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1. INTRODUCTION  

In recent years, the dynamical system has attracted significant attention due to its widespread 

applications in engineering and different scientific research as lasers, nonlinear circuits biological [1, 2], 

engineering [3, 4] and secure communications [5, 6]. Lorenz system is the first physical and mathematical 

model of a chaotic system contains real variables only which discovered in 1963 and open the way to find 

another chaotic system such as Chen system, Lu system, Liu system and Pan system [7-9]. Each system has a 

3-D of differential equations and just one positive Lyapunov exponent [10]. One important application in the 

field of engineering is secure communication i.e., the messages which are made by such simple chaotic 

systems are not always safe [6, 11, 12]. It is suggested that this problem can be overcome by using  

higher-dimensional hyperchaotic systems, which have increased randomness and higher unpredictability. 

In 1979, Rössler discovers the first 4-D hyperchaotic system including real variables with two 

positive Lyapunov exponents and followed to discover another 4-D, as well as 5-D hyperchaotic with three 

positive Lyapunov exponents [10, 13-15] and some other systems, have been revealed. The dynamical 

systems with higher dimensions are effective and interesting compared with the low dimensions [16-18].  

In 2015, Yang et al., proposes a 6-D hyperchaotic system including real variables and has four positive 

Lyapunov exponents [19].  

These days, the synchronization of the mentioned systems witnessed large attention by researchers 

because of its important applications in the is secure communication [20-22]. Many of the papers that relate 

to this topic are increasing, and numerous research devoted to investigating CS of high-dimensional 

hyperchaotic systems based on traditional Lyapunov stability theory [23-25]. Lyapunov stability theory is 

https://creativecommons.org/licenses/by-sa/4.0/
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extensively utilized in the phenomena of synchronization because the Lyapunov function can deliver 

accurately and speed data of the system convergence. However, Lyapunov function in some time is incapable 

of meeting the convergence requirements of error dynamics system owing to suffers from its drawbacks of 

modified the function itself. To achieve synchronization of good performance, the Linearization tool is 

preferred. So the Linearization and nonlinear control strategy integration can achieve higher performance. 

The contributions of this research can be summarized in the following points. 

a. Chaos synchronization between identical 6-D hyperchaotic systems is studied and used to find the error 

dynamics between them and its secure communication is then presented theoretically. 

b. Designs of three different controllers of complete synchronization are done by a nonlinear control 

strategy based on the Lyapunov stability theory, Linearization method.  

c. Compare between the Lyapunov and Linearization method. 

 

 

2. SYSTEM DESCRIPTION 

The Lorenz system was the first 3-D chaotic system to be modeled and one of the most widely 

studied. The original system was modified into a 4-D and 5-D hyperchaotic systems by introducing a linear 

feedback controller. In 2015, Yang constructed a 6-D hyperchaotic system which contains four positive 

Lyapunov Exponents  𝐿𝐸1 = 1.0034, 𝐿𝐸2 = 0.57515, 𝐿𝐸3 = 0.32785, 𝐿𝐸4 = 0.020937, and two negative 

Lyapunov Exponents  𝐿𝐸5 = −0.12087, 𝐿𝐸6 = −12.4713. The 6-D system which is described by  

the following mathematical form [19]: 
 

{
 
 

 
 

  

�̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑥4          
�̇�2 = 𝑐𝑥1 − 𝑥2 − 𝑥1𝑥3 + 𝑥5
�̇�3 = −𝑏𝑥3 + 𝑥1𝑥2                
�̇�4 = 𝑑𝑥4 − 𝑥1𝑥3                   
�̇�5 = −𝑘𝑥2                              
�̇�6 = ℎ𝑥6 + 𝑟𝑥2                     

                                                                (1) 

 

where  𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 are real state variables and 𝑎, 𝑏, 𝑐, 𝑑, 𝑘, ℎ, 𝑟 are all positive real parameters which 

equals (10 , 8/3 ,28 , 2, 8.4, 1, 1) respectively. This system is rich in dynamic properties. Figure 1 (a) shows 

the 3-D attractor of the system (1), while Figure 1 (b) shows the 2-D attractor of the same system. 

 

 

 
 

(a) 

 
 

(b) 
 

Figure 1. The attractor of the system (1), (a) In the 3-D(𝑥1, 𝑥3, 𝑥6) space, (b) In the 2-D (𝑥1 , 𝑥3) plane 

 

 

3. CHAOS SYNCHRONIZATION BETWEEN TWO IDENTICAL LORENZ SYSTEM 

In this section, two systems are needed, the first system is called the drive system which represents 

the picture or message information will be sent while the second system is called response system represents 

the noise that followed this information to ensure that they are not penetrated. Assume that the system (1) is 

the drive system and can be written as 
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[
 
 
 
 
 
�̇�1
�̇�2
�̇�3
�̇�4
�̇�5
�̇�6]
 
 
 
 
 

=

[
 
 
 
 
−𝑎
𝑐
0
0
0
0

  𝑎
−1
  0
  0
−𝑘
  𝑟

0
0
−𝑏
0
0
0

1
0
0
𝑑
0
0

0
1
0
0
0
0

0
0
0
0
0
ℎ]
 
 
 
 

⏟                  
𝐴

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]
 
 
 
 
 

+

[
 
 
 
 
 
0 0 0
1 0 0
0
0
0
0

1
0
0
0

0
1
0
0]
 
 
 
 
 

⏟      
𝐵

 [
−𝑥1𝑥3
𝑥1𝑥2
−𝑥1𝑥3

]
⏟    

𝐶

                                                (2) 

 

𝐴 and the product  𝐵. 𝐶 represents parameters matrix and nonlinear part of the system (1), respectively.  

While the response system is as follows: 

 

[
 
 
 
 
 
�̇�1
�̇�2
�̇�3
�̇�4
�̇�5
�̇�6]
 
 
 
 
 

= 𝐴1

[
 
 
 
 
 
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6]
 
 
 
 
 

+

(

  
 
𝐵1  [

−𝑦1𝑦3
𝑦1𝑦2
−𝑦1𝑦3

]
⏟    

𝐶1

+

[
 
 
 
 
 
𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
𝑢6]
 
 
 
 
 

   

)

  
 

                                                                      (3)    

 

and let  𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6]
𝑇  is the nonlinear controller to be designed. The synchronization error 

dynamics between the 6-D hyperchaotic system (2) and system (3) is defined as   𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖  , 𝑖 = 1,2,… ,6 

and satisfied that, lim
𝑡→∞

𝑒𝑖 = 0. The error dynamics is calculated as the following:  

 

{
 
 

 
 

 

�̇�1 = 𝑎(𝑒2 − 𝑒1) + 𝑒4 + 𝑢1                                      
�̇�2 = c𝑒1 − 𝑒2 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑒5 + 𝑢2
�̇�3 = −b𝑒3 + 𝑒1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒2 + 𝑢3
�̇�4 = d𝑒4 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑢4   

                

�̇�5 = −𝑘𝑒2 + 𝑢5                                                        
�̇�6 = ℎ𝑒6 + 𝑟𝑒2 + 𝑢6                                                 

                                                           (4) 

 

If the matrices  𝐴1 and 𝐵1 as  

𝐴1 = 𝐴 and  𝐵1 = 𝐵, then refer for identical synchronization.  

𝐴1 ≠ 𝐴  or  𝐵1 ≠ 𝐵 , then refer for non-identical synchronization. 

Based on Linearization method, The system (4) is unstable and the characteristic equation and eigenvalues 

are respectively as 

 

λ6 +
32

3
λ5 −

4069

15
λ4 +

1658

15
λ3 +

24004

15
λ2 −

9496

5
λ − 448 = 0    

 

{
  
 

  
 

 

λ1 = 2                                                            
λ2 = 1                                                            
λ3 = −8/3                                                    

λ4 = 11.3659− 8.10
−9𝑖                           

λ5 = −22.6916 − 3.92820323010
−9𝑖

λ6 =  0.3257 + 9.92820323010
−9𝑖      

      

 

Now, different controllers are designed based on Lyapunov and Linearization methods and we 

compare them. 

Theorem 1. If the control  𝑈  of system (4) is design as the following: 

 

{
 
 

 
 

  

𝑢1 = 𝑒4(𝑥3 − 1) − 𝑒2(a + 𝑐 − 𝑥3)
𝑢2 = −𝑟𝑒6                                            
𝑢3 = −𝑥2𝑒1                                          

𝑢4 = 𝑒3(𝑒1 + 𝑥1) − 3𝑑𝑒4                 

𝑢5 = −𝑒2(1 − 𝑘) − 𝑒5                      
𝑢6 = −2ℎ𝑒6                                         

                                                                                      (5) 

 

Then the system (3) can be followed by the system (2) by two methods. 

Proof.  Substitute above control in the error dynamics system (4) we have (6). 
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{
 
 

 
 

  

�̇�1 = −𝑎𝑒1 + 𝑥3𝑒4 − 𝑐𝑒2 + 𝑥3𝑒2                             
�̇�2 = c𝑒1 − 𝑒2 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑒5 − 𝑟𝑒6
�̇�3 = −b𝑒3 + 𝑒1𝑒2 + 𝑥1𝑒2                             
�̇�4 = −2d𝑒4 − 𝑥3𝑒1                                        

            

�̇�5 = −𝑒2 − 𝑒5                                                            
�̇�6 =  𝑟𝑒2 − ℎ𝑒6                                                           

                                                                 (6) 

 

In the first method (Linearization method), the characteristic equation and eigenvalues as  

                     

λ6 +
32

3
λ5 +

2488

3
λ4 +

20696

3
λ3 +

59225

3
λ2 +

66172

3
λ +

25184

3
= 0           

 

{
  
 

  
 

  

λ1 = −4                   
λ2 = −1                   
λ3 = − 1                  
λ4 = −8/3              

λ5 = − 1 + √786𝑖 

λ6 = − 1 − √786𝑖 

                                                         

 

All real parts of eigenvalues are negative, the linearization method is realized the chaos 

synchronization between system (2) and system (3). If the Lyapunov function is constructed as (7). 

 

𝑉(𝑒𝑖) =
1

2
∑ 𝑒𝑖

26
𝑖=1 = 𝑒𝑖

𝑇  𝑃𝑒𝑖    ,     𝑃 = 𝑑𝑎𝑖𝑔(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)                                             (7)                         

 

The derivative of the above function 𝑉(𝑒𝑖) is  
 

�̇�(𝑒𝑖) = 𝑒1�̇�1 + 𝑒2�̇�2 + 𝑒3�̇�3 + 𝑒4�̇�4 + 𝑒5�̇�5 + 𝑒6�̇�6  
                                

�̇�(𝑒𝑖) = 𝑒1(− 𝑎𝑒1 + 𝑥3𝑒4 − 𝑐𝑒2 + 𝑥3𝑒2) + 𝑒2(𝑐𝑒1 − 𝑒2 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑒5 − 𝑟𝑒6) +
𝑒3(−b𝑒3 + 𝑒1𝑒2 + 𝑥1𝑒2) + 𝑒4( −2d𝑒4 − 𝑥3𝑒1) + 𝑒5(−𝑒2 − 𝑒5) + 𝑒6(𝑟𝑒2 − ℎ𝑒6)  

 

�̇�(𝑒𝑖) = −𝑎𝑒1
2 − 𝑒2

2 − 𝑏𝑒3
2 − 2𝑑𝑒4

2 − 𝑒5
2 − ℎ𝑒6

2 = −𝑒𝑖
𝑇  𝑄 𝑒𝑖                                                    (8) 

 

where  𝑄 = 𝑑𝑖𝑎𝑔(𝑎, 1, 𝑏, 2𝑑, 1, ℎ) ,  so  𝑄 > 0. Consequently, �̇�(𝑒𝑖) is negative definite on 𝑅6. The nonlinear 

controller is suitable and the complete synchronization is achieved. Now, we will take the initial values as 

(1,0,2,4,1,−1) and (−8,−7,−15,12,20,1) to illustrate the complete synchronization that happened between 

(2) and (3) numerically. Figure 2 shows verify these results numerically. 
 

 

 
 

Figure 2. Complete synchronization between systems (2) and (3) with control (5) 
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Theorem 2. If the nonlinear control  𝑈  of error dynamical system (4) is designed (9). 

 
 

{
 
 

 
 

 

𝑢1 = −𝑐𝑒2 − 𝑥2𝑒3 + 𝑥3(𝑒4 + 𝑒2)
𝑢2 = −𝑎𝑒1 − 𝑟𝑒6                            
𝑢3 = 𝑥1𝑒4                                          

𝑢4 = 𝑒1(𝑒3 − 𝑑) − 2𝑑𝑒4               
𝑢5 = −𝑒5                                           
𝑢6 = −2ℎ𝑒6                                      

                                                                          (9) 

 

Then the system (3) can be followed by the system (2) by two methods. 

Proof. From the above control (9) with the error system (4), we get (10). 

 
 

{
 
 

 
 

  

�̇�1 = 𝑎𝑒2 −  𝑎𝑒1 + 𝑒4−𝑐𝑒2 − 𝑥2𝑒3 + 𝑥3𝑒4 + 𝑥3𝑒2         
�̇�2 = c𝑒1 − 𝑒2 − 𝑒1𝑒3 − 𝑥3𝑒1 − 𝑥1𝑒3 + 𝑒5 − 𝑎𝑒1 − 𝑟𝑒6
�̇�3 = −𝑏𝑒3 + 𝑒1𝑒2 + 𝑥2𝑒1 + 𝑥1𝑒2 + 𝑥1𝑒4         
�̇�4 = −𝑑𝑒4 − 𝑥3𝑒1 − 𝑥1𝑒3 − 𝑑𝑒1                        

                

�̇�5 = −𝑘𝑒2 − 𝑒5                                                                      
�̇�6 = 𝑟𝑒2 − ℎ𝑒6                                                                        

                                         (10)  

 

Based on the first method (Linearization method), the characteristic equation and eigenvalues as: 

 

λ6 +
53

3
λ5 +

2172

5
λ4 +

38594

15
λ3 +

91112

15
λ2 +

93856

15
λ +

35072

15
= 0                                          

 

{
 
 

 
 

  

λ1 = −1                                     
λ2 = −8/3                                
λ3 = −1.3438                          
λ4 = −1.9026                          
λ5 = − 5.3768 + 17.7207 𝑖 
λ6 = − 5.3768 − 17.7207 𝑖 

                                                                                                 

 

all real parts of eigenvalues are negative. The linearization method is succeeded to achieve complete 

synchronization. In Lyapunov approach, the Lyapunov function is taken as the same form in theorem1, the 

derivative Lyapunov function with control (9) becomes 

 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑒2

2 − 𝑏𝑒3
2 − 𝑑𝑒4

2 − 𝑒5
2 − ℎ𝑒6

2 + 𝑒1𝑒4(1 − 𝑑) + 𝑒2𝑒5(1 − 𝑘) = −𝑒
𝑇𝑄1 𝑒             (11)         

 

where  

 

𝑄1 =

[
 
 
 
 

   

𝑎
0
0

−(1 − 𝑑)/2
0
0

 

0
1
0
0

−(1 − 𝑘)/2
0

    

0
0
𝑏
0
0
0

−(1 − 𝑑)/2

 

0
0
𝑑
0
 0

 

0
−(1 − 𝑘)/2

0
0
1
0

0
0
0
0
0
ℎ

  

]
 
 
 
 

  

 

Note that 𝑄1 is not a diagonal matrix. If all the following five inequalities are satisfied, then the 𝑄1 is 

positive definite:    

        

{
  
 

  
 
1.  𝑎 > 0                                                                        
2.  𝑏 > 0                                                                        
3.  ℎ > 0                                                                        

4.  (𝑎𝑑 −
(1−𝑑)2

4
) > 0                                                

5.  (𝑎𝑑 (1 −
(1−𝑘)2

4
) −

(1−𝑑)2

4
(1 −

(1−𝑘)2

4
)) > 0

                                                                (12)                           

 

Fifth inequality is not correct with given parameters. Therefore, this control is failed. If update the matrix 𝑃  

with the same control as:  

 

𝑃1 = 𝑑𝑖𝑎𝑔(1 2⁄ , 1 2⁄ , 1 2⁄  , 1 4⁄ , 5/84 ,1)                                                                     (13) 
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Then, the derivative of Lyapunov function as: 
 

�̇�(𝑒𝑖) = −10𝑒1
2−𝑒2

2 −
8

3
𝑒3
2 − 𝑒4

2 −
5

42
𝑒5
2 − 𝑒6

2 =  −𝑒𝑇𝑄2𝑒                                              (14) 

 

where  𝑄2 = 𝑑𝑖𝑎𝑔(10,1,8/3,1,5/42,1) is a positive definite. Figure 3 shows verify these results numerically. 
 

 

 
 

Figure 3. Complete synchronization between systems (2) and (3) with control (9) 
 

 

Theorem 3. If the nonlinear control  𝑈 of error dynamical system (4) is designed as: 
 

{
 
 

 
 
𝑢1 = −𝑐𝑒2 − 𝑎(𝑒5 + 𝑒2)         
𝑢2 = −𝑟𝑒6 + 𝑥3𝑒1                     
𝑢3 = 𝑒4(𝑥1 + 𝑒1) − 𝑥2𝑒1         
 𝑢4 = −𝑒1 − 2𝑑𝑒4 + 𝑥3𝑒1         
𝑢5 = −𝑒2 − 𝑒5 + 𝑘(2𝑒1 + 𝑒2)
𝑢6 = −2ℎ𝑒6                                

                                                                                             (15) 

 

then the system (3) can be followed by the system (2) by linearization method only. 

Proof. Rewrite system (4) with control (15) as follows (16). 
 

{
 
 

 
 
�̇�1 = −𝑎𝑒1 + 𝑒4−𝑐𝑒2 − 𝑎𝑒5                       
�̇�2 = c𝑒1 − 𝑒2 − 𝑒1𝑒3 − 𝑥1𝑒3 + 𝑒5 − 𝑟𝑒6
�̇�3 = −b𝑒3 + 𝑒1𝑒2 + 𝑥1𝑒2+𝑥1𝑒4 + 𝑒1𝑒4 
�̇�4 = −d𝑒4 − 𝑒1𝑒3 − 𝑥1𝑒3−𝑒1                   
�̇�5 = −𝑒2 − 𝑒5 + 2𝑘𝑒1                                
�̇�6 = 𝑟𝑒2 − ℎ𝑒6                                              

                                                                             (16) 

 

Based on the Lyapunov stability theory, we obtain 
 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑒2

2 − 𝑏𝑒3
2 − 𝑑𝑒4

2 − 𝑒5
2 − ℎ𝑒6

2 + 𝑒1𝑒5(2𝑘 − 𝑎) = −𝑒
𝑇𝑄3𝑒                               (17) 

 

where 
 

𝑄3 =

[
 
 
 
 

   

𝑎
0
0
0

(𝑎 − 2𝑘)/2
0

 

0
1
0
0
0
0

      

0
0
𝑏
0
0
0

      

0
0
0
𝑑
0
0

−(𝑎 − 2𝑘)/2
0
0
0
1
0

0
0
0
0
0
ℎ

  

]
 
 
 
 

                                                       (18) 

 

So  𝑄3  is not a diagonal matrix. The necessary conditions to make 𝑄3 is positive definite, the following 

inequalities must hold. 
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{
 
 

 
 
1.  𝑎 > 0          
2.  𝑏 > 0          
3.  𝑑 > 0          
4.  ℎ > 0          

5.  𝑎 >
(𝑎−2𝑘)2

4

                                                                                                                       (19) 

 

Note all inequalities are realized except the fifth inequality. So, the matrix 𝑄3 is a negative 

definition, and failed to achieve complete synchronization. Therefore modified the matrix 𝑃 as follows: 
 

{ 

𝑃3,1 = 𝑑𝑖𝑎𝑔(21/25,1/2,1/2,1/2,1/2,1/2)    

𝑃3,2 = 𝑑𝑖𝑎𝑔(1/2,1/2,1/2,1/2,25/84, 1 2⁄ )   

𝑃3,3 = 𝑑𝑖𝑎𝑔(1/20,1/2,1/2,1/2,5/168,1 2⁄  )
                                                                        

 

all the above matrices are not diagonal 𝑄3, therefore Lyapunov method failed. Based on Linearization 

method, the characteristic equation and eigenvalues as 
 

λ6 +
53

3
λ5 + 1054λ4 +

34142

5
λ3 +

83193

5
λ2 +

53173

3
λ +

35784

5
= 0                                

 

{
 
 

 
 

  

λ1 = −8/3                                
λ2 = −1.9967                          
λ3 = − 1.1097−  0.4060 𝑖  
λ4 = − 1.1097+  0.4060 𝑖  
λ5 = − 5.3920 −  30.5554 𝑖
λ6 = − 5.3920 +  30.5554 𝑖

                                                         

 

Note that all eigenvalues with negative real parts, and thus the Linearization method has succeeded 

in achieving complete synchronization between systems (2) and (3) without any update compared to the 

Lyapunov method and thus the proof has been completed. These results are justified numerically in Figure 4. 
 

 

 
 

Figure 4. Complete synchronization between systems (2) and (3) with control (15) 
 

 

4. CONCLUSION  

In this paper, complete synchronization of a 6-D hyperchaotic system with a self-excited attractor is 

proposed. based on nonlinear control strategy and two analytical methods; first is Lyapunov's, and the second 

is the Linearization method. Through these two approaches we have found the difference between them and 

what is the appropriate method in each approach for achieving complete synchronization and thus we showed 

the best way observed that the Linearization method does not need to a auxiliary function or modifying this 

function as a method Lyapunov. Thus the linearization method is better than the Lyapunov method in 

achieving the desired one. Numerical results have been found to be the same results as we proposed. 
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