
TELKOMNIKA, Vol.12, No.1, March 2014, pp. 251 ~ 262
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/TELKOMNIKA.v12i1.1789  251

Received October 6, 2013; Revised December 24, 2013; Accepted January 17, 2014

Publications Repository Based on OAI-PMH 2.0 Using
Google App Engine

Hendra*, Jimmy
STMIK IBBI Medan

Jl. Sei Deli No. 18 Medan, Telp. 061-4567111 Fax. 061-4527548
*Corresponding author, e-mail: hendra.soewarno@gmail.com

Abstract
Online publication aims to improve the dissemination and access by the public and the industry to

the research result. OAI-PMH standard 2.0 is a protocol that allows the publication metadata exposed by a
data provider can be harvested online by a service provider without any human intervention. A publication
portal that is equipped with metadata exposure will increase the access and wider spread through the
services provider. This study aims to developing a publications repository application completed with meta
data exposure facility based on OAI-PMH 2.0 that running on Google App Engine. Google App Engine is a
PaaS service provided by Google. Application development is done using SDLC approach, and using
OOAD at the analysis and design phases. The purpose of the application is to publish scientific papers by
lecturers at STMIK IBBI named Portal Garuda STMIK IBBI. Based on the results of testing using OAI-PMH
Validator, BASE OAI-PMH Validator, and successful registration of portal Garuda STMIK IBBI in
OpenArchive.org, OpenDOAR, and the ROAR, as well as the result rating reaching 95% by
WebArchivability, it is believed that the application is complies with OAI-PMH standard 2.0 and the W3C
standard. By implementation of the application will help higher education institutions meet the obligations
of the scientific paper publication that can be accessed online as well as letter of DGHE number
2050/ET/2011.

Keywords: OAI-PMH standard 2.0, Google App Engine, Cloud Computing, Dublin Core

1. Introduction

Open Archives Initiative Protocol for Metadata Harvesting (OAI - PMH) is a low-barrier
mechanism for repository interoperability [1]. A Repository that is equipped with metadata
exposure using OAI - PMH 2.0 enables online metadata harvesting by a service provider.

DGHE has issued decree number 2050/ET/2011 that all higher education institutions
have obligated to publish scientific papers and journals that can be accessed online by the
public. This policy requires an investment of facilities and human resources for the operation
and maintenance of the facility. Presence of Cloud Computing can be an alternative for
universities to conduct online publication without a large initial investment. Based on the
research that the use of Cloud Computing in the educational institutions can reduce the
complexity, costs, and improve efficiency [2,3].

Google APP Engine (GAE) is a PaaS service that enables the programmer to develop
applications using Google App Engine SDK, and run the application on Google infrastructure.
GAE provides free quota for datastore storage of 1 GB, 5 GB Blobtore and enough CPU
process and bandwidth for an efficient application serving around 5 million page views per
month, so it becomes something interesting to start using GAE service. Google also provides
Google Apps for Education that will allow educational institutions to publish GAE -based
application services using their domain or sub-domain name free of charge.

The purpose of this research is to develop a publication repository application that is
equipped with metadata exposure using OAI - PMH 2.0. Application is targeted to run on the
Google App Engine platform. The benefit of this research is the availability of an application that
can be a solution for higher education institution to meet the obligations of the publication of
research results accessible online.

2. Research Method

The research was conducted by studying the literature related to dissemination and
exposes of research metadata, studying the OAI-PMH 2.0 standard 2.0, studying Dublin Core

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 1, March 2014: 251 – 262

252

(DC) metadata format, learn the concept of cloud computing, learn application development with
Google App Engine SDK. This research was carried out with a case study on STMIK IBBI in
order for the results of the research can be implemented to publish scientific paper by lecturers
at STMIK IBBI. Research model used for the application development is using SDLC (Waterfall)
approaches which consist of the analysis, design, development, implementation, and
Evaluation. Analysis includes the requirement analysis of the user; they are the admin, operator,
web visitors, and OAI-PMH service provider. Results of this requirement analysis to be modeled
by using use case diagrams. Software analysis conducted by identified the entities that make up
the system and the interaction among entities that are modeled using UML. Software design is
conducted by designing the structure of the data store, the user interface, and OAI-PMH
template in the form of XML. The software was developed with the App Engine SDK, and
deployed on Google App Engine and implemented as Portal Garuda STMIK IBBI. Testing of the
application is done with a variety of tools such as OAI-PMH Validator, WebArchivability, and
registration portal on OpenArchive.ORG, OpenDOAR, and ROAR.

2.1. OAI-PMH 2.0
Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is a low-barrier

mechanism for repository interoperability. A repository is a network of servers that can be
accessed by six OAI-PMH requests those are: Identify, Listsets, ListMetaFormats, ListIdentifier,
ListRecords, and GetRecords. A repository is a data provider that exposes metadata to the
harvester. A harvester is a client application making the OAI-PMH request that is operated by a
service provider by mean to collect metadata from the repository.

The main concepts of the OAI-PMH specification is an item, record and Metadata
Format, an item is a representation of a digital resource or non-digital that is uniquely identified
by a URI. A record is identified by a combination of a unique identifier, a metadataPrefik that
identifies the format of the record as "oai_dc" for the Dublin Core and a timestamp for the
record. Each of these items can be optionally grouped by parameter setSpec.

OAI-PMH is implemented over HTTP response to the HTTP request with GET or POST
that have verb parameter which specify the type of information requested those are Identify,
ListSets, ListMetaDataFormats, ListIdentifier, ListRecords and getRecord. Determination of
criteria can be based on timestamp for ListIdentifier and ListRecords request. A criterion based
on timestamp is to harvest record by the time stamp when an item is created, deleted or
modified. Timestamp value is encoded using ISO8601 and are expressed in UTC. Every header
returned by request getRecord, ListRecord or ListIdentifier containing a timestamp associated
with the item. The response is returned in the form of an XML document with content type:
text/xml and encoded using UTF-8 representation of Unicode, if the repository supports sets
then the set information should be included in the header of the items associated with the
response to the request ListIdentifiers, ListRecords, and GetRecord. Response may return an
error response associated with the unavailability of a given argument or arguments invalid as
badVerb, badArgument, noRecordsMatch, cannotDisseminateFormat, badResumptionToken.

A number of OAI-PMH query returns a list of discrete entities like ListRecords returns a
list of records, ListIdentifier returns a list of headers, and ListSets returns a list of sets, in the
particular case list size could be large and more practical is to partition them into a series of
requests and response using resumption Token [4].

2.2. Dublin Core Metadata Format
Basically OAI-PMH data providers have the freedom to expose the data in a variety of

formats to ensure low-level interoperability, all providers support at least Dublin-Core metadata
format. Based on observations by Bernhard Haslhofer et. al. (2009) to 915 repositories in
addition to implementing mandatory Dublin Core format, a row of five commonly used format is
as follows FRC1807(12%), MARC (11.8%), MARC-21 (10.3%), MIDS (7.5%), and METS
(5.7%).

The Dublin Core Metadata Element Set (DCMES) has fifteen elements, these elements
are: Contributor, Coverage, Creator, Date, Description, Format, Identifier, Language, Publisher,
Relation, Rights, Source, Subject, Title and Type [5]. Each Dublin Core element is optional and
may be repeated. Based on the best practices published by IMLS DCC identifies eight of the

TELKOMNIKA ISSN: 1693-6930 

Publications Repository Based on OAI-PMH 2.0 Using Google App Engine (Hendra)

253

elements that affect the completeness of a metadata record, and most helpful for search and
found is the Title, Creator, Description, Date, Format, Identifier, and Rights (CDP Metadata
Working Group, 2006) [6]. When a service provider perform harvesting using GetRecord or
ListRecord verb, records are returned in XML-encoded byte stream those are organized into
header, metadata, and about. The header consists of unique identifier, datestamp, zero or more
setSpec elements, and an optional status attribute. The metadata at a minimum must be
expressed in Dublin Core format, without any qualification. This consists of a single root tag
oai_dc:dc - with the nested tags belonging to the corresponding metadata format such as
dc:title, dc:creator, dc:contributor, dc:coverage, dc:description, dc:date, dc:format, dc:identifier,
dc:language, dc:publisher, dc:relation, dc:rights, dc:source, dc:subject, and dc:type. The about
is an optional and repeatable container to hold data about the metadata likes rights statements
and provenance statements.

2.3. Cloud Computing

Cloud computing is a marketing term. Based on the definition of NIST, cloud computing
is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction. [7]

Katz et al. Identified 10 important features of cloud computing in higher education
institutions related to the on-demand SaaS , PaaS , and IaaS are driving down the capital and
total costs of IT in higher education; facilitating the transparent matching of IT demand, costs,
and funding; scaling IT; fostering further IT standardization; accelerating time to market by
reducing IT supply bottlenecks; countering or channeling the ad hoc consumerization of
enterprise IT services; increasing access to scarce IT talent; creating a pathway to a five-9s and
24 × 7 × 365 environment; enabling the sourcing of cycles and storage powered by renewable
energy; and increasing interoperability between disjointed technologies between and within
institutions. [8]

B. Sosinsky wrote utilization of cloud computing that can provide five advantages: lower
cost because it operates with a better utility , quality of service (QOS) in accordance with the
contract , the network reliability by providing load balancing and failover , out - source IT
management infrastructure which dealt service providers , maintenance and upgrades simpler
since the system is centralized , and low initial resistance due to capital expenditures will start to
drop dramatically . In addition to exploiting the advantages of cloud computing also has many
disadvantages such as difficulty of customization, problems on network latency, limited
bandwidth compared to the local network, the incremental cost of internet bandwidth, as well as
risks related to privacy concerns, data security for the data traffic over the Internet and stored on
the provider. [9]

2.4. Google App Engine (GAE)

Google Cloud platform allows the creation of applications and websites, store and
analyze data on Google's infrastructure by taking advantage of speed and scalability of
Google's infrastructure, usage based on capacity planning and pay for what is used without any
upfront payment. Product of Google Cloud platform consists of Google App Engine, Google
Compute Engine, Google Cloud Storage, Google BigQuery, Google Cloud SQL, the Google
Prediction API and the Google Translation API.

Google App Engine supports the creation of a web application using GAE SDK with a
choice of a runtime environment for Java, Python and Go. An application developed according
to the standards the App Engine, uploads to Google, and then will be deployed on Google
Cloud. Google handles backup, load balancing, surge access, dissemination, and cache so that
developers can concentrate on application development. [10] Application running on the elastic
infrastructure and dynamic scalability according to the increase or decrease in traffic and
storage, GAE has limited API which applications could not write directly to the file system, but
must use a datastore, the application can not open socket directly to access to another host but
had to use Google's URL fetch service, and a Java application can not create a new thread.

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 1, March 2014: 251 – 262

254

In the free service, Application response to web requests using subdomains
.appspot.com. Using institution domains or subdomain is available for paid services or Google
App for Education. App Engine selects a server from the many possibilities server to handle
requests based on which server can provide the best speed. Applications can distribute traffic
through many servers. Applications cannot access traditional server such writing files, reading
files of other applications, access to network facilities and server hardware, but can be used
through services. In short stay of each request in the "sandbox" that allows each App Engine
handles a request to a specific server based on estimates that can provide the fastest response.
There is no way to determine a query run on the same server even if the request comes from
the same client. App Engine limits a request to 30 seconds for return the response to the client.
[11]

App Engine provides free quota up to 1 GB of storage, up to 5 GB of blob-store, CPU
and bandwidth for an efficient application serving around 5 million page views each month.
When the paid services are activated, then the limit will be increased, and the billing is only
done for usage excess usage quota. The maximum number of resources can be controlled to
stay within budget.

Data storage can be done with App Engine Datastore that integrates with GAE service
provides, Data store is an schemaless object and NoSQL data storage with the ability to query
engine and atomic transactions that are based on BigTable. Data storage can also be done with
a separate service Google Cloud SQL is a relational database that is based on the familiar
RDBMS MySQL, and Google Cloud Storage for data storage objects and files that are
accessible through the Python and Java applications. Blobstore API is used in applications to
serve data as blob object, which is greater than the size allowed for an object on Datastore
service. Blobstore is useful for storing large files such as video and image files, and allows
users to upload large files.

3. Results and Analysis

Applications is developed using App Engine SDK; Python programming language that
runs on Python webserver; HTML5, CSS and JavaScript that runs on the client web browser;
XML to expose metadata via OAI-PMH 2.0; Django Template for user interface preparation;
data storage using datastore and blob-store API. The deployment diagram of the application is
shown in Figure 1.

Figure 1. Deployment Diagram

3.1. Statement of Purpose
Publications Repository based on OAI-PMH 2.0 is a web-based application to publish

research result reports in the form of a PDF document. The web application should have the

TELKOMNIKA ISSN: 1693-6930 

Publications Repository Based on OAI-PMH 2.0 Using Google App Engine (Hendra)

255

search feature based on the keywords entered by the user, and the document can be
downloaded by users. Applications should also provide the ability exposes metadata using OAI-
PMH 2.0 so that can be harvested online by a service provider. Application is targeted to
operate on Google App Engine platform.

3.2. System Analysis

Actors involved in the operation and utilization of the system are: Admin in charge of
setting the publication portal parameter and user account creation, Operator on duty to maintain
the publication metadata and paper upload, Approver in charge to conduct the approval or
cancellation of proposed publication, Visitors who perform a search and download documents,
and Service Providers which is machine that conduct metadata harvest through OAI-PMH 2.0.
The Use Case is shown in Figure 2.

Figure 2. Use Case Diagram

Static classes that make up the system are Class Author, Publication Class, Document
Class, and Class Review as shown in Figure 3.

Figure 3. Class Diagram

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 1, March 2014: 251 – 262

256

Applications are developed with the approach of Model View Controller (MVC).
Communication Diagram between Class-Class that interacts in the system is shown in Figure 4,
Figure 5, Figure 6, Figure 7, and Figure 8.

Figure 4. Input Author

Figure 5. Input Meta Data and Document Upload

Figure 6. Publications Approval

TELKOMNIKA ISSN: 1693-6930 

Publications Repository Based on OAI-PMH 2.0 Using Google App Engine (Hendra)

257

Figure 7. Search dan Document Download

Figure 8. Harvest Metadata

3.3. System Design
App Engine Datastore object data storage is based on schemaless, wherein the data

storage model is defined directly on the application program. Storage structure of each entity in
the form of aggregate is as follows:

Author:{
 name:
 instutiton:
 contact:
 Publication:{
 publish_no:
 status: [new, approved, pending , reject]
 approve_no:
 approve_by:
 approve_date:
 subject:
 description:
 publisher:
 contributor:
 publish_date:
 material_type:
 permalink:
 right:
 journal_title:
 paper: blobstore.blobReference

Review: {
 review_no:
 review_time:
 review_by:
 status: [, approved, pending , reject]
 description:

}
 }

 }

Publication Entity is a subclass of search.SearchableModel to allow full text search,

while the Review and Author is a subclass of db.Model.

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 1, March 2014: 251 – 262

258

Figure 9. Search Result User Interface

XML in Django template for the response of getRecord request by a Service Provider
are as follows:

<OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/
 http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">
 <responseDate>{{ responsedate }}</responseDate>
 <request verb="GetRecord"
{% if not identifier == '' %}indetifier="{{ identifier }}"{% endif %}
{% if not metadataprefix == '' %}metadataPrefix="{{ metadataprefix }}"{% endif %}
 >{{ alamatakses }} </request>
{% if not errormessage == '' %}
 <error code="{{ errormessage }}"/>
{% else %}
 <GetRecord>
 <record>
 <header>
 <identifier>oai:{{ alamatweb }}:{{ entity.key.name }}</identifier>
 <datestamp>{{ entity.status_date|date:"Y-m-d" }}T00:00:00Z</datestamp>
 </header>
 <metadata>
<oai_dc:dc
 xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/
 http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>{{ entity.title }}</dc:title><dc:creator>{{ entity.creator

}}</dc:creator>
<dc:subject>{{ entity.subject }}</dc:subject><dc:description>{{

entity.description }}</dc:description>
<dc:publisher>{{ entity.publisher }}</dc:publisher>
<dc:contributor>{{ entity.contributor }}</dc:contributor>
<dc:date>{{ entity.publish_date|date:"d-M-Y" }}</dc:date>
<dc:type>{{ entity.material_type }}</dc:type>
<dc:identifier>http://{{ alamatweb }}/permalink?key={{ entity.publish_no

}}</dc:identifier>
<dc:source>{{ entity.journal_title }}</dc:source>
<dc:rights>{{ entity.right }}</dc:rights><dc:language>Indonesian</dc:language>
</oai_dc:dc>
 </metadata>
 </record>
 </GetRecord>
{% endif %}
</OAI-PMH>

TELKOMNIKA ISSN: 1693-6930 

Publications Repository Based on OAI-PMH 2.0 Using Google App Engine (Hendra)

259

3.4. Implementation
The purpose of the application is to publish scientific paper result by lecturers at STMIK

IBBI which is named as STMIK IBBI Portal Garuda STMIK IBBI. Here is a display interface of
search results by visitors based on certain keywords. Portal Garuda STMIK IBBI can be
achieved with a URL http://research.lppm-stmik.ibbi.ac.id.

3.5. Evaluation

To ensure that the application of the design and development has met the standard
OAI-PMH 2.0, we test the application using the OAI-PMH Validator to test the suitability of the
response to the OAI-PMH specification, testing using OAI-PMH BASE Validator which simulates
the process of harvesting by a service provider to ensure the ability to handle granularity
metadata harvesting and fulfillment of the minimal elements of DC (date, creator, identifier, type,
and title). In the each verification stage will be given various suggestions for adjustment and
improvements, so that this process is iterative until no significant issues were found.

Figure 10. Portal Garuda STMIK IBBI

After the process of testing compliance with OAI-PMH standard, we measure the rating
associated with the how the portal can be archived properly by search engines. This test will
use the WebArchivability to inspect the W3C standard compliance associated with HTML and
CSS, examination of the death-link, an examination of the use of media such as compressed
image formats and standards, availability sitemap to improve access such as robots.txt,
sitemap.xml, RSS , ETAG. The rating that was achieved was 95% with issues related to
compliance with W3C standards 76%, we use the CSS3 in application development, while the
examinator using CSS2 as standard, so that is not considered as an issue. The rating results
are shown in Figure 11.

To improve the metadata dissemination and access to Portal STMIK IBBI Garuda, we
registered it on OpenArchive.ORG, OpenDOAR, and ROAR. Before the Registration will be
accepted on OpenArchive, it must passed two stages of validation those are Comformance for
Basic Functionality Testing and Conformance Testing for Error and Exception Handling.
Registration results are shown in Figure 12.

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 1, March 2014: 251 – 262

260

Figure 11. Rating Using WebArchivability

Figure 12. Registered in OpenArchive.ORG

Registration on OpenDOAR, and ROAR is through the moderator process, which

means it will be visited by the staff of the institution, and then to validate the accuracy of data
being entered at the time of registration. Registration results on OpenDOAR and ROAR is
shown in Figure 13 and Figure 14.

TELKOMNIKA ISSN: 1693-6930 

Publications Repository Based on OAI-PMH 2.0 Using Google App Engine (Hendra)

261

Figure 13. Registered in OpenDOAR

Figure 14. Registered in ROAR

4. Conclusion

Based on the results of validation using Validator OAI-PMH, OAI-PMH BASE Validator
and successfully registered the Portal Garuda STMIK IBBI to OpenArchive, OpenDOAR and
ROAR it can be concluded that the Publications Repository has met the standard OAI - PMH
2.0 and can be harvest well by the OAI - PMH service provider. With 95% of the rating value
from WebArchivability, it can be believed that the Publications Repository can be archive
properly by search engines. Finally, with the availability of the application could help universities
meet the obligations of the publication of scientific papers and journals that can be accessed
online in accordance with the DGHE letter number 2050/ET/2011. Based on the experiences
during development of the application, the availability of some of the features in Google App
Engine like Google Accounts authentication, full-text search, blobstore can facilitate the
development of application. To improve access to publications portal, so that is advisable to
register the portal using Google Webmaster Tools and BING Webmaster Tools, and Google
Scolar.

Acknowledgements
Thanks to the Directorate General of Higher Education that supports the research funding in
accordance with the Letter of Agreement Number: 279/K.1.2.1/PS/2013 in the framework of
Penelitian Dosen Pemula for Private Universities in Kopertis-I Fiscal Year 2013.

  ISSN: 1693-6930

TELKOMNIKA Vol. 12, No. 1, March 2014: 251 – 262

262

References:
[1] Carl l, Herbert Van de S., Michael N., & Simeon W. The Open Archives Initiative Protocol for Metadata

Harvesting, Protocol Version 2.0. 2008. [Online] available
http://www.openarchives.org/OAI/2.0/openarchivesprotocol..html

[2] CDW-G. From tactic to strategy: The CDW 2011 cloud computing tracking poll. 2011. available
http://webobjects.cdw.com/webobjects/media/pdf/Newsroom/CDW-Cloud-Tracking-Poll-Report-
0511.pdf

[3] Sasikala, S., & Prema, S. Massive Centralized Cloud Computing (MCCC) Exploration in Higher
Education. Advances in Computational Sciences and Technology. 2010; 3(2): 111-118.

[4] OpenArchives. Open Archives Initiatif – Protocol for Metadata Harvesting. [Online] available http://
www.openarchives.org/OAI/openarchivesprotocol.html

[5] Dublin Core Metadata Element Set, Version 1.1. 2012. available
http://dublincore.org/documents/dces/

[6] CDP Metadata Working Group. Dublin Core Metadata Best Practice Version 2.1.1. 2006.
[7] Marinela, M., & Anca Ioana, A. Using Cloud Computing in Higher Education: A Strategy to Improve

Agility in the Current Financial Crisis. IBIMA Publishing, Vol. 2011, Article ID 875547, 15 pages.
[8] P. Mell, T. Grance. The NIST Definition of Cloud Computing. NIST Special Publication. 2011: 800-

145.
[9] Katz, R. N., Goldstein, P. J. & Yanosky, R. Demystifying cloud computing for higher education.

EDUCAUSE Center for Applied Research Bulletin. 2009; 19: 1-13.
[10] B. Sosinsky. Cloud Computing Bible. Willy Publishing, Inc, Indiana. 2011.
[11] Google Apps for Education, available http://www.google.com/enterprise/apps/education/, diakses

pada 19 Agustusi 2013.

