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 In the last decade, numerous researches in the field of electro-encephalo-

graphy (EEG) and brain-computer-interface (BCI) have been accomplished. 

BCI has been developed to aid disabled/partially disabled people  

to efficiently communicate with the community. This paper presents  

a control tool using the Neurosky Mindwave headset, which detects 

brainwaves (voluntary blinks and attention) to form a brain-

computer interface (BCI) by receiving the system signals from the frontal 

lobe. This paper proposed an alternative computer input device for those 

disabled people (who are physically challenged) rather than the conventional 

one. The work suggested to use two virtual keyboard designs. The conducted 

experiment revealed a significant result in developing user printing skills on 

PCs. Encouraging results (1.55-1.8 word per minute (WPM)) were obtained 

in this research in comparison to other studies. 
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1. INTRODUCTION 

The brain is an essential part of the human body, which controls movement, behaviour and regulates 

the equilibrium of the human body. The brain provides cognition; exudes emotions; stores memories and 

directs muscular or motor activities [1]. There are over 86 billion neurons in the average human brain, and 

there are various other cells, which almost equal that number too. The interconnection of neurons is crucial 

for brain activity, as these neurons form an associative link between brain cells [2]. Figure 1 [3], shows  

the classification of the human brain, which defines regions within the brain as the forebrain, midbrain, and 

hindbrain. The Midbrain mostly comprises of a portion of the brainstem, which controls some reflex actions 

and is a portion of the circuit; concerned with the regulation of eye movements and other voluntary 

movements. The general definition of the (brain) hemisphere happens into four lobes, namely–the frontal 

lobe, parietal lobe, temporal lobe and occipital lobe [4]. Perception involves sensing the signals from  

the external environment and is the major function of the human brain, which is at the core of understanding 

human senses, feeling and emotion. Furthermore, regulating and controlling the human behaviours; 

regulating and controlling physical actions; regulating memory functions; the method of thinking and other 

reasoning processes [5]. Medical professionals use Electroencephalography (EEG) to diagnose abnormalities 

in human life [6]. EEG is an electrophysiological monitoring technique that logs the electrical signals 

emanating from the brain. EEG senses the electrical potential difference resulting from neurological ionic 

currents produced by the brain [7]. EEG provides an automatic real-time recording of the brain's electrical 
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activity using multiple electrodes positioned on the scalp [8]. The past few years have seen a rapid progress 

of EEG-based BCI; that meteoric rise partly attributes to computer processing and speed improvements; also, 

that is due to signal analysis technique refinements. That work has produced results with applicable clinical 

applications [9]. BCI is a revolutionary technology, which reads the user's mind directly from the brain and 

transforms to the commands of a controllable device, bypassing the peripheral neural system [10]. The motor 

imagery based BCI system is an essential type of BCI. Traditional motor images produced by BCI acquires 

data through specific processes, then performs data analysis offline to choose the best channel and  

parameters [11]. Invasive and Non-Invasive are two essential types of BCI arrangements. Invasive BCI 

arrangements install a chip inside the brain, which records the brain activity [12]; this is often impractical 

because this requires brain surgery, while non-invasive types use a headset device and are externally placed 

on the scalp which measures brain activity [3]. 

 

 

 
 

Figure 1. The brain hemisphere 

 

 

A previous study presented by [13], develops a BCI system using a Mindwave headset. That study 

senses the activity of the brain and encodes the response in MATLAB, and the decision making, which 

enables smart home device control uses an Arduino module. The study conducted by [14] employs a P300 

BCI system to output digital text. That system displays pulsating characters and a classifier, which 

determines target characters. Typically, a user must type each symbol within a word at a time. That spelling 

process is slow, and it can take many minutes to output an entire word. Another research by [15], employs  

a BCI system to control four-wheel electric vehicles. Emotiv EPOC+ is used to acquire the raw EEG 

data.Independent Component Analysis (ICA) is used to pre-process the motor imagery EEG; feature 

extraction involves a Common Spatial Pattern (CSP), which are most related to the ERD/ERS. That research 

leads to the development of a non-invasive BCI, which realizes the intent of the visual cortex by equating 

EEG-SSVEP signals to control a wheelchair [16] automatically. That system uses offline data analysis to 

enable user motive control of the electric wheelchair.  

The research conducted by [17] develops a BCI based keyboard with long-term potential for areas 

such as learning, training, brain stimulation and other clinical purposes. That study presents an average 

accuracy improvement of all the users from a 40% error rate in the first round to a 10.5% error rate in  

the fourth round of the trials. This paper describes the use of a low-cost, non-invasive BCI type system, 

which uses a Neurosky Mindwave headset. This system collects EEG data in real time, to enable people with 

physical disabilities to communicate with others. 

 

 

2. RESEARCH METHOD 

This work successfully develops a BCI solution which detects and process brain signals in  

a real-time. Five sub-blocks can represent the system, and the following is a description of  

the microarchitecture design of each module shown in Figure 2. 
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2.1.  EEG signal acquisition 

The primary data acquisition element of the solution is the NeuroSkyMindWave headset. It is  

an inexpensive, lightweight, portable device with wireless communication. It consists of eight parts, which 

are a power switch, an ear clip, the ear arm, battery area, adjustable headband, sensor tip, sensor arm, and 

think gear chip [18]. Two sensors are used to operate this device to obtain and filter EEG signals. The sensor 

tip locates on the forehead and detects electrical signals emanating from the brain’s frontal lobe [19, 20].  

The second sensor is an ear clip, which is used as a ground acting as a filter for electrical noise [21].  

The NeuroSkyMindwave also has good measurement accuracy, which can result in a broader group of 

potential users. Figure 3, explains the locations of the electrodes of the MindWave EEG headset in  

the international 10/20 system [22]. 

 

 

 
 

Figure 2. The BCI system 

 

 

 
 

Figure 3. NeuroSkyMindWave system 

 

 

2.2.  Preprocessing 

EEG raw signals are very low power signals collected from the user scalp, amplified, digitized and 

transmitted through a Bluetooth module to the personal computer using the NeuroSkyMindWave device. 

 

2.3.  Features of EEG signals 

An EEG signal comprises of rhythmic activity and transients. The rhythmic activity is divided into 

wave bands by frequency while the transient is referring to spontaneous spikes and wave formations that are 

sharp [23]. There are five types at the most critical frequency ranges: delta (2-4Hz), theta (4-8Hz),  

alpha (8-12Hz), beta (15-30Hz), and gamma (30-80Hz) [6, 24]. 
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2.4.  Classification 

The Neurosky uses the ThinkGear Technology to process and classify the EEG output considers 

quantitative approaches to send signals via Bluetooth to the PC. The EEG processing protocols are closed 

source software. The output data are Raw EEG signal, eSense Attention and Mediation is an integer value 

between 0 and 100, Blink Strength is returning an integer value between 0 and 255 [18]. The "eSense 

Attention" value is used to scan and initialize the virtual keyboard enabling user proper character choice.  

The Blink Strength value is used to select characters or enables the cursor to move to the next row of  

the virtual keyboard. 

 

2.5.  The virtual keyboard: design and work 

The processing development environment (PDE) does process the data. A MindWaveWireless USB 

Adapter receives the packets of data transmitted from the brain wave sensor. The Neurosky EEG sensor 

obtains the attention and blink levels. If the attention value exceeds the threshold for a specific time, for 

example 1 second, then the keyboard scan is 1 second, so the keyboard scan starts. The attention level is 

received as a series of inputs, at a 1 Hz frequency, while the NeuroSky sensor obtains the unprocessed EEG 

data at a 512 Hz frequency. The blinking level is used to select characters and enable the pointer to navigate 

through the keyboard rows to hasten the writing process. The virtual keyboard is designed to contain 
alphanumeric and control characters. It includes clear, space, screen and delete function characters, as shown 

in Figure 4. There are thirty cells to provide a virtual keyboard, each alphabetic character and control running 

a single cell. The cells are organized in a column fashion and arranged in a QWERTY design.  

 

 

 
 

Figure 4. Virtual keyboard design 

 

 

The red border box represents the cursor that moves on the keyboard so the user can visually 

recognize the character select. Using a horizontal cursor movement, the user can select the correct character 

and record within the text box in a second. Figure 5, describes a flow chart of the proposed work. Initially, 

the NeuroSky headset is turned on, which in order to identify the neuro-signals. The EEG Biosensor capture 

the signals and send them to the Think-Gear chip for processing. After analysis, the Java environment 

receives digital signals for attentional extraction and utilizes the Blink Strength signals for further 

classification. The text process uses eye blink and eye focus levels. The keyboard indicator begins to scan if 

the signal level of attention exceeds the threshold for a specified period. If the Blink Strength value is 

between the decimal numbers of 110 and 60, then that action chooses the text box character. If the Blink 

Strength value exceeds the 110-decimal value, the pointer jumps between keyboard rows. The proposed 

virtual keyboard uses one blink signal to select any row to increase text writing speed and obtain more text in 

a fixed time. 
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Figure 5. Brain-controlled keyboard flow chart 

 

 

3. RESULTS AND ANALYSIS 

The performance of the system was evaluated by taking five people to the test, ranging in age from 

30 to 35 years. During the practical test phase, each participant sits in a comfortable chair in front of  

the laptop. Each participant performs the following experiments in a certain number of sessions at  

different times. 

3.1.  First experiment 

Each person was asked to write (Help) word for nine sessions on (QWERTY) virtual keyboard 

designed as previously mentioned. This study calculates the time required to write the required word and  

the number of wrong characters; shown in Table 1. 

 

 

Table 1. Time consumed to write (HELP) word and a character error number 

Sessions 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Time 

(sec) 

Error 

(ch) 

Time 

(sec) 

Error 

(ch) 

Time 

(sec) 

Error 

(ch) 

Time 

(sec) 

Error 

(ch) 

Time 

(sec) 

Error 

(ch) 

1 136.07 5 123.06 5 120.2 4 106.5 5 83.9 4 

2 129.16 4 91.95 3 99 2 92 5 70 2 

3 76.1 2 80 2 69.81 2 99.11 4 54.3 0 

4 58.05 1 116.3 2 69.56 2 82.05 2 72.8 4 
5 47.36 0 63 1 65.5 1 77.49 1 71 3 

6 50.2 1 53 1 61.2 1 72.04 1 79 3 

7 47.64 0 48.2 0 60.5 1 57.5 1 44.04 0 
8 46.26 0 49.3 0 55 0 48 0 53.3 1 

9 45.29 0 46.2 0 56.4 0 46.9 0 44 0 

 

 

The words per minute (WPM) variable provides the most frequent empirical metric of text entry 

performance. It measures the period to produce a certain number of words. WPM is inconsiderate of  

the number of keystrokes nor gestures types made during the text entry, but only considers text transcription 

length, which is defined in (1) [25]. 
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WPM= ((T-1)/s)*60*1/5 (1) 

 

Where S is the time in seconds. 60 is a constant. The factor of one-fifth accounts for the average word length 

in characters, including spaces, numbers, and other printable characters. Table 2, shows the text entry speed 

and error rate of each subject for nine sessions. Figure 6 Shows the results for every participant, during nine 

sessions and calculates the average time for all sessions. Figure 7 Shows the average entry speed of text 

represents as (WPM) with an accuracy of the correct entry text. 

 

 

Table 2. Word entry speed and error rate 

Sessions 

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Accuracy 

(%) 

Entry 
Speed 

(wpm) 

Accuracy 

(%) 

Entry 
Speed 

(wpm) 

Accuracy 

(%) 

Entry 
Speed 

(wpm) 

Accuracy 

(%) 

Entry 
Speed 

(wpm) 

Accuracy 

(%) 

Entry 
speed 

(wpm) 

1 44.44 0.26 44.44 0.29 50.00 0.30 44.44 0.34 50 0.43 
2 50 0.28 57.14 0.39 66.67 0.36 44.44 0.39 66.67 0.51 

3 66.67 0.47 66.67 0.45 66.67 0.52 50 0.36 100 0.66 

4 80 0.62 66.67 0.31 66.67 0.52 66.67 0.44 50 0.49 
5 100 0.76 80 0.57 80 0.55 80 0.46 57.14 0.51 

6 80 0.72 80 0.68 80 0.59 80 0.50 57.14 0.46 

7 100 0.76 100 0.75 80 0.60 80 0.63 100 0.82 
8 100 0.78 100 0.73 100 0.65 100 0.75 80 0.68 

9 100 0.79 100 0.78 100 0.64 100 0.77 100 0.82 

 

 

 
 

Figure 6. The average time for all sessions 

 

 

 
 

Figure 7. Text entry speed and accuracy 
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3.2.  Second experiment 

This experiment uses two types of virtual keyboards, QWERTY type as described previously, ABC 

type consists of alphabets and two control characters defined as Delete and Space. The keyboard has 30 cells; 

each alphabet occupies one cell character and two cells for each control button [17]. In this study, two types 

of keyboard use square pointers. Both keyboards scan with a 600-millisecond delay to allow the user to select 

a proper character. The persons are required to write a 24-letter sentence, including the white space character 

within six sessions. The time required to write the chosen word was calculated as shown in Tables 3 and 4. 

Figures 8 and 9 shows the average text entry speed and error rate of each person for this study.  

The calculations of the text entry rate of various input methods is straight forward and simple. 

In the first study, the users training to write the word HELP, and calculate the time taken, as shown 

in Table 1. 75.83% accuracy obtained, and the WPM is 0.56, which equivalent to 2.8 letters per minute.  

In the second study, the user is trained to write a sentence of 24 characters; by reducing the time taken to scan 

the keyboard and switch between the buttons to be 600 milliseconds, using two types of keyboard design to 

improved the proposed system. The first keyboard (QWERTY) contains three control buttons in addition to 

the alphanumeric. The error rate was 5% and WPM = 1.55. The second type of keyboard designed as (ABC), 

which contains two control buttons in addition to the alphanumeric. The error rate was 5.25% and  

WPM = 1.8. The results of the proposed system exceed the performance of previous studies that enable  

the user to write 7.75 to 9 characters per minute. Through the results obtained, it is possible to note  

the improvement in the performance of the proposed system compared to the previous systems by looking at 

the time taken to write most characters, taking into account the delay in the movement of the indicator 

between pressing the buttons. 

 

 

Table 3. Time and error data of (QWERTY) keyboard 

Subjects 

Session1 Session2 Session3 Session4 Session5 Session6 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

1 219.0 4 199.2 1 160.2 1 172.8 1 165.6 0 156.0 0 

2 208.6 3 190.4 2 175.0 1 177.0 1 160.0 0 149.4 0 
3 225.3 5 220.2 4 195.9 2 180.5 1 185.6 0 171.0 1 

4 199.6 1 182.8 2 150.0 1 190.5 2 149.4 0 150.2 0 

5 195.2 2 202.3 2 181.4 1 185.2 1 155.2 0 157.9 0 

 

 

Table 4. Time and error data of (ABC) keyboard 

Subjects 

Session1 Session2 Session3 Session4 Session5 Session6 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

Time 

(sec) 

Error 

letter 

1 176.0 3 156.0 4 149.9 1 213.8 2 146.4 0 142.2 1 

2 140.8 1 135.0 2 133.2 2 162.6 1 178.8 0 120.2 0 

3 201.0 2 180.5 2 134.4 2 124.7 1 122.4 1 118.8 1 
4 185.2 3 180.6 2 151.2 2 155.7 1 149.8 1 130.2 0 

5 191.0 2 195.3 2 182.7 1 180.5 1 177.7 0 125.1 0 

 

 

 
 

Figure 8. Text entry speed and error rate of (QWERTY) virtual keyboard 
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Figure 9. Text entry speed and error rate of (ABC) virtual keyboard 

 

 

4. CONCLUSION 

The proposed virtual keyboard uses EEG signal synchronized with human-eye blinking in term of 

key selection for printing purposes. The obtained results were encouraging and were about (1.5-1.8 WPM) 

with an error rate equals to (5-5.25)%. The results of experiments show that the best mode is the one that 

used the ABC keyboard type. The next challenge focuses on designing a similar keyboard with predicting 

capabilities with text output interface for native languages. 
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