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 In many applications, Image de-noising and improvement represent essential 

processes in presence of colored noise such that in underwater. Power 

spectral density of the noise is changeable within a definite frequency range, 

and autocorrelation noise function is does not like delta function. So, noise  
in underwater is characterized as colored noise. In this paper, a novel image 

de-noising method is proposed using multi-level noise power estimation  

in discrete wavelet transform with different basis functions. Peak signal to 

noise ratio (PSNR) and mean squared error represented performance 
measures that the results of this study depend on it. The results of various 

bases of wavelet such as: Daubechies (db), biorthogonal (bior.) and symlet 

(sym.), show that denoising process that uses in this method produces extra 

prominent images and improved values of PSNR than other methods. 
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1. INTRODUCTION 

Efficient underwater image denoising is a critical aspect for many applications [1]. Underwater 

images present two main problems: light scattering that alters light path direction and color change.  

The basic processes in underwater light propagation are scattering and absorption. Underwater  

noise generally originates from man-made (e.g. shipping and machinery sounds) and natural (e.g. wind, 

seismic and rain) sources. Underwater noise reduces image quality [1, 2], and denoising has to be applied to 

improve it [3]. Underwater sound attenuation is dependent on frequency. Consequently, power spectral 

density (PSD) for ambient noise is defined as colored [4].  

Many image denoising techniques are described in [5-9]. A method based on adaptive wavelet with 

adaptive threshold selection was suggested in [5] to overcome the underwater image denoising problem. 

Assume that an underwater image has a small signal-to-noise ratio (SNR) and image quality is poor.  

The simulation results show that the proposed method successfully eliminates noise, improves the peak SNR 

(PSNR) output of the image and produces a high-quality image. Light is repeatedly deflected and reflected by 

existing particles in the water due to the light scattering phenomenon, which degrades the visibility and 

contrast of underwater images. Therefore, underwater images exhibit poor quality. To process images further, 

wavelet transform and Weber’s law were proposed in [8]. Firstly, several pre-processing methodologies were 

conducted prior to wavelet denoising thresholding. Then, Weber’s law was used for image enhancement 

along with wavelet transform. Consequently, the recovered images were enhanced and the noise level  

was reduced. In the current study, a novel image denoising method is proposed in the presence of underwater 

noise using a pre-whitening filter and discrete wavelet transform (DWT) with single-level estimation. 
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2. AMBIENT NOISE CHARACTERISTICS 

The characteristics of underwater noise in seas have been discussed extensively [10]. Such noise  

has four components: turbulence, shipping, wind and thermal noises. Each component occupies a certain 

frequency band of spectrum. Each noise source is dominant in certain frequency bands, as indicated in  

Table 1. The PSD of each component is expressed as [1, 2, 11]; 

 

 (1) 

 

 (2) 

 

 (3) 

 

 (4) 

 

where f represents the frequency in KHz. Therefore, the total PSD of underwater noise for a given frequency 

f (kHz) is; 

 

 (5) 

 

 

Table 1. Underwater noise band 
Band Type 

0.1Hz-10Hz Turbulence noise 

10Hz-200Hz Shipping noise 

0.2kHz-100kHz Wind noise 

Above kHz Thermal noise 

 

 

3. IMAGE MODEL IN PRESENCE OF COLORED NOISE 

Noise interference is a common problem in digital communication and image processing.  

An underwater noise model for image denoising in an additive colored noise channel is presented  

in this section. Numerous applications assume that a received image can be expressed as follows; 

 

 (6) 

 

where 𝑠(𝑛) is the original image and 𝑣(𝑛) denotes underwater noise. Hence, denoising aims to eliminate  

the corruption degree of 𝑠(𝑛) caused by 𝑣(𝑛). The power spectrum and autocorrelation of additive white 

Gaussian noise (AWGN) are expressed as [12]; 

 

 (7) 

 

 
(8) 

 

The PSD of AWGN remains constant across the entire frequency range, in which all ranges  

of frequencies have a magnitude of σv
2. The probability distribution function 𝜌𝑣(𝑣) for AWGN is specified  

by [13]; 

 

 
(9) 

 

where 𝜎𝑣 represents the standard deviation. With regard to autocorrelation functions, the delta function 

indicates that adjacent samples are independent. Therefore, observed samples are considered independent  

and identically distributed. Underwater noise is dependent on frequency [14, 15]; and it is suitably modelled 

as colored noise [1, 2, 16]. The PSD of colored noise is defined as [17, 18]; 

 

 
(10) 
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However, the 𝑅𝑣𝑣[𝑚] of coloured noise is not like a delta function, but, it is takes the formula of a 𝑠𝑖𝑛𝑐( ) 

function [12, 17]. In contrast to AWGN, noise samples are correlated [18]. 

 

 

4. IMAGE DENOISING 

Wavelets are used in image processing for sample edge detection, watermarking, compression, 

denoising and coding of interesting features for subsequent classification [19, 20]. The following subsections 

discuss image denoising by thresholding the DWT coefficients. 

 

4.1. DWT of an image data 

An image is presented as a 2D array of coefficients. Each coefficient represents the brightness 

degree at that point. Most herbal photographs exhibit smooth coloration variations with excellent  

details represented as sharp edges among easy versions. Clean variations in coloration can be strictly  

labelled as low-frequency versions, whereas pointy variations can be labelled as excessive-frequency 

versions. The low-frequency components (i.e. smooth versions) establish the base of a photograph,  

whereas the excessive-frequency components (i.e. the edges that provide the details) are uploaded upon  

the low-frequency components to refine the image, thereby producing an in-depth image. Therefore, the easy 

versions are more important than the details. Numerous methods can be used to distinguish between easy 

variations and photograph information. One example of these methods is picture decomposition via DWT 

remodeling. The different decomposition levels of DWT are shown in Figure 1. 

 

 

 
 

Figure 1. DWT Decomposition levels 

 

 

4.2. The Inverse DWT of an image 

Different classes of data are collected into a reconstructed image by using reverse wavelet 

transform. A pair of high- and low-pass filters is also used during the reconstruction process. This pair of 

filters is referred to as the synthesis filter pair. The filtering procedure is simply the opposite of 

transformation; that is, the procedure starts from the highest level. The filters are firstly applied column-wise 

and then row-wise level by level until the lowest level is reached. 

 

 

5. PROPOSED METHOD 

In this paper, the DWT is used for the transformation of image in the process of denoising.  

The advantages of used multi-level threshold estimation in denoising process to reduce the required of  

the use of the pre-whitening stage in case of using single level threshold estimation [21]. The following steps 

describe the image denoising procedure. 

a) The DWT of a noisy image is computed. The WT is (time-frequency distribution) that used to decompose 

signal into family of functions localize in frequency and time. The CWT can be described as; 

 

 
(11) 

 

where 𝑡 is shifting in time and a is scale factor or dilation factor and h(t) is represent basis function. 

Daubechies, coiflet, symlet, and biorthogonal represent examples of functions used in CWT as shown in 

Figure 2. 
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(a) 

 

(b) 
  

  
 

(c) 

 

(d) 
 

Figure 2. Some basic functions used in WT are:  

(a) Haar, (b) Symlet 6, (c) Daubechies 6, (d) Biorthogonal 1.5 [22] 
 

 

b) After the DWT representation done, de-noising is done using soft-thresholding by modified universal 

threshold estimation (MUTE). Providing ambient noise is a colored, a threshold dependent on level 

applied to each level of frequency was proposed in [23]. The value of threshold applied to the coefficients  

of estimated time-frequency using MUTE [23] is expressed as; 

 

 
(12) 

 

where N is length of signal, 𝜎𝑣,𝑘 is noise estimated standard deviation for level k, and c is the (modified 

universal threshold factor) 0 < 𝑐 < 1 . The standard deviation for noise at each level is; 

 

𝜎𝑣,𝑘 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋(𝑛, 𝑘)|)

0.6745
 (13) 

 

where 𝑋(𝑛, 𝑘) represents all the coefficients for frequency level k [24].  

The value of threshold 𝜆𝑘 is used to removing the noise and also for efficient recover original 

signal. The threshold factor c is used to improve further performance of denoising [25]. The value of c is 

calculated gradually by increment it of 0.1 for each level to obtain the best results at highest PSNR. 

c) After values of threshold 𝜆𝑘 is determined for all components, the components representations  

of time-frequency after hard-thresholding are; 

 

𝑋𝜆(𝑛, 𝑘) = {
𝑋(𝑛, 𝑘)          𝑖𝑓|𝑋(𝑛, 𝑘) | > 𝜆𝑘

0                     𝑖𝑓|𝑋(𝑛, 𝑘)| ≤ 𝜆𝑘
 (14) 

 

and the components after soft-thresholding are; 
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(15) 

 

where 𝛾𝑘  denotes the threshold value in level k. 

d) The image is reconstructed by applying inverse DWT to obtain the denoised image. Figure 3 shows  

the data flow diagram of the image denoising process. The IWT is expressed as;  

 

𝑥(𝜏) = ∫ ∫ 𝑋(𝑡, 𝑎)
1

√𝑎
ℎ (

𝜏 − 𝑡

𝑎
) 𝑑𝜏

𝑑𝑎

𝑎2

∞

−∞

∞

0

 (16) 

 

 

 
 

Figure 3. Data flow diagram of image denoising using level-dependent  

estimation discrete wavelet transforms 

 

 

6. PERFORMANCE MEASURES 

Common measurement parameters for image reliability include mean absolute error, normalized 

MSE (NMSE), PSNR, and MSE [26]. An SNR over 40 dB provides excellent image quality that is close to 

that of the original image; an SNR of 30-40 dB typically produces good image quality with acceptable 

distortion; an SNR of 20-30 dB presents poor image quality; an SNR below 20 dB generates an unacceptable 

image [27]. The calculation methods of PSNR and NMSE [28] are presented as follows: 

 

 
(17) 

 

where MSE is the MSE between the original image (𝑥) and the denoised image (�̂�) with size M×N: 

 

 

(18) 

 

 

7. RESULTS AND DISCUSSION 

MATLAB is used as the experimental tool for simulation, and simulation experiments are performed 

on a diver image to confirm the validity of the algorithm. The simulations are achieved at PSNR ranging 

from 30 dB to 60 dB by changing noise power from 0 dB to 15 dB. The applied order of the whitening filter 

is 10. Different denoising wavelet biases (i.e. Daubechies, biorthogonal 1.5, and symlet) are tested on  

an image with underwater noise via numerical simulation. As shown in Figure 4, soft thresholding and four 

decomposition levels are used. 
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Bias type Noisy image De-noise image PSNR (dB) 

Sym4 

  

45.7 dB 

Sym4 

  

29.01dB 

𝑑𝑏5 

  

45.77 dB 

𝑑𝑏5 

  

28.96 dB 

Biorthogonal 

1.3 

  

45.27 dB 

Biorthogonal 

1.3 

  

28.97dB 

 

Figure 4. Simulation results on diver image using different wavelet biases 
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Tables 2, 3, and 4 show the performance of the proposed method on various noise power based on 

the Daubechies, symlet, and biorthogonal wavelet biases, respectively. The PSNR and MSE values  

are calculated based on each noise power value. 

 

 

Table 2. Performance results of PSNR and MSE on diver image based on Daubechies wavelet bias 
Noise power (db) PSNR MSE 

0 59.35 0.0756 

3 55.57 0.2161 

5 52.3 0.5226 

10 42.9653 0.5062 

15 33.2530 0.8279 

 

 

Table 3. Performance results of PSNR and MSE on diver image based on symlet wavelet bias 
Noise power (db) PSNR MSE 

0 61.066 0.0759 

3 55.48 0.2948 

5 52.032 0.5509 

10 43.33 0.4420 

15 35.0591 0.392 

 

 

Table 4. Performance results of PSNR and MSE on diver image based on biorthogonal wavelet bias 
Noise power (db) PSNR MSE 

0 59.7560 0.0773 

3 55.76 0.321 

5 52.867 0.5240 

10 43.7970 0.767 

15 35.125 0.8604 

 

 

8. CONCLUSION 

Underwater noise is mainly characterized as non-white and non-Gaussian noise. Therefore, 

traditional methods used for image denoising using wavelet transform underwater are inefficient because 

these methods use multi-level estimation discrete wavelet transform for noise variance. However, noise 

variance at each level should be independently estimated in colored noise. The wavelet denoising method  

can be efficiently used with PSNR and MSE compared to other method used a pre-whitening filter that 

converts underwater noise to white noise, as demonstrated by the results. 
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