. POI types 
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Figure 7. Iraqi POI with types of interest 

 

 

  
 

Figure 8. Dynamic google map of tourists GPS points 

 

 

Table 2. Clustering performance measure 

User id Silhouette Coefficient  User id Silhouette Coefficient 

0 0.165  36 0.3 

1 0.364  38 0.4 

2 0.318  52 0.12 

3 0.03  68 0.5 

5 0.3  84 0.1 

6 0.114  85 0.1 

7 0.415  92 0.2 

9 0.638  104 0.1 

12 0.351  112 0.037 

13 0.332  119 0.6 

14 0.4  126 0.083 

15 0.382  157 0.274 

17 0.419  159 0.724 

18 0.04  165 0.484 

23 0.2  167 0.228 

24 0.1  22 0.458 

30 0.6  179 0.087 

35 0.9    
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5. CLUSTER PERFORMANCE MEASURE 

In this work Silhouette Index [24] is applied to measure clustering performance. This measure is 

adopted based on its accuracy, popularity and simplicity of implementation. Silhouette index gives an idea 

about the samples similarity with other samples within the same cluster (cohesion) and dissimilarity with 

other samples in other clusters (separation). It ranges (from −1 to +1), where the higher value means it is 

within cluster similarity and the lower value means it is the intra-cluster similarity [24]. Table 2 shows  

the Silhouette of each user after applying DBSCAN clustering on Geolife dataset. Most of coefficients have 

the value (between 0.1 and 0.9), which represents perfect clustering and other less than zero which represents 

worst clustering.  

 

 

6. EVALUATION  

In this work the experimental results are evaluated using precision, recall as: 
 

       (2)  
 

the recall value of DBSCAN method is about (0.591489), while the precision is about (0.371658). As a bench 

mark, these values are compared with the results in [25], where the best recall value was about (0.36).  

This means DBSCAN just discovered (36%) of the correct stops with precision at (0.5). Therefore,  

the proposed work in this paper outperforms the previous work results in term of recall. 

 

 

7. CONCLUSION 

A tourism places prediction and recommendation was proposed. In this work, DBSCAN and nearest 

neighbor were used to extract and predict the types of tourism places preferred by the tourists using  

the visited places by them. Such information was used in the tourism recommendation systems or by tourism 

agencies to know places of tourist attractions. Clustering algorithm was evaluated using Silhouette 

Coefficient. The system evaluation showed the outperformance of the proposed system over previous ones in 

term of recall. The system could be expanded using these results in tourist recommendation systems to 

provide suggestions to the tourist depending on the type of places he/she prefers.  
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