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 Rice is a primary source of food consumed by almost half of world 

population. Rice quality mainly depends on the purity of the rice seed.  

In order to ensure the purity of rice variety, the recognition process is an 

essential stage. In this paper, we firstly propose to use histogram of oriented 

gradient (HOG) descriptor to characterize rice seed images. Since the size of 

image is totally random and the features extracted by HOG can not be used 

directly by classifier due to the different dimensions. We apply several 

imputation methods to fill the missing data for HOG descriptor.  

The experiment is applied on the VNRICE benchmark dataset to evaluate  

the proposed approach. 
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1. INTRODUCTION 

Rice cultivation is the main agriculture in many countries. In order to produce high quality rice 

seeds, classification is the most important stage. The intention of classification stage is to ensure the purity  

of the rice seeds by removing bad ones or rice seeds from another varieties. This process is usually controlled 

by some standards to ensure the rice seed quality and purity before selling to the farmers for mass growing. 

Nowadays, in Vietnam, the classification stage is usually done by eyes of skillful farmer based on some 

features, this method is time consuming and may give low quality seeds. With the development  

of information technology, the computer vision has been applied in agriculture by various applications  

of pattern recognition such as detection of diseases in human and plants, manufacturing automatic inspection, 

automatic characterization, fruit, vegetable and grain quality assessment [1-3]. The analysis and the detection 

of rice seeds is carried by an automatic computer-aided vision system. The step of analyzing and recognizing 

images requires defining descriptors which represent different classes of seed textures and can discriminate 

against them. 

Furthermore, texture analysis is an intensive research topic over the years. A wide variety of local 

image descriptors have been proposed and this significantly contributed the progress in image analysis and other 

machine vision tasks. According to a recent survey of Humeau-Heurtier [4, 5] about texture analysis, texture 

attributes can be divided into seven categories defined in terms of statistical, structural, transform-based,  

model-based, graph-based, learning-based, and entropy-based. Several texture analysis approaches based on 

global feature, include color Gabor filtering [6], Markov random field model [7]. Some of the effective local 

feature methods are color scale invariant feature transform (SIFT) [8], color pyramid of histograms of 

https://creativecommons.org/licenses/by-sa/4.0/
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oriented gradients (PHOG) [9], discriminative color descriptors (DCD) [10], three-dimensional adaptive sum 

and difference histograms (3D-ASDH) [11], color local binary pattern [12, 13] and affine wavelet [14]. 

Among of them, histogram of oriented gradients (HOG) [15] is successfully applied for image classification 

and object detection. Duong and Hoang [16] apply to extract rice seed images based on features coded in 

multiple color spaces using HOG descriptor. Phan et al. [17] evaluate and compare different local image 

descriptors (GIST, SIFT, morphological features) and classifier (random forest, KNN, SVM) for rice seed 

varieties identification. They showed that the random forest gives the best results for discriminating rice seed 

images. More recently, Vu et al. [18] propose to use morphological and geometrical features to classify three 

groups of rice seed varieties. 

In the past, many works propose to fuse features extracted from local image descriptors in order to 

enhance the performance. For example, Lurstwut and Pornpanomchai [19] recently present a method to 

evaluate rice seed germination images based on neural networks. They extract and fuse three features (color, 

morphology and texture) from rice seed images in order to evaluate the germination. Mebatsion et al. [20] 

combine fourier descriptors and three geometrical for automatic classification of non-touching cereal grains. 

Szczypiskietal [21] identify the barley varieties based on image attributes extracted from shape, color and 

texture of individual kernels. Chaugule and Mali [22] propose a new feature extraction approach for classifying 

paddy seeds based on seed color, shape, and texture from horizontal vertical and front rear angles. Kuoetal [23] 

recognize rice grains image by using the sparse-representation-based classification on the 30 varieties rice 

reproduced in a local greenhouse at Taiwan Li et al. [24] use the laser scanning system to acquire  

the three-dimensional point cloud of a rice seed. The length, width, thickness and shape of rice seed are 

computed based on the oriented bounding box.  Hoai et al. [25] introduce a comparative study of  

hand-crafted descriptors and convolutional neural networks (CNN) for rice seed images classification.  

However, for the real-world application, we recognize that HOG feature vectors extracted from 

images with random sizes have different numbers of dimension which is impossible to classify. The reason is 

because of the difference of the image size. Current solution for this problem is resize all the image set to one 

general size, but this method may cause problems like low resolution, information loss, etc.  

Another approach can be used to solve this problem is missing value imputation [26]. This process allows  

to replace the missing value data with substituted values. There have been many approaches developed for 

classifying the incomplete data. The first one is to remove the missing value patterns directly. However,  

this approach can only be realized when the missing data set is small. In the last few years, missing value 

imputation problem has attracted more attention by many researchers. The investigations cover a wide range 

of techniques, from statistical imputation techniques and machine learning-based imputation methods  

the statistical imputation methods use popular statistical methods such as the replacement by mean  

of the available data and regression models of missing values [5, 26, 27]. Lin and Tsai [28] review  

and analyze 111 journal papers published from 2006 to 2017 related to solve the problems of incomplete 

dataset including the choice of datasets, missing rates and missingness mechanisms, the missing value 

imputation techniques and evaluation metrics employed. 

In order to tackle the limit of HOG features extracted from random size images, we propose to apply 

missing values imputation method to gain the same dimensional feature vector of all images including KNN 

imputation, zero imputation and linear interpolation. The following of this paper is organized as follows. 

Section 2 introduces research methods which are HOG descriptor and missing values imputation methods. 

Section 3 then describes the experimental results. Finally, conclusion and future works are presented  

in section 4. 

 

 

2. RESEARCH METHOD 

In this section, we briefly present the histograms of oriented gradient which is used to extract 

features from rice seed images. Then, several missing value imputation methods are discussed.  

 

2.1.  Histograms of oriented gradient descriptor 

Histograms of oriented gradient (HOG) descriptor is widely used in object detection  

and classification, especially for person detection. It is first proposed by Dalal and Triggs [15]. Before 

computing HOG, several processing steps are adopted in order to reduce noise and increase the performance. 

Then, the gradient magnitude 𝑀(𝑥,𝑦) and angle of gradient 𝛼(𝑥,𝑦) vector at each pixel are computed in an  

8 × 8 pixels cell, this step is also called gradient computation. The gradient computation of pixel coordinate 

at (𝑥, 𝑦) is fomulated as follows: 

 

∆𝑥= |𝐺(𝑥 − 1, 𝑦) − 𝐺(𝑥 + 1, 𝑦)|         (1) 
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∆𝑦= |𝐺(𝑥, 𝑦 − 1) − 𝐺(𝑥, 𝑦 + 1)|         (2) 

 

𝑀(𝑥,𝑦) = √∆𝑥
2 + ∆𝑦

2                (3) 

 

𝛼(𝑥,𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
∆𝑦

∆𝑥
)             (4) 

 

where, grayscale value at coordinate (𝑥, 𝑦) is defined as 𝐺(𝑥, 𝑦), ∆𝑥 and ∆𝑦 are horizontal and vertical gradient.  

The dimension of HOG feature vector depends on the cell size and the number of bin orientation used  

for building the intervals of the angles of the gradient. 64 adopted gradient features are divided into  

9-bin histogram which is mainly used to build the intervals of the angles of the gradient from  

0 to 180 degrees for unsigned gradients (or from 0 to 360 degrees in case of signed gradients). So, there will 

be 20 degrees per bin. For each gradient feature, its magnitude will be added into the corresponding angle in 

the histogram. Finally, histogram from all block (each block contains 2×2 cells and has 50% overlap) are 

normalized and combined into a feature vector. This descriptor has been applied in various applications such 

as face recognition [29, 30], computer-aided diagnosis of tuberculosis [31], medical image analysis [32]  

and traffic analysis [33]. 

 

2.2.  Missing value imputation methods 

We propose to adopt three missing value imputation methods which is presented in the following. 

 KNN imputation (KNNI) is an imputation method based on the K-nearest neighbors’ algorithm by using 

the correlation structure of the data. The missingvalue is imputed by take the weighted mean of K nearest 

values [34, 35]. This method is mostly used than mean imputation and other methods because it can 

handle both categorical data and continuous data with multiple missing values and higher accuracy.  

Based on Branden and Verboven, we adopt K = 10. 

 Linear interpolation is a method of constructing new data point based on known data points. It is one  

of the simplest interpolation methods by taking two known data points to compute the missing value.  

The linear interpolation at the point 𝐴(𝑥𝐴, 𝑦𝐴) can be formulated as: 

  

𝑦𝐴 = 𝑦𝐵 + (𝑦𝐶 − 𝑦𝐵)
𝑥𝐴−𝑥𝐵

𝑥𝐶−𝑥𝐵
               (5)  

 

where, 𝐵(𝑥𝐵 , 𝑦𝐵) and C(𝑥𝐶 , 𝑦𝐶) are known points. 𝐴 is usually between 𝐵 and 𝐶. 

 Zero imputation is a simplest method that the missing values are substituted by zero. The aims of this 

method are to fully capture all axes of feature vector. 

 

 

3. RESULTS AND ANALYSIS   

3.1.  Dataset 

We use the benchmark rice seed (VNRICE) dataset which consists of six common Vietnam rice seed 

varieties, including BC-15, Huong Thom-1, Nep-87, Q-5, Thien Uu-8, Xi-23. These rice seeds are sampled 

from a rice seed production company where the rice varieties were grown and harvested following certain 

conditions for standard rice seeds production. All images are acquired by a CMOS image sensor color camera. 

Figure 1 shows example images from this dataset. Each column illustrates each category of VNRICE dataset. 

We see that this is really a challenge task even for human since the images look similar. The k-nearest neighbor 

(kNN) classifier associated with the L1-distance and the SVM classifier are considered in order to classify  

the rice seed images. The achievement of the classification is measured by the accuracy rate which was 

performed by split-sample validation with holdout sampling. A half of the data were used as the input  

of the classifier to build the training model while the rest were used to test it. Table 1 present the characteristic 

of VNRICE dataset via split-sample validation method. 
 

 

Table 1. Characteristic of VNRICE dataset 
Rice variety # Training set # Testing set Total images 

BC-15 917 917 1,834 
Huong Thom-1 1,048 1,048 2,096 

Nep-87 699 700 1,399 

Q-5 962 962 1,924 
Thien Uu-8 513 513 1,026 

Xi-23 1,113 1,113 2,226 
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Figure 1. Example images from six rice seed varieties 

 

 

3.2.  Experimental setup and results 

Most classifiers require the same dimension of input training data while the HOG feature vectors are 

mainly depended on the image size. The VNRICE dataset contains many images with different sizes. We first 

resize all the images into the same size before extracting the HOG features. The minimum and maximum of 

height (𝐻) and width (𝑊) of rice images from VNRICE are 𝑊𝑚𝑖𝑛 = 169, 𝐻𝑚𝑖𝑛 = 46, 𝑊𝑚𝑎𝑥 = 380, 𝐻𝑚𝑎𝑥 = 103. 

The classification results are presented in Table 2 by two classifiers. The second column represents the height 

and width of images after processing with random sizes. The third column shows the dimension of HOG 

features obtained corresponding with the resized image. The 6-NN classifier is considered since it gives the 

best performance in range of k ∈ {1,2,..,50}. 

 

 

Table 2. Accuracy on the VNRICE dataset with random selected images size 
No. Image  

size 

Dimension of  

HOG feature vector 

6-NN  

(%) 

SVM  

(%) 

1 46 × 46 576 72.73 74.72 

2 50 × 100 1,980 77.14 65.10 

3 46 × 169 2,880 76.29 69.63 
4 103 × 103 4,356 78.43 74.99 

5 46 × 380 6,624 74.85 77.70 

6 100 × 150 6,732 78.54 80.52 

7 77 × 229 7,776 77.91 81.88 

8 79 × 228 7,776 77.49 81.96 

9 103 × 169 7,920 80.08 82.08 
10 101 × 300 14,256 77.25 85.19 

11 169 × 169 14,400 79.62 83.58 

12 103 × 380 18,216 75.74 86.23 
13 120 × 400 24,696 75.51 86.95 

14 380 × 380 76,176 78.30 85.89 

 Average  
accuracy 

 
77.13 79.74 

 

 

We observe that the best accuracy is reached when we resize image to 103×169 for 6-NN classifier 

and 120×400 for SVM classifier. It is impossible to determine which size is optimal to transform after  

14 trials. Additionally, the dimension space of HOG features increases when the image size is bigger.  

In order to apply the missing value imputation, we extract the HOG features features from the original image 

with random sizes. The dimension of shortest and longest vector is 3,888 and 12,636 respectively. The three 

imputation methods presented in section 2 are then applied to fill the missing values. It is worth to note that 

the imputation stage is before the cross validation, so these methods are also in unsupervised learning 

context. All feature vectors are then assigned all missing values as NaN (not a number) from its original 

length to 12,636. 

For zero imputation, it just simply replaces all NaNs by 0. When using KNN imputation method,  

it requires at least one completed feature vector to fill the missing values. In case of linear interpolation 

method, at least two vectors are required in order to proceed. Figure 2 illustrates the accuracy of three 

imputation methods on VNRICE dataset by 6-NN classifier. The original dimension is based on the shortest 

vector with 3,888 features. The missing values are filled by 100 features each time. From this chart, we see 

that linear interpolation clearly outperforms than two other methods. Surprisingly, the zero imputation gives 

better results than 10-NN imputation method from 7,888 features. Furthermore, Tables 3 and 4 detail  

the classification performance of each method on three different dimensions. Linear interpolation method 
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with SVM classifier gives the best accuracy with 99.94%. We improve more than 20% compared to  

the average accuracy with random resized image in Table 2. 

 

 

 
 

Figure 2. Fill missing values methods experiment results chart 

 

 

Table 3. The detailed classification performance of three missing value  

imputation methods on three different dimensions 
Number 

of dimensions 
3,888 8,888 11,288 

Accuracy 

(%) 

10-NN imputation 76.97 82.53 83.06 

Zero imputation 76.97 83.85 83.82 
Linear interpolation 76.97 90.00 99.61 

 

 

Table 4. Comparison of three imputation method on random selected dimension 
Image 

size 

Fill missing 

values method 

Number of 

dimensions 

Accuracy (%) 

6-NN SVM 

Original image  

with random sizes 

Zero 

imputation 

9,000 83.47 83.60 

12,636 83.90 83.41 

15,000 83.65 83.14 
10-NN  

imputation 

9,000 82.34 83.93 

12,636 82.81 84.23 

Linear  
interpolation 

9,000 90.78 98.52 
11,340 99.66 99.94 

 

 

4. CONCLUSION 

In this paper, we propose to apply several missing value imputation methods to tackle the image size 

of HOG descriptor. By using three missing value imputation methods, the proposed approach is efficient by 

clearly improving the classification performance on VNRICE image dataset. The future of this work is now 

continued to apply the proposed approach to other types of textual data. Since the filled value might be 

noised and irrelevant, we further propose to apply feature selection method to remove the noised features 

from imputation method. 
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