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Abstract 
The pairwise alignment (PA) algorithm is widely used in bioinformatics to analyze biological 

sequence. With the advance of sequencer technology, a massive amount of DNA fragments are 
sequenced much quicker and cheaper. Thus, the alignment algorithm needs to be parallelized to be able 
to align them in a shorter time. Many previous researches have parallelized PA algorithm using various 
data partitioning schema, but it is unknown which one is the best. The data partitioning schema is 
important for parallel PA performance, because this algorithm uses dynamic programming technique that 
needs intense inter-thread communication. In this paper, we compared four partitioning schemas to find 
the best performing one on shared memory system. Those schemas are: blocked columnwise, rowwise, 
antidiagonal, and blocked columnwise with manual scheduling and loop unrolling. The testing is done on 
quad-core processor using DNA sequence of 1000 to 16000 bp as the input. The blocked columnwise with 
manual scheduling and loop unrolling schema gave the best performance of 89% efficiency. The 
synchronization time is minimized to get the best performance possible.This result provided high 
performance parallel PA with fine-grain parallelism that can be used further to develop parallels multiple 
sequence alignment (MSA). 
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1. Introduction 

The pairwise alignment (PA) algorithm is used in bioinformatics to align a pair of DNA or 
protein sequences of certain organism, in order to determine the similarity between them [1]. It 
uses dynamic programming technique to get the best alignment result with complexity of O (n2), 
where n is the sequences' length [2]. It is the foundation of the multiple sequence alignment 
(MSA) algorithm to align more than two sequences altogether. Other than that, it is also used for 
database sequence searching to find the most similar sequence to the one that is given [3]. 

The next-generation DNA sequencer technology nowadays can produce a lot of 
sequence data, up to hundreds of billion base pair (bp) in one run [5]. This big data needs faster 
processing, so the algorithm needs to be parallelized to speed up the alignment process. Many 
researches have parallelized MSA, such as Praline [6], ClustalW-MPI [7], MT-ClustalW [8], 
MAFFT [9], and star algorithm [10]. But only a few that have parallelized PA, such as ParAlign 
[11] and CudaSW [12]. 

The data dependency of PA is high due to its dynamic programming nature. Because of 
this, the data partitioning schema on parallel PA algorithm affects the performance greatly. 
Several data partitioning schemas that have been applied for PA parallelization were: 
columnwise [13], diagonal [11], rowwise [14], blocked columnwise [15], and blocked anti-
diagonal [16]. Unfortunately, the best partitioning schema on shared memory system is not yet 
known. 

In this paper, we parallelized PA algorithm on shared memory system using four 
different data partitioning schemas: blocked columnwise, rowwise, antidiagonal, and revised 
blocked columnwise. We tested and revised each schema to obtain the highest performance 
possible of parallel PA algorithm. 
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2. Research Method 
2.1. Implementation of Sequential Pairwise Alignment Algorithm 

The first step is to implement PA algorithm in sequential manner using global alignment 
approach. The longest common sequence (LCS) algorithm [17] is used as a basis to develop 
the sequential PA algorithm. The LCS itself is a global alignment algorithm that is more known 
as Needleman–Wunsch algorithm. The alignment score is set as follow: the score is 
incremented by one if both DNA residues are match; else the score is substracted by one. The 
gap penalty is applied by initializing the score of zeroth row and zeroth column multiplied by its 
distance from starting point (upper-left corner).  

An example of alignment table calculation using gap penalty of -3 can be seen on  
Figure 1. This table aligns AGTCA and ATGA sequence resulting in alignment score of 

1 (the value of right-bottom corner) and alignment result as follows. 
 

AGTCA 
A-TGA 

 
This algorithm correctness is verified by aligning two sequences from BAliBASE DNA 

sequence alignment benchmark [18]. These sequences are Saccharomyces cereviseae GlyRS1 
(SYG_YEAST) and Schizosaccharomyces pombe GlyRS (SYG_SCHPO). Our alignment result 
is compared with the result of ClustalW 2.1 program using default option. 

 

 
 

Figure 1. Global alignment for sequence AGTCA and ATGA 
 
 
2.2. Implementation of Parallel Pairwise Alignment Algorithm 

The second step is to develop the parallel version of this algorithm and verify its 
correctness. Parallelization is implemented using OpenMP, because it is much easier to 
implement rather than by using processor instruction directly [11] or by using Pthreads [8],[9]. 
OpenMP is a library to parallellize sequential program into multithreaded on a shared memory 
system [19]. Four partitioning schemas were tested: blocked columnwise, rowwise, antidiagonal, 
and blocked columnwise with manual scheduling and loop unrolling. The correctness of parallel 
PA is verified by comparing its output with the sequential one to satisfy the sequential 
consistency [20]. 

 
 

2.2.1. Blocked columnwise 
The blocked columnwise partitioning schema divides the alignment table per block of 

columns [15]. The -th thread ( ) gets its part of a block from column  to , 

where  is the number of columns and  is the number of threads. For example, if the number of 
columns was 9 and the number of threads was 3, then  would get its part of a block of column 
1–3. This partitioning schema is illustrated on  

Figure 2. 
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2.2.2. Rowwise 
 The rowwise partitoning schema divides the alignment table per row [14]. The -th 
thread ( ) gets its part of -th row, where ,  is the number of 

rows, and  is the number of threads. For example, if the number of rows was 6 and the number 
of threads was 3, then  would get its part of 1st and 4th row. This partitioning schema is 
illustrated on Figure 3. 

 
 

 
 
Figure 2. Blocked columnwise     Figure 3. Rowwise  

 

 

 
 

Figure 4. Antidiagonal 
 
 
2.2.3. Antidiagonal 

The antidiagonal partitioning schema divides the alignment table per antidiagonal, 
crossing from bottom-left to top-right [16]. The -th thread ( ) gets its part of -th 
antidiagonal, where ,  is the number of rows,  is the number of 

columns, and  is the number of threads. For example, if the number of rows was 6, the number 
of columns was 9, and the number of threads was 3, then  would get its part of 1st, 4th, 7th, 
10th, and 13th antidiagonal. This partitioning schema is illustrated on  

Figure 4. 
 
 
2.2.4. Blocked columnwise with manual scheduling and loop unrolling 

The first blocked columnwise schema is not optimal because the usage of OpenMP 
parallel for construct, that is simple but less flexible. To overcome this shortcoming, the data 
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partitioning mechanism needs to be done manually. The next revision is by applying loop 
unrolling technique, i.e. merging several loop iterations into one. This technique will reduce 
processor instruction and increase cache locality [21],[22].  
 
 
2.3. Performance Comparison 

The final step is to test the performance of each data partitioning schemas. Several 
DNA sequence data is generated randomly with varying length of 1000, 2000, 4000, 8000, and 
16000 bp as the input. The alignment table calculation is timed using omp_get_wtime function. 
This process is repeated ten times for each schemas and sequence lengths, and then take the 
average as the final execution time. The final execution time is compared to get the best 
performing data partitioning schema.  

The test is conducted using Intel Core i5-3470 processor that has 4 cores, Debian 
GNU/Linux 64-bit operating system, and GCC 4.8.1 compiler that supports OpenMP 3.1 
specification. 

 
 

3. Results and Analysis 
3.1. Implementation of Sequential Pairwise Alignment Algorithm 

The pseudocode for PA algorithm is presented as a procedure called PAIRWISE-ALIGN, 
which takes two sequences of X and Y as the parameters. The score of each cell is calculated 
by choosing the maximum score between three possible alignment directions: diagonal, up, and 
left. The diagonal score is calculated by the help of SIMILARITY procedure: if the DNA residue is 
equal, the score is added by MATCH score, else substracted by MISMATCH score. The up and left 
score are calculated by substracting it by linear GAP penalty score.  
 
MATCH    = +1 
MISMATCH = -1 
GAP      = -3 
 
SIMILARITY(a, b) 
1   if a == b 
2       return MATCH 
3   else  
4       return MISMATCH 
 
PAIRWISE-ALIGN(X, Y) 
   m = X.length 
   n = Y.length 
   let C[0..m, 0..n] be a new table 
   for i = 0 to m 
   Ci,0 = i.GAP 
   for j = 0 to n 
   C0,j = j.GAP 
  
   for i = 1 to m 
      for j = 1 to n 
                   ┌ diag = Ci-1,j-1 + SIMILARITY(Xi, Yj) 
          Ci,j = MAX ├   up = Ci-1,j + GAP 
                   └ left = Ci,j-1 + GAP 
  return C 
 

In general, our PA algorithm has been able to align two sequences correctly, whereas 
ClustalW produces alignment with more contiguous gap. This is caused by the lack of gap 
extension feature in our PA algorithm. The comparison of alignment result for SYG_YEAST and 
SYG_SCHPO between ClustalW and our PA is as follows. Based on this result, our simple PA 
algorithm has been implemented correctly and will become our basis to develop the parallel 
version of PA algorithm. 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 13, No. 2, June 2015 :  694 – 702 

698

> ClustalW 
SYG_YEAST   
ATGAGTGTAGAAGATATCAAGAAGGCTAGAGCCGCTGTTCCATTTAACAGAGAACAGCTA.
.. 
SYG_SCHPO   ATGA---CAGAAGTT-TCA--AAGGC---AGCAGCT------
TTTGATCGAACTCAGTTC... 
            ****    ***** * ***  *****   *** ***      *** *  **   *** * 
> PairwiseAlign 
SYG_YEAST   
ATGAGTGTAGAAGATATCAAGAAGGCTAGAGCCGCTGTTCCATTTAACAGAGAACAGCTA
... 
SYG_SCHPO   ATGA---CAGAAG-TTTC-A-AAGGC---AGCAGCT-TTTGATCGAACTCAGTTC-
G--A... 
            ****    ***** * ** * *****   *** *** **  **  ***  **  * *  * 
 
 
3.2. Implementation of Parallel Pairwise Alignment Algorithm 
 
3.2.1. Blocked columnwise 

The synchronization time that is caused by inter-thread data dependency for blocked 
columnwise schema is low. Only the first cell of each row (asterisk sign on  

Figure 2) that must be checked whether its left cell has been filled by another thread or 
not yet?. If a thread runs slower, then the next thread must wait until the former thread finished 
one row of its part.  

The synchronization could be done only for m × t times, but because of OpenMP 
limitation the synchronization still be done for m × n times. The usage of OpenMP parallel for 
directive although simpler but less flexible, so the checking is still done at each cell. Thus, the 
parallel algorithm performance becomes less efficient. Below is the pseudocode to parallelize 
PA using this schema. 

 
   for i = 1 to m 
       parallel for j = 1 to n    // schedule(static) 
           while Ci,j-1 == null 
               wait 
                    ┌ diag = Ci-1,j-1 + SIMILARITY(Xi, Yj) 
           Ci,j = MAX ├   up = Ci-1,j + GAP 
                    └ left = Ci,j-1 + GAP 

 
The result yields up to 3.00 times faster execution time using blocked columnwise 

schema on 4 threads. Thus, the efficiency—speedup per number of threads—of this schema is 
75%. 
 
 
3.2.2. Rowwise 

The synchronization time for rowwise schema is high, it is done for m × n times. Every 
single cell must check whether its upper cell has been filled by another thread or not yet. 
Despite of that, the parallel algorithm performance of this schema does not become worse. This 
is caused by the nature of shared memory system, i.e. no data movement involved between 
threads. Below is the pseudocode to parallelize PA using this schema. 
 
   parallel for i = 1 to m               // schedule(static,1) 
       for j = 1 to n 
           while Ci-1,j == null 
               wait 
                    ┌ diag = Ci-1,j-1 + SIMILARITY(Xi, Yj) 
           Ci,j = MAX ├   up = Ci-1,j + GAP 
                    └ left = Ci,j-1 + GAP 
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Unexpectedly, the result of rowwise schema is better than blocked columnwise schema. 
It yields up to 3.18 times faster execution time using this schema on 4 threads. Thus, the 
efficiency of this schema is 80%. 
 
 
3.2.3. Antidiagonal 

The synchronization time for antidiagonal schema is very high, two times of the rowwise 
schema, that is 2 × m × n times. Every single cell must check whether its left and upper cells 
have been filled by another thread or not yet. Moreover, the non-linear memory access pattern 
of this schema makes the parallel algorithm performance much worse. Below is the pseudocode 
to parallelize PA using this schema. 

 
  parallel for k = 1 to m+n             // schedule(static,1) 
      // upper diagonal 
      if k < m 
          for i = k downto 1, j = 1 to n 
              while Ci,j-1 == null or Ci-1,j == null 
                  wait 
                       ┌ diag = Ci-1,j-1 + SIMILARITY(Xi, Yj) 
              Ci,j = MAX ├   up = Ci-1,j + GAP 
                       └ left = Ci,j-1 + GAP 
      // lower diagonal 
      elseif k > m 
          for i = m downto 1, j = k-m to n 
              while Ci,j-1 == null or Ci-1,j == null 
                  wait 
                       ┌ diag = Ci-1,j-1 + SIMILARITY(Xi, Yj) 
              Ci,j = MAX ├   up = Ci-1,j + GAP 
                       └ left = Ci,j-1 + GAP 
 

As expected, the result of antidiagonal schema is the worst among the others. It yields 
up to 1.44 times faster execution time using this schema on 4 threads. Thus, the efficiency of 
this schema is only 36%. 
 
 
3.2.4. Blocked columnwise with manual scheduling and loop unrolling 
3.2.4.1. Manual scheduling 

The loop scheduling is done manually using block decomposition method [23] as a 
substitute for OpenMP parallel for construct. Therefore, the synchronization can be done for 
only m × t times, that is only once at first cell of each row (asterisk sign on  

Figure 2). This manual scheduling makes blocked columnwise schema more efficient. 
Below is the pseudocode of blocked columnwise schema that has been revised using manual 
scheduling. 

 
  parallel 
      id = Thread.id 
      t  = Thread.size  
      jfirst = id*n/t  + 1 
      jlast  = (id+1)*n/t  
  
 
3.2.4.2. Loop unrolling 

The loop for each row will be unrolled by factor of two, i.e. iteration for two rows will be 
merged as one. This is done by making two loop copy for Ci,j and Ci+1,j and also using increment 
of two for each iteration. A checking mechanism is added in the middle of the loop to check 
whether the last row has been reached or not. This is necessary to anticipate when the number 
of rows (m) is not divisible by the unroll factor.  
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This loop unrolling technique by factor of two reduces the synchronization time to half, 
that is ½ × m × t. Below is the continued pseudocode of blocked columnwise schema that has 
been revised using loop unrolling by factor of two. 

 
      for i = 1 to m by 2 
          while Ci,jfirst-1 == null 
              wait 
          for j = jfirst to jlast 
                       ┌ diag = Ci-1,j-1 + SIMILARITY(Xi, Yj) 
              Ci,j = MAX ├   up = Ci-1,j + GAP 
                       └ left = Ci,j-1 + GAP 
              if i == m 
                  break 
                        ┌ diag = Ci,j-1 + SIMILARITY(Xi+1, Yj) 
              Ci+1,j = MAX ├   up = Ci,j + GAP 
                        └ left = Ci+1,j-1 + GAP 
 

The result of the blocked columnwise schema with manual scheduling and loop 
unrolling by factor of two yields up to 3.54 times faster execution time on 4 threads. Thus, the 
efficiency of this schema is 89%. 
 
 
3.2.5. Verification of Parallel PA Algorithm Correctness 

All version of the parallel PA above have been tested for sequential consistency by 
comparing their outputs with the sequential PA algorithm. All of them produced the same output, 
therefore the parallel algorithm implementation are 100% consistent with sequential algorithm. 
This verification is important because incorrect implementation of multithreaded program leads 
to race condition that result in inconsistent output. 
 
 
3.3. Performance Comparison 

The antidiagonal schema yields the worst performance with efficiency of 36%. It is 
understandable because of its non-linear memory access pattern that causing a lot of cache 
misses. 

 The rowwise schema yields better performance than blocked columnwise schema with 
efficiency of 80% and 75% respectively. This result is beyond our expectation, because rowwise 
schema has more inter-thread data dependency. The main reason of this is because the 
implemention is on shared memory system, where data movement between threads is non-
existent, i.e. each thread is accessing the same shared memory space. The result would be 
different if it is implemented on distributed memory system. Another reason is that the first 
blocked columnwise schema above is not optimal yet.  

The second blocked columnwise schema that has been revised yields the best 
performance with efficiency of 89% on 4 threads. The loop unrolling technique (merging two row 
iterations into one) on this schema has been proven to reduce synchronization time, hence 
increasing the computation portion of the parallel algorithm. The comparison of those data 
partitioning schemas that have been tested is shown on Figure 5. 
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Figure 5. Performance comparison of antidiagonal (AD), blocked columnwise (BC), rowwise (R), 

and revised blocked columnwise (BC2) on 4 threads 
 
 

4. Conclusion 
The revised blocked columnwise schema using manual scheduling and loop unrolling 

yields the highest performance of 89% efficiency. The manual scheduling makes the blocked 
columnwise schema more efficient and the loop unrolling technique halves the synchronization 
time. In shared memory system, the performance is defined by the portion of synchronization 
time. The synchronization time must be minimized to maximize the performance. 

We have presented parallel PA algorithm with high performance and fine-grain 
parallelism that could be used further as a component to develop parallel MSA algorithm on 
hybrid shared–distributed memory system using OpenMP and message-passing interface 
(MPI). 
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