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Abstract 
 This paper presents a detailed review on performance indicators for smart grid (SG) such as 

voltage stability enhancement, reliability evaluation, vulnerability assessment, Supervisory Control and 
Data Acquisition (SCADA) and communication systems. Smart grids reliability assessment can be 
performed by analytically or by simulation. Analytical method utilizes the load point assessment 
techniques, whereas the simulation technique uses the Monte Carlo simulation (MCS) technique.  
The reliability index evaluations will consider the presence or absence of energy storage elements using 
the simulation technologies such as MCS, and the analytical methods such as systems average 
interruption frequency index (SAIFI), and other load point indices. This paper also presents the difference 
between SCADA and substation automation, and the fact that substation automation, though it uses  
the basic concepts of SCADA, is far more advanced in nature. 
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1. Introduction 

Smart grids (SGs) with renewable energy resources (RERs) provide an effective and 
alternative solution for the rapidly growing power demand throughout the world. The US energy 
roadmap study ranks solar photovoltaics (PV), biomass, windmills, and tidal power as the future 
sources of renewable energy to sustain the economy of the country. Traditional studies on 
RERs integration have focused on power quality improvement using the RERs, and on their 
impacts on grid performance [1]. The components that made up the integrated RERs would be 
wind and solar energy systems, energy storage, load control, and advanced power electronics, 
which interface between the RERs and the grid provider. Demand response serves as a virtual 
spinning reserve (SR) to handle the impact of intermittent nature of RERs on the system 
reliability. Due to the advent of new communication devices and real time applications 
researchers are diverted to real time approach for vulnerability assessment. Various 
optimization techniques such as artificial intelligence (AI), expert system or evolutionary 
programming can be used for the real time applications. To avoid bulk of calculations and for 
vulnerability indices, the AI techniques are used in recent years as they have various benefits of 
speedy convergence and improved accuracy of pattern recognition. 

A smart grid (SG) architecture showing a SG consisting of the main grid and multiple 
embedded micro-grids (MGs) is proposed in [2], while [3] proposes an approach to integrate 
performance indicators of electricity generation plants. The optimization approaches at the base 
of SGs operation considered the renewable energy share, primary energy consumption, global 
and local emissions. Various security challenges and threats are reviewed in [4] with respect to 
their possible sources of occurrence. A multi-objective based robust fuzzy stochastic 
programming methodology is proposed in [1] to optimize economic, environmental and social 
costs of network under various uncertain scenarios and parameters. A methodology to 
investigate the impact of demand response (DR) in a power system with wind energy sources 
from the perspective of generation adequacy is proposed in [5]. The aim of [6] is to anticipate 
social acceptance issues related to the deployment of SG by identifying underlying value 
conflicts. Identified threats to smart grids deployment are classified and presented in [7] based 
on the technical and non-technical sources of threats. The performance analysis of smart 
metering for SG enable the researchers, stakeholders, and public policy makers to open  
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the mind to explore possible in an evolving energy domain as well as beyond this area is 
presented in [8]. A study to address all standards that define the cyber security requirements 
applicable to SGs is presented in [9]. 

This paper presents a detailed review on performance indicators for smart grid (SG) 
such as voltage stability enhancement, reliability evaluation, vulnerability assessment, 
Supervisory Control and Data Acquisition (SCADA) and communication systems. It also 
presents the difference between SCADA and substation automation, and the fact that substation 
automation, though it uses the basic concepts of SCADA, is far more advanced in nature.  
The remainder of this paper is organized as follows: section 2 presents the description of 
voltage stability enhancement. Section 3 presents the evaluation of reliability. Vulnerability 
assessment is described in section 4. The description of SCADA systems is presented in 
section 5. The description of communication systems is presented in section 6. The description 
of demand side management is presented in section 7. Section 8 summarizes the contributions 
with concluding remarks. 

 
 

2. Voltage Stability Enhancement 
This section reviews the methods to quantify the value added by RERs at distribution 

levels as it relates to utilities, customers and in the interest of overall national energy security. 
Measurements matrices are the reliability improvement, cost minimization and voltage stability 
improvement. There are two levels of voltage stability enhancement in the literature. The first 
level is with the device-based control, and the second level is in the form of operation-based 
control. The voltage stability is improved by optimal system operation condition. The static 
analysis method is used for the determination of preventive control scheme. 

As with voltage stability, the characteristics listed below are inherent in the analytic tools 
for SG. However, it is not included in the analytic tools for the existing electrical power system 
network. These qualities include scalability, robustness, predictivity, adaptability, stochasticity, 
and on-line real time data acquisition. Traditional electrical grid is based on large, centralized 
power station [10]. They supply the grid with RERs through long transmission and distribution 
system. This architecture has performed very well thorough design for achieving security, 
reliability and stability. But, with small changes in time, new renewable resources are relatively 
the system of today. They challenge the users and restore the system. Energy will be guided in 
distribution from wind, solar with a standalone or grid connected. In this case, whether it is 
distributed or centrally generated, the standard requirements for a single distribution supply 
which will meet demand of all kinds and just in time approach requires the need for smart grid. 
The integration of RERs, Flexible Alternating Current Transmission System (FACTS),  
Wide Area Management Systems (WAMS), High voltage direct current (HVDC) transmission 
systems to achieve better stability is introduced in today’s grid that has the capability to connect 
to FACTS cover a number of technologies to overall FACTS devices in smart grid which will 
facilitate integration of RERs, minimize the risk of overload, to improve dynamic stability, power 
quality and control load flow studies [11]. 

Monitoring and control of power system in wide area using the wide area monitoring 
system has provided the users with full understanding of SG performance in real time [11]. 
Because of the multiple of data contributing to the states of system in the presence of an 
electronic device located on the grid is utilized. To achieve this, the control elevation using 
RERs, HVDC systems, FACTS, WAMS and distribution and/or transmission management 
system are necessary for the design. WAMS and its associated sensors in the SG environment 
will allow the real time evaluation of system under various loading and unknown contingencies. 
Recent advancements in the stability studies aims to address the impacts of contingency, 
increased nonlinearity of problem space, model and parameter uncertainty and the utilization of 
available real time data for the enhancement of study is approximated for the management of 
instability [12]. 

 
 

3. Reliability Evaluation 
Smart grids reliability assessment can be performed by analytically or by simulation. 

Analytical method utilizes the load point assessment techniques, whereas the simulation 
technique uses the Monte Carlo simulation (MCS) technique [13]. The reliability index 
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evaluations will consider the presence or absence of energy storage elements using  
the simulation technologies (i.e., MCS), the analytical methods such as systems average 
interruption frequency index (SAIFI), and other load point indices. And also, the load flow 
analysis and other parameter check are done by using the online available data and control 
using fuzzy controller. Various network configurations will be considered. A number of indices 
can be computed for the load point assessment [14]. Some of these indices are presented next: 

 
3.1. System Average Interruption Duration Index (SAIDI) 

SAIDI is calculated by dividing the sum of total customer interruption durations per year 
(∑𝑈𝑖𝑁𝑖) to total number of customers (∑𝑁𝑖). This index is expressed by using: 
 

𝑆𝐴𝐼𝐷𝐼 =
∑𝑈𝑖𝑁𝑖
∑𝑁𝑖

 (1) 

 
where 𝑈𝑖 is outage duration, 𝑁𝑖 is total number of customers. 

 
3.2. Customer Average Interruption Duration Index (CAIDI) 

CAIDI is calculated by dividing the sum of total customer interruption durations per year 
(∑𝑈𝑖𝑁𝑖) to total number of customers affected (∑λ𝑖𝑁𝑖). This index is expressed by using: 
 

𝐶𝐴𝐼𝐷𝐼 =
∑𝑈𝑖𝑁𝑖
∑λ𝑖𝑁𝑖

 (2) 

 
where λ𝑖 is failure rate. 

 
3.3. Expected Energy Not Served (EENS) 

An optimization problem for planning and/or operational purposes using RERs with 
integrated energy storage technologies has to be considered for the development of SG.  
The objective of an optimization problem is to minimize EENS or Expected Unserved 
Energy (EUE), and cost minimization, subjected to various constraints such as the capacity of 
RERs, network capacity, voltage margin, storage, and reliability margin [15]. EENS is sum of 
each load (𝐿𝑖) times its outage duration (𝑈𝑖). Mathematically, it can be expressed as [16]: 
 

𝐸𝐸𝑁𝑆 =∑𝐿𝑖𝑈𝑖 (3) 

 
Typical distribution networks will be chosen for both the grid tied and stand-alone power 

system network. A special distribution load flow program will be utilized to analyze the network 
under different operating scenarios. The reliability of these systems will be computed based on 
the variability of RERs. The load flow study and reliability will be recomputed in the presence of 
energy storage systems (ESSs) and MCS techniques [17]. 

 
 

4. Vulnerability Assessment 
Vulnerability assessment is used to determine, identify and rank the contingencies of 

the system. Power system is a very complex and vulnerable system. Vulnerability assessment 
in power system provides information on state of system which indicates the system’s inability to 
be stable in any abnormal condition or an unforeseen catastrophic contingency. Vulnerability 
index is used to determine the strengths and weaknesses of the system against undesired 
events. There is a list of contingencies that may lead the power system to major blackouts and 
cascaded failures. Moreover, operating conditions are different according to the location and  
the system. Vulnerability assessment is a slow process, therefore the real time assessment is 
very difficult. In a new power system environment, there are lots of measurements are taken, 
and the verification of these measurements and the development of correlation with vulnerability 
assessment is quite complex. Evaluation of specific and accurate border line for vulnerability is 
also a difficult process [18]. 

There are different approaches used by various researchers for vulnerability 
assessment. In time domain approach, stability is determined through simulating the generator 
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behavior. However, it is quite time-consuming process as it involves plenty of nonlinear and 
differential equations. We can also use a direct method approach using the energy functions. 
Stability of the system can be determined by comparing the energy value of the system with  
the critical energy value. This method is being widely used by utilities and researchers as it has 
a very high speed of convergence [19]. 

A new method of vulnerability border tracking is by using Partical Swarm Optimization 
(PSO) along with the Artificial Neural Networks (ANNs). ANN is used for the purpose of 
increasing the speed of convergence of PSO. PSO is used for better search technique, 
therefore, it has the benefits of both the systems through one single algorithm. This method is 
useful for the real time evaluation of vulnerability border. Similarly, many methods can be used 
together for different applications and combine them to get best optimization results. One such 
method is to use ANN for vulnerability assessment as it has very good speed of convergence 
and Fuzzy logic for vulnerability control applications. Fuzzy logic can also be used for locating 
short circuit faults, which is used for vulnerability contours. This method is useful both for online 
and offline applications [20]. Fault resistance is also taken into account. Fuzzy logic reasoning is 
applied to cope with the inherent uncertainty in the problem. The above methods can also be 
used as a combination of one or more methods and one can develop a hybrid method for 
vulnerability assessment. Moreover, adaptive dynamic programming (ADP) is also a new 
approach for vulnerability assessment. 

Vulnerability assessment using phasor measurement unit (PMU) is also a new 
approach. PMUs are used to provide time synchronized data in the form of signals which can 
later be converted into data (voltage, angle) using various softwares, which contain dynamic 
information for voltages and angels, and even precursor signals for system collapse. A scheme 
can be developed to warn the system operator about severe conditions, vulnerabilities and to 
predict cascading failures using a pattern recognition and phase-space visualization using 
dynamic data received from PMU [21]. 

Nowadays, a situational awareness tool based on google maps is used for  
the advanced power system. It gives the latest system topology and helps the system operator 
to understand operational conditions not only his own region but also of the neighboring regions 
to avoid major blackouts [22]. This kind of visualization includes line descriptions, power flows 
and the status of outage lines, transportation and infrastructure impacts, geo-spatiotemporal 
information and impacts-population, weather impacts and analysis and predictions results. 
Moreover, the related data can be overloaded on the system topology. Hence, for various 
analyses, respective data is readily available. Two types of vulnerability indexes namely power 
system loss (PSL) and anticipated loss of load (ALL) are used for different contingences. 
Application of Geographical Information System (GIS) also helps in developing the vulnerability 
assessment [23]. 

  
 

5. SCADA Systems 
Supervisory Control and Data Acquisition (SCADA) pertains to automation and  

the concepts of automation borrow from SCADA. Before it gets into the SCADA part, it presents 
the important terminologies and components of SCADA which are used in the substation 
automation [24]. The functions of each of the components are presented next: 

Remote Terminal Unit (RTU): It processes the data input (both analog and digital), and 
converts it into digital output which can either be seen on a single screen Human Machine 
Interface (HMI) in the control room itself or it can be transmitted over the Ethernet to other 
places for remote control. The function of Front-End Processors (FEP) is to act as an interface 
between the computer system, and the RTUs located locally and at remote substations. There 
are two FEPs at each site, both functional simultaneously, and also any one FEP capable of 
fully taking over the functions of the other FEP. Each FEP has a dual LAN interface and houses 
multiple Remote Channel Controller (RCC) modules, according to the number of RTUs 
connected to the control center. These RCC modules provide RS-232 interface ports for 
connecting to the RTUs [25]. The RCC modules are of microprocessor-based design and are 
able to: 
- operate independently and support a different RTU protocol on individual channels 
- utilize drivers to establish the RTU communications 
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- conduct simultaneous RTU communications on each channel, acquire data, perform 
message security checks, and decode the data 

- process the data. 
- buffer all data for transfer to the controlling server. 

The FEP transfers data to the controlling server in a timely fashion. The FEP also 
responds to the controlling server’s demands for performing the required functions at the RTUs. 
The RCC channel capacity covers the entire complement of RTUs which consists of the new 
RTUs and the existing RTUs. The channels are expandable in the future to ultimate quantity by 
acquiring and inserting RCC modules. All critical RTUs are provided with 2 communication 
channels right from the control center up to the RTU, and these channels are connected one on 
each FEP. The Remote Communication Controller (RCC) interfaces with the FEP through  
the VME bus. Redundant FEPs and RCCs are provided with automatic changeover from one to 
the other when any FEP or RCC fails. When a modem fails or a communication link to a critical 
RTU goes down, there is automatic changeover from the defective link/modem to an alternate 
link/modem. All critical RTUs are provided with redundant communication channels [26]. 

Critical RTUs have the capability to switch between redundant communication channels 
when the system detects a communication channel failure. To satisfy the redundancy 
requirements, each communication channel is switched between a primary and backup port 
under failure conditions. In the GE Harris Energy Control Systems implementation, redundancy 
is provided all the way up to the remote RTU communication interface, using redundant FEPs, 
RCCs and separate channels to connect to the RTU. Any single failure is protected against by 
this method [27]. 
a. Human Machine Interface (HMI): The HMI/SCADA industry was essentially born out of a 

requirement for a user friendly front-end to control system containing programmable logic 
controllers (PLC). 

b. Central Control Room Computer: Usually, the HMI/SCADA presents the information in the 
form of a mimic, which means that the operator can see a representation of the plant being 
controlled. 

c. Transducers: They are the energy converters which convert one from of energy to another. It 
is used in substations to convert the measured AC voltages and currents (measured from 
the CT and CVT inputs) and convert them into a common DC current. They can be  
self-powered or separately powered. In self powered transducers, the components of  
the transducer are powered by the source itself, where as in separately powered 
transducers, there is an external source which is used to run the circuit of the transducer. 

d. Multiplexer: It is a device that can interleave two or more activities. For example,  
a 16:1 multiplexer can take 16 different inputs and can create a time sharing mechanism that 
will allow it to give the required output of the 16 inputs based on a predefined logic.  
The simplest logic generally used is a clock pulse. Though automation basically involves all 
the concepts of SCADA and though they are terms that are used interchangeably, there exist 
certain basic differences between them [28], and they are listed below: 
- Conventional SCADA deals with data acquisition and control of most of the equipment in  

the substation, but it cannot be used for relays for the basic reason that they have to be 
manually operated. Whereas, the substation automation involves automation of relays 
and including them in the data acquisition and control process. The numerical relays used 
in substation automation systems act as a virtual RTU. In other words, the SCADA 
system applied to protection can be referred to as substation automation systems. 

- SCADA uses the concept of transducers, which are electronic devices that invariably 
cause a lag or delay in the transmission of data, whereas substation automation system 
aims at minimizing the data transmission time by removing the use of transducers. 

- Substation automation system needs to have higher accuracy than the conventional 
SCADA system as it involves the protection of switchgear of a substation. Thus, it 
removes the transducers, which approximate the values, and the obtained values directly 
from the devices. 

- Conventional SCADA has the concept of a single RTU, where the data is acquired and 
stored. The required control is performed form the centralized RTU itself. In such a case,  
a malfunction even in a part of the RTU affects the whole system. Whereas, in a 
substation automation system, the information and control are decentralized, i.e., each 
bay acts as a virtual RTU itself and sends the information into the control room.  
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The control can be performed from any level based on the control hierarchy. Hence, 
substation automation system can also be referred to as an integrated SCADA system.  

 
 
6. Communication Systems 

Communication infrastructure is very important for successful operation of SGs.  
The use of communication systems ensures the reduction of optimal operation and energy 
consumption of SG and the coordination between all its components from generation to the end 
users. There are several existing communication technologies available for the implementation 
in SGs include Power Line Carrier Communication (PLCC), WLAN, ZigBee, WiMAX, cellular 
communication [29]. Smart metering communication system consists a smart meter which is  
a two-way communicating equipment that measures the energy consuming at the appliances 
such as gas, electricity, water or heat, etc. Smart metering communication system also consists 
of Home Area Network (HAN), Neighborhood Area Network (NAN) and Wide Area Network 
(WAN) [30]. HAN is an information and communication network formed by appliances and 
devices within a home to support different distributed applications. NAN collects the data from 
multiple HANs and delivers the data to a data concentrator. WAN is the data transport network 
that carries metering data to central control centers [31]. 

Power Line Carrier Communication (PLCC) is one of the common communication 
systems. Using the EHV transmission line as a medium, the link is established among  
the stations connected with the transmission network [29]. It is used to serve voice 
communication, data transmission, and transmission of carrier-aided trip signal for the reduction 
of tripping time for the remote circuit breaker or in other words, reduction of fault feeding time 
during occurrence of fault in the transmission line. Basic equipments for PLCC are outdoor and 
indoor equipments. The outdoor equipments include line trap, capacitive voltage transformers 
(CVT)/coupling capacitors (CC), line matching unit with protective device, and co-axial cable. 
Indoor equipments include power line carrier set, dialing exchange and phone sets, RTU, 
interface cubicle and modem, and protection coupler [32]. It is important to mention here that 
the outdoor equipments are connected with the transmission line in different ways known as 
mode of coupling, and this is very vital for the faithful transmission/reproduction of PLCC signal. 

   
 

7. Conclusions 
This paper presents a detailed review on performance indicators for smart grid (SG) 

such as voltage stability enhancement, reliability evaluation, vulnerability assessment, SCADA 
and communication systems. Communication infrastructure is very important for successful 
operation of smart grids, and the use of it ensures the reduction of optimal operation and energy 
consumption of SG and the coordination between all its components from generation to the end 
users. Vulnerability assessment is used to determine, identify and rank the contingencies of  
the system. Vulnerability index is used to determine the strengths and weaknesses of  
the system against undesired events. There is a list of contingencies that may lead the power 
system to major blackouts and cascaded failures. 
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