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 The main goal of this paper is to formulate power system state estimation 

(SE) problem as a constrained nonlinear programming problem with various 

constraints and boundary limits on the state variables. SE forms the heart of 

entire real time control of any power system. In real time environment,  

the state estimator consists of various modules like observability analysis, 

network topology processing, SE and bad data processing. The SE problem 

formulated in this work is solved using teaching leaning-based  

optimization (TLBO) technique. Difference between the proposed TLBO and  

the conventional optimization algorithms is that TLBO gives global optimum 

solution for the present problem. To show the suitability of TLBO for solving 

SE problem, IEEE 14 bus test system has been selected in this work.  

The results obtained with TLBO are also compared with conventional 

weighted least square (WLS) technique and evolutionary based particle 

swarm optimization (PSO) technique. 
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1. INTRODUCTION  

In recent years, several electrical utilities around the globe are developng different knowledge-based 

applications to inrgrate in the operation of control centers. These methods must be capable of meeting all  

the important tasks of efficient control system such as numerical stability, computation efficiency, and 

implementation complexity. Load dispatcher in power system control centre is required to know at all times the 

value of voltages, currents and power throughout the network. Some of the values such as bus voltage 

magnitude and power line flows can be measured within a certain degree of variance [1]. Difficulties are further 

encountered when some of the data is missing either due to meter being out of order or missing transmission. 

State estimation (SE) is considered as the process of assigning values to unknown system state 

variables, based on the measurements obtained from that system. It utilizes the available redundancy, for 

systematic cross checking of the measurements, to approximate the states as well as generate information in 

respect of missing observations or gross measurement errors called bad data. The prerequisite for state 

estimation is that system must be observable with available measurements. States of a power system can also 

be computed with the load flow calculations, based on equal number of measurements, assuming them to be 

accurate [2]. However, the implicit error will lead to imperfect data base and prejudice the security 

https://creativecommons.org/licenses/by-sa/4.0/
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monitoring. Whereas, the state estimator is considered as a data processing technique for use on a digital 

computer to transform measurement vector into an estimate of system’s states, which is not only accurate but 

best reliable also. As the state estimator is required to cater for the needs of online application, computation 

speed plays a vital role especially when systems are large. Alternate methods of SE are being reported to 

optimize on computational efficiency, numerical stability, and complexity in implementation [3]. 

A hybrid algorithm for solving the SE problem by using weighted least square, weighted least 

absolute value and particle swarm optimization (PSO) methods is presented in [4]. In [5] uses unscented 

Kalman filter and extended Kalman filter to estimate power system states by a phasor measurement unit 

(PMU). A comparative analysis of SE in rectangular and polar coordinates has been proposed in [6]. A SE 

approach for a distribution system considering the condition variables, i.e., node voltage and angle of feeder 

is proposed in [7]. In [8] presents approach for the implementation of reactive power and/or active power 

measurements in the SE. An agent-based approach for dynamic SE of power system by taking the advantages 

of hybrid measurement data is presented in [9]. A hybrid SE method with genetic algorithm and cellular 

computational network is proposed in [10] to overcome the dimensionality problem of SE. 

The application of PSO for solving SE problem within a power system is proposed in [11].  

A non-iterative method which has no issues with convergence and doesn't need starting guess is used in [12] 

for solving the SE problem. A robust and reliable least winsorized square estimator for static SE is proposed 

in [13]. In [14] proposes an extended Kalman filter based dynamic SE by using PMU data. A SE method 

including equality constraints to model zero injections and voltage dependent loads is proposed in [15].  

A methodology by including the uncertainty in SE is proposed in [16]. An overview of power system SE 

control by load flow program input data is presented in [17]. A SE approach by considering the measured 

data obtained from synchronized and unsynchronized sensors is presented in [18]. 

This paper solves the SE problem of power system as a constrained nonlinear programming problem 

with various constraints and boundary limits on state variables. The objective of SE is to find best estimated 

state variables for the considered power system by optimizing all the errors in measurements. This problem is 

solved by enforcing the equality and limit constraints by using teaching-learning based optimization (TLBO) 

technique. TLBO is formulated by considering two methods of learning (i.e., teacher and learner phases) in a 

classroom. Teacher phase consists the interaction between learner and teacher, whereas learners phase consists 

the interaction among the learners. This paper is presented as follows. The problem formulation of SE is 

described in section 2. The solution algorithm, i.e., TLBO algorithm is presented in section 3. Results and 

discussions on standard IEEE 14 bus system are presented in section 4. conclusions are presented in section 5. 
 

 

2. PROBLEM FORMULATION 

Load flow calculations indeed are an inevitable tool for off-line studies and planning exercises, but 

incomplete and erroneous measurement is a real time proposition. Solution for such situation has been 

provided by static state estimator, which ignores the slow changes in the system and utilizes redundant set of 

measurements for cross checking and approximating the most reliable estimates of system state [19]. State 

estimator should estimate the system states as quickly as possible, but conventional computer-based methods 

are almost reaching a limit in terms of speed. Figure 1 depicts the description of state estimator/SE. In this 

figure, m is number of measurements, n is number of state variables. 

 

 
Measurement Uncertainties

State Estimator
m measurements 

(m>n)
n State Variables

Network Parameters
 

 

Figure 1. Schematic diagram of state estimator 

 

 

The state vector (x) has voltage magnitudes and angles at buses [20]. Power system with N number 

of buses can be expressed as x=[δ, V]T with size n=2N-1, includes (N-1) bus voltage angles (δi). General 

static SE model is expressed by using [21], 

 

𝑧 = ℎ(𝑥) + 𝜖  (1)  
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where z is all measurements, and h(.) represents nonlinear measurement functions. Here, meta-heuristic based 

optimization technique is used for solving nonlinear programming problem [22]. It is often desirable to put 

different weightings on different components of measurements as some of the measurements may be more 

reliable and accurate than the others and should be given more importance. In power network there are some 

nodes with zero injections i.e., switching substations as constant load. Such buses are called constrained buses 

and can be included in the cost function by assigning large weighting factors [23]. The estimate of x can be 

obtained by minimizing the function of weighted least square (WLS), and it is expressed as [24], 

 

𝐽(𝑥) = [𝑧 − ℎ(𝑥)]𝑇𝜔[𝑧 − ℎ(𝑥)] (2) 

 

where 𝜔 is a diagonal matrix. The estimate is solved by an iterative method, which determines corrections 

(Δx) by solving the following function [25], 

 

𝐺(𝑥)∆𝑥 =  𝐻(𝑥)𝑇𝜔∆𝑧 (3) 

 

where Δz = z-h(x), and H(x)=
𝜕ℎ(𝑥)

𝜕𝑥
=Jacobian matrix. 

 

𝐺(𝑥) =  𝐻(𝑥)𝑇𝜔𝐻(𝑥)                                                                                     (4) 

 

where x=xk at the kth iteration. In view of fact that power systems nowadays are becoming more openly 

accessible; maneuverability of their power flow continues to be a general concern in the coming decade [26]. 

 

2.1.  SE: objective function 

The objective of SE is to minimize the weighted squared error between calculated and measured 

quantities. Where 𝑅−1 is the weights of individual measurements, and it is solved subject to following 

inequality and equality constraints and it is expressed as, 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒        
1

2
[𝑧 − ℎ(𝑥)]𝑇𝑅−1[𝑧 − ℎ(𝑥)] (5) 

 

2.2.  Equality constraints 

These are the active and reactive power balance equations at all buses, which can be expressed as [27], 

 

𝑃𝑖 = ∑ 𝑉𝑖𝑉𝑚(𝐺𝑖𝑚𝑐𝑜𝑠𝛿𝑖𝑚 + 𝐵𝑖𝑚𝑠𝑖𝑛𝛿𝑖𝑚) = 0                                       𝑁
𝑚=1  (6) 

 

𝑄𝑖 = ∑ 𝑉𝑖𝑉𝑚(𝐺𝑖𝑚𝑠𝑖𝑛𝛿𝑖𝑚 − 𝐵𝑖𝑚𝑐𝑜𝑠𝛿𝑖𝑚) = 0                                       𝑁
𝑚=1  (7) 

 

2.3.    Inequality constraints 

2.3.1. Voltage constraints 

They include minimum and maximum limits on bus voltage magnitudes, and they are expressed as, 

 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥  (8) 

 

2.3.2. Phase angle constraints 

At each bus, the phase angle must be between minimum and maximum limits, and they are 

expressed as, 

 

𝛿𝑖
𝑚𝑖𝑛 ≤ 𝛿𝑖 ≤ 𝛿𝑖

𝑚𝑎𝑥 (9) 

 

2.3.3. Line flow constraints 

This constraint can be expressed as [28], 

 

𝑃𝑙𝑖
𝑚𝑎𝑥 ≥ 𝑃𝑙𝑖  (10) 

 

2.3.4. Generator reactive power constrsint 

The reactive power limits of generator are expressed as, 

 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥 (11) 
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3. TLBO ALGORITHM 

The SE problem proposed in this paper is solved by using TLBO. It is a population based  

meta-heuristic technique developed to get global solution. TLBO takes the advantage of two approaches of 

learning in a classroom. First method is through the interaction between the learner and the teacher, and this 

is termed as teacher phase. The second one is through the interaction among learners, and this is termed as 

learner phase [29]. The flowchart of TLBO is depicted in Figure 2. The reader may refer references [29, 30] 

for more details of TLBO algorithm. 
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Figure 2. Flow chart of TLBO algorithm 

 

 

4. SIMULATION RESULT AND DISCUSSION 

In this work, standard IEEE 14 bus [31] system is considered for solving the proposed SE problem. 

For this problem, the voltage magnitudes at each bus and the phase angles at all buses except reference bus 

are selected as the state variables. Load flow solution is used for obtaining the true values, and measurements 

were made by adding errors to the true values. Zero power injection at nodes with no generation and no  

load are considered as equality constraints. Proposed SE problem is solved by using TLBO algorithm.  

The data required for solving the SE problem on standard IEEE 14 bus system is taken from [31].  

The measurement set data of IEEE 14 bus system is depicted in Figure 3 and in Table 1. The bus numbers 5 

and 7 are considered as zero injection buses. In this test system, total 32 measurements are considered, in that 

12 are considered as the bus injection type measurements and 20 are considered as the line flow type 

measurements [32]. With this data, the SE problem is solved by using TLBO algorithm. 

The estimated state variables by solving the SE with equality constraints are presented in Table 2. 

Errors of estimate values (i.e., ∆P and ∆Q) obtained by solving the SE using TLBO are reported in Table 3. 

The errors of estimated values obtained using the TLBO algorithm are also compared with WLS technique 

and the evolutionary based PSO algorithm. From the obtained results, it is clear that by solving SE problem 

by using teaching-learning based optimization (TLBO) has better results when compared to conventional 

WLS technique and the evolutionary based PSO algorithm. 



TELKOMNIKA Telecommun Comput El Control   

 

Power System state estimation using teaching learning-based optimization … (Surender Reddy Salkuti) 

2129 

~

~ ~

C

3
2

5
4

7

8

9
6

101112

1413

1

10

8

1
15

16

17

20

13

19

12
11

9

14

64

7

3

52

1

18

Line flow

zero injections

injection measurement

 
 

Figure 3. Measurement data set for IEEE 14 bus system 
 

 

Table 1. Measurement data set for IEEE 14 bus system 
Measurements Measurement Type Buses P (MW) Q (MW) 

z1 Injection 1 224.62 -17.22 

z2 Injection 2 18.23 25.35 
z3 Injection 3 -94.53 4.26 

z4 Injection 4 -47.83 7.04 

z5 Injection 6 -11.29 3.44 
z6 Injection 8 0.00 17.33 

z7 Injection 9 -29.55 2.34 

z8 Injection 10 -9.22 -6.35 
z9 Injection 11 -3.27 -1.25 

z10 Injection 12 -6.1 -1.6 

z11 Injection 13 -13.66 -6.05 
z12 Injection 14 -14.87 -4.89 

z13 Line flow 1-2 151.96 -16.28 

z14 Line flow 1-5 72.65 4.79 
z15 Line flow 2-3 72.43 6.03 

z16 Line flow 2-4 54.47 -1.23 

z17 Line flow 2-5 39.26 0.99 
z18 Line flow 3-4 -24.37 3.6 

z19 Line flow 4-5 -63.84 13.9 

z20 Line flow 4-7 28.06 -19.72 
z21 Line flow 4-9 16.07 -5.79 

z22 Line flow 5-6 44.4 -17.94 

z23 Line flow 6-11 7.37 3.5 
z24 Line flow 6-12 7.84 2.56 

z25 Line flow 6-13 17.91 7.45 

z26 Line flow 7-8 0.00 -16.88 
z27 Line flow 7-9 28.05 7.14 

z28 Line flow 9-10 5.21 4.28 

z29 Line flow 9-14 9.36 3.48 
z30 Line flow 10-11 -4.02 -2.1 

z31 Line flow 12-13 1.66 0.8 

z32 Line flow 13-14 5.68 1.77 
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Table 2. Estimated state variables after solving the SE for IEEE 14 bus system 
Bus No. V δ Bus No. V δ Bus No. V δ 

1 1.060 0 6 1.071 -12.68 11 1.058 -13.167 

2 1.045 -4.731 7 1.062 -12.080 12 1.057 -13.296 
3 1.010 -12.309 8 1.090 -11.922 13 1.051 -13.443 

4 1.022 -9.615 9 1.055 -13.481 14 1.037 -14.258 

5 1.024 -8.046 10 1.051 -13.553    

 

 

Table 3. Errors of estimated values obtained by using WLS technique, PSO and AFSOA 

Measurements 
SE Using WLS SE Using PSO SE Using TLBO 

∆P ∆Q ∆P ∆Q ∆P ∆Q 

z1 0.0037 -0.0019 0.0052 -0.0034 0.0061 -0.0046 
z2 -0.0018 -0.0061 0.0019 -0.0069 0.0042 -0.0066 

z3 -0.0028 0.0028 0.0025 -0.0028 0.0018 -0.0025 

z4 -0.0014 0.0024 -0.0009 0.0025 0.0017 0.0023 
z5 -0.0016 -0.0022 -0.0015 -0.0034 -0.0017 -0.0051 

z6 -0.0012 -0.0081 -0.0015 -0.0039 -0.0018 0.0021 

z7 -0.0082 0.0126 -0.0056 0.0092 -0.0017 -0.0014 

z8 -0.0028 -0.0155 -0.0030 0.0010 -0.0011 0.0012 

z9 0.0019 0.0657 -0.0014 0.0021 -0.0016 0.0022 

z10 0.0001 0.0509 0.0001 0.0052 -0.0021 0.0055 
z11 0.0083 0.0852 0.0072 0.0012 -0.0017 0.0016 

z12 -0.0405 -0.0067 -0.0105 -0.0050 -0.0023 0.0066 

z13 0.0329 -0.0087 0.0311 -0.0016 0.0275 -0.0025 
z14 0.0161 -0.0433 0.0253 -0.0015 0.0329 -0.0021 

z15 0.0173 -0.0147 0.0114 -0.0012 0.0063 -0.0016 

z16 0.0128 -0.0046 0.0196 -0.0035 0.0316 -0.0037 
z17 0.0085 -0.0054 0.0082 -0.0061 0.0305 -0.0082 

z18 -0.0058 0.0013 0.0315 -0.0047 0.0237 -0.0057 

z19 -0.0018 0.0129 -0.0034 0.0135 -0.0063 -0.0138 
z20 0.0096 -0.0276 0.0089 0.0019 0.0522 0.0021 

z21 0.0525 -0.0058 0.0452 0.0010 0.0256 0.0015 

z22 0.0148 0.0499 0.0511 0.0053 0.0666 0.0095 
z23 -0.0012 -0.0057 0.0067 -0.0025 0.0086 -0.0012 

z24 0.0003 -0.0046 0.0032 -0.0019 0.0173 -0.0027 

z25 -0.0001 -0.0086 0.0016 -0.0052 0.0239 -0.0045 
z26 0.0126 0.0074 0.0151 -0.0017 0.0181 -0.0061 

z27 0.0083 0.0016 0.0092 0.0008 0.0308 -0.0008 

z28 0.0243 0.0081 0.0195 0.0079 0.0194 -0.0019 
z29 0.0298 0.0043 0.0211 0.0042 0.0204 -0.0043 

z30 0.0047 -0.0075 0.0059 -0.0019 0.0079 -0.0011 

z31 0.0022 0.0032 0.0032 0.0026 -0.0034 0.0023 
z32 0.0011 0.0041 0.0010 0.0037 0.0029 -0.0014 

 

 

5. CONCLUSIONS 

Power system state estimation (SE) problem in this paper is solved as a constrained nonlinear 

programming problem with various constraints and boundary limits on state variables. The proposed power 

system SE problem is solved by using teaching leaning based optimization (TLBO) technique. The major 

difference between TLBO and conventional optimization methods is that TLBO gives global optimal 

solution for this proposed problem. The effectiveness and suitability of TLBO algorithm for solving SE 

problem has been examined on IEEE 14 bus system. Results obtained with TLBO algorithm are also 

compared with conventional WLS technique and evolutionary based PSO algorithm. 
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