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 Micro-electro-mechanical-system accelerometer is able to detect acceleration 

signal caused by earthquake. Such type of accelerometer is also used by 

smartphones. There are few algorithms that can be used to recognize the type 

of acceleration signal from smartphone. This study aims to find signal 

recognition algorithm in order to consider the most proper algorithm for 

earthquake signal detection. The initial stage of designing the recognizer is 

data collection for each type of signal classification. The next step is to apply 

a highpass filter to separate the signals collected from the gravitational 

acceleration signal. The signal is divided into several segments. The system 

will extract features of each signal segment in the time and frequency domain. 

Each signal segment is then classified according to the type of signal using  

the classifier through a series of training data processes. The classifier which 

has the highest accuracy value is exported into the new input signal modeling. 

As the result, fine K-NN algorithm has the highest level of accuracy in  

the classification. The fine K-NN algorithm has an accuracy rate of 99.75% in 

the classification of human activity signals and earthquake signals with a 

memory capacity of 6,044 kilobytes and processing time of 15.93 seconds. 

This algorithm has the best classifier criteria compared to decision tree, 

support vector machine and linear discriminant analysis algorithms. 
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1. INTRODUCTION  

Indonesia is situated in the cross zone of three tectonic plates, namely Eurasia, Indo-Australia and 

Pacific. Based on this condition, Indonesia becomes a dangerous area of earthquake zones [1, 2]. Thousands 

of strong motion earthquakes with more than 6.0 moment magnitude impacted Indonesia in 1976-2006 [3, 4]. 

Law number 31 Year 2009 of Indonesian Republic states that the Meteorology, Climatology and Geophysics 

Agency (BMKG) is an agency authorized to publish information on earthquake events, both pre-earthquake 

and post-earthquake cases [5]. Confirmation of the incident at the earthquake site is needed to support  

the BMKG performance. This certainly involves the active role of the community. 

Crowdsourcing is now a prominent terminology to collect, process, and distribute information  

to society. It possibly becomes a robust idea to overcome the small number of seismic monitoring networks  

in Indonesia. One of the media for crowdsourcing is smartphone. Nowadays, smartphones are embedded  

https://creativecommons.org/licenses/by-sa/4.0/
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by digital accelerometer. This component has potential to detect ground strong motion parameters.  

The Quaqe-Catcher Network (QNC) and Community Seismik Network (CSN) utilize Micro electro mechanical 

system (MEMS) accelerometer to detect building vibration caused by earthquake [6]. Such type of 

accelerometer is also used by smartphones. However, the noise of smartphone’s accelerometer faces big 

obstacles, mainly due to human activities [7].  

Anguita et al. from the University of Genova produced a set of accelerometer data to identify six types 

of human movement. These movements include standing, walking, lying down, sitting, going up  

and down the stairs [8]. Bayat, Pomplun and Tran from the University of Massachusetts examined  

the use of a single triaxial accelerometer sensor on smartphones based multilayer perceptron with an accuracy 

of 90% [9]. Chen et al. succeeded in designing a HAR based on long-short term memory (LSTM) with  

an accuracy of 92.1% [10]. However, it has not been improved for seismology. This study aims to compare 

signal recognition algorithm in order to determine the most proper algorithm for earthquake signal detection.  

 

 

2. RESEARCH METHOD  

Smartphone accelerometer sensor type is LSM6DSL. It is a triaxial accelerometer with 16-bit 

resolution and 50 Hz sampling frequency [11]. Several types of MEMS-type accelerometer signal inputs 

include gravity acceleration signals, acceleration due to human body movements, offsets and noise [12, 13]. 

The initial stage of designing the recognizer is to collect data for each type of signal classification. The next 

step is to apply a highpass filter to separate the signals collected from the gravitational acceleration signal.  

The signal is divided into several segments. The system will extract features of each signal segment in  

the time and frequency domain. Each signal segment is then classified according to the type of signal using  

the classifier through a series of training data processes. The classifier which has the highest accuracy value is 

exported into the new input signal modeling. The classification test is done by using Python 3 language program 

in Linux Ubuntu terminal.  

Data are collected by recording smartphone accelerometer signals on activities carried out by  

10 subjects. Each subject was instructed to sit, stand, lie down, walk and run. The activities were carried out  

at varying speed and gestures according to the subject's habits. The activities were carried out when  

the smartphone is placed in shirt pocket and trouser pocket with a variety of types according to the subject's 

clothing during the study. Samples of earthquake signals were taken from BMKG accelerograph signals  

that record earthquake events in Lombok and Palu. The amount of earthquake signal raw data is 214 data, while 

the subject activity raw data are 2545 data in the shirt pocket and 2430 data in the trouser pocket.  

Highpass filters are designed to separate the linear acceleration signal of the subject's movement from 

the gravitational acceleration signal. This filter is a Butterworth type 3 highpass filter with a cutoff frequency 

of 0.1 Hz. Order 3 is considered to be quite effective to reduce gravitational acceleration signals with dominant 

frequency ranging from 0.1-0.5 Hz [8]. Data extraction was undertaken by collecting all sample data into a 

data set. Data windowing uses non-overlapping techniques with frame duration of one second, or 50 raw data 

in one signal type. The signal was extracted to obtain the signal features in the time domain and frequency 

domain [14]. Figure 1 shows a flowchart of the process used in this study.  

 

2.1.  Decision tree (DT) algorithm 

Decision tree is a classifier that works by arranging decision trees based on predictors or features  

that exist to determine the class of objectives. The parameters required are entropy and information gain  

of each signal feature. Information gain is a measure of the effectiveness of a feature in classifying data.  

The information gain equation is formulated as follows [15, 16]:  

 

𝐼𝐺 (𝑆, 𝑓) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑉|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑉)

𝑣∈𝑣𝑎𝑙𝑢𝑒(𝑓)

 

 

IG (S, f) is the information gain value for a particular feature or predictor. Entropy (S) is the value of 

overall data entropy. V is a possible value for predictor f, while value (f) is a set of possible values for predictor 

f. | Sv | is the number of samples for values V and | S | is the sum of all data samples. Entropy (SV) is the value 

of entropy for samples that have a value of V. The predictor that has the highest IG will be the root of the other 

predictors in the decision tree. The remaining IG predictor value is recalculated to become the second root,  

and so on. Root continues branching down, therefore it will appear a destination class at the top of the decision 

tree [10].  
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Figure 1. Flowchart activity signal and earthquake signal 

 

 

2.2.  Linear discriminant analysis (LDA) algorithm 

Linear discriminant analysis is to reduce the dimensionality of input data predictors. LDA aims  

to separate the two destination classes by dividing the decision regions [17]. LDA consists of three steps of 

work [18]. The first step is to calculate separability between classes using the value of the interclass variance.  

The second step is to calculate the distance between the class average against each sample in the class itself or 

intraclass variance. The third step is to reduce the dimensional space between classes hence the value of 

interclass variance is increased while the value of intraclass variance is decreased [12]. The LDA algorithm is 

coherently described as follows [19]: 

− Determine a data matrix with row numbers M and column numbers N 

− Calculate the average of each class (1 x M) 

− Calculate the average of all classes (1 x M) 

− Calculate interclass variance: 

 

𝑆𝐵 = ∑ 𝑛𝑖(𝜇𝑖 − 𝜇)𝑐
𝑖=1 (𝜇𝑖 − 𝜇)𝑇  

 

− Calculate intraclass variance: 

 

𝑆𝑊 = ∑ ∑ (𝑥𝑖𝑗 − 𝜇𝑗)
𝑛𝑗

𝑖=1
𝑐
𝑗=1 (𝑥𝑖𝑗 − 𝜇𝑗)

𝑇  

 

− Calculate variance matrix: 

 

𝑊 = 𝑆𝑊
−1𝑆𝐵  
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− Calculate Eigen value and eigen vector from matrix W 

− Arrange Eigen vector based on Eigen value. First Eigen vector is used as lower dimensional space (Vk) 

− Project all samples to Vk 

− Calculate the distance of new sample to data average value which are projected by Vk for each class.  
The smallest distance value is included into certain class. 

 

2.3.  Support vector machine (SVM) algorithm 

Support vector machine is to determine the best hyperplane as a separator between destination  

classes [20]. Hyperplane is a delimiter that divides a vector space into two parts, therefore two different classes 

can be separated. The best characteristic of hyperplane is the maximum margin value. Margin is the distance 

between the hyperplane and the nearest predictor vector of the two classes. This predictor vector is called 

support vector. Hyperplane can be used to separate linear and nonlinear data [21]. The predictor is denoted as 

xi and the class is denoted as yi which contains of two classes that assumed to be -1 and 1, while the w vector 

is a support vector. The hyperplane equation for linear data is formulated as follows:  
 

𝑦𝑖⃗⃗  = �⃗⃗� . 𝑥𝑖⃗⃗⃗  + 𝑏 Hyperplane equation  
 

�⃗⃗� . 𝑥𝑖⃗⃗⃗  + 𝑏 ≤ −1 for class -1  

 

�⃗⃗� . 𝑥𝑖⃗⃗⃗  + 𝑏 ≥ 1 for class 1  
 

The largest margin can be determined by maximizing the value of the hyperplane's distance to  

the vector at its closest point. If the margin value has greater value, then it has better classification. Hyperplane 

for nonlinear data is designed using the Kernel function, which transforms a 2-D vector field into a 3-D vector. 

Nonlinear predictors are easier to separate in 3-D vector space. The commonly used kernel functions are  

the polynomial, gaussian and sigmoid kernels [22]. 

− Polynomial kernel transformation equation: 

 

𝐾(𝑥𝑖,⃗⃗⃗⃗ 𝑥𝑗⃗⃗⃗  ) = (𝑥𝑖,⃗⃗ ⃗⃗ ⃗⃗ 𝑥𝑗,⃗⃗⃗⃗ + 1)𝑝, p is the highest number of exponent  

 

− Gaussian kernel transformation equation: 

 

𝐾(𝑥𝑖,⃗⃗⃗⃗ 𝑥𝑗⃗⃗⃗  ) = exp (−𝜎‖𝑥𝑖⃗⃗⃗  − 𝑥𝑗⃗⃗⃗  ‖
2
), 𝜎 is variance of vector x 

 

− Sigmoid kernel transformation equation: 

 

𝐾(𝑥𝑖,⃗⃗⃗⃗ 𝑥𝑗⃗⃗⃗  ) = tanh (𝛼𝑥𝑖⃗⃗⃗  𝑥𝑗⃗⃗⃗  + 𝛽), alpha and beta are sigmoid constant 

 

The hyperplane equation applied to nonlinear data by utilizing the Kernel function is calculated as follows:  

 

𝑦𝑖⃗⃗  = �⃗⃗� . 𝐾(𝑥𝑖,⃗⃗⃗⃗ 𝑥𝑗⃗⃗⃗  ) + 𝑏  

 

2.4.  K-nearest neighbor (K-NN) algorithm 

K-Nearest Neighbor algorithm is to calculate the distance of a new data input against the K-data 

learning model [23]. This algorithm is also useful to search for the nearest neighbor from a new data input.  

The proximity of new input data to the model data is generally calculated using the Euclidean Distance [24]  

as follows:  
 

𝐸(𝐴, 𝐵) = ∑ √(𝐴𝑖 − 𝐵𝑖)
2𝑁

𝑖=1   
 

A is the new input data, while B is the learning model data. The new input data is tested against  

each learning data point, then against the neighbor sequence with the smallest distance value according to  

the K number. K-NN has several types of processing algorithms [25], namely:  

− Fine K-NN, using the closest neighbor (K=1). 

− Medium K-NN, using ten closest neighbors (K=10). 

− Coarse K-NN, using one hundred closest neighbors (K=100). 

− Cosine K-NN, using distance calculation of the closest neighbor based on cosine distance matrix: 
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𝑑 = 1 −
�⃗�  . 𝑣 

|�⃗� |. |𝑣 |
 

 

− Cubic K-NN, using distance calculation of the closest neighbor based on cubic distance matrix: 
 

𝑑 = √∑|𝑢𝑖 − 𝑣𝑖|
3

𝑛

𝑖=1

3

 

 

In general, the K-NN algorithm steps can be described as follows: 

a. Determine K value or number of the closest neighbor  

b. Calculate new input distance to all learning models.  

c. Arrange the new input distance from the closest to far distance  

d. Detemine closest neighbor category based on K value. 

e. Use majority category class of closest neighbor to predict the result of new input data.  
 
 

3. RESULTS AND ANALYSIS  

Table 1 shows the results of the smartphone accelerator signal extraction for various activities in  

the time domain. Table 1 proves that significant difference occurs in characteristics between human activity 

signals and earthquake signals in the time domain. Linear acceleration signals due to human activity reported 

greater value for all features compared to earthquake signals. The signal distribution of acceleration of human 

activity tends to be leptokurtic, while earthquake signals tend to be platykurtic when viewed from the value of 

signal kurtosis. The skewness value of each signal type does not show a significant difference.  

 

 

Table 1. Signal’s feature extraction result in time domain 
Feature (m/s2) Sitting Standing Laying Walking Running Earthquake 

meanX 1.65 1.41 1.88 0.80 0.97 0.04 

meanY 2.77 1.77 2.31 2.98 3.39 0.10 

meanZ 1.88 1.97 2.58 0.82 0.98 0.01 
median 1.68 1.41 1.87 0.83 1.17 0.04 

median 2.83 1.79 2.39 2.97 4.49 0.10 
medianZ 1.95 1.95 2.61 0.93 1.25 0.01 

madX 0.93 0.78 1.20 1.52 3.74 0.02 

madY 1.26 0.90 1.33 2.70 7.61 0.04 
madZ 1.16 1.02 1.32 1.67 3.60 0.02 

rmsX 2.17 1.84 2.58 2.26 5.13 0.05 

rmsY 3.41 2.25 3.03 4.97 10.48 0.12 
rmsZ 2.57 2.49 3.28 2.51 5.29 0.02 

stdevX 1.15 0.97 1.54 2.03 4.98 0.02 

stdevY 1.53 1.11 1.69 3.52 9.43 0.04 
stdevZ 1.42 1.26 1.68 2.26 5.11 0.02 

maxX 2.77 2.17 3.80 5.19 13.04 0.05 

maxY 4.00 2.55 4.00 8.23 19.55 0.13 
maxZ 3.34 3.10 4.30 6.22 16.14 0.02 

minX -2.42 -2.19 -3.24 -5.20 -13.07 -0.02 

minY -2.94 -2.38 -3.32 -7.93 -19.03 -0.08 
minZ -2.81 -2.40 -3.56 -6.12 -15.40 -0.02 

SMA 728.42 582.28 779.85 776.74 1640.87 18.87 

skewnessX -0.06 0.01 0.06 0.01 -0.01 -0.06 
skewnessY 0.11 0.05 0.03 0.02 0.01 -0.11 

skewnessZ 0.06 -0.06 0.04 -0.04 0.10 -0.02 

kurtosisX 3.37 3.15 3.71 4.19 4.20 1.19 
kurtosisY 2.94 3.33 3.46 3.98 3.37 1.27 

kurtosisZ 3.41 3.40 3.62 4.88 6.12 1.10 

 

 

Table 2 shows that the activity signal energy is much greater compared to the earthquake signal 

energy, while the dominant frequency of earthquake signal tends to be greater than the dominant frequency of 

non-locomotor activity signal. Running and running activity signals hold more unique information content than 

other activity signalsdue to their high entropy values, therefore it is more easily identified. Earthquake signals 

also demonstrate quite different feature values compared to human activity signals. Prominent features to 

classify human activity signals and earthquake signals include maximum amplitude, high school values, 

dominant frequency, spectral centroids and signal energy. 
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Table 2. Signal’s feature extraction result in frequency domain 
Frequency Feature Sitting Standing Laying Walking Running Earthquake 

fdomX (Hz) 1.11 1.15 1.28 2.97 4.17 2.36 
fdomY (Hz) 1.23 1.49 1.39 2.34 3.02 2.30 

fdomZ (Hz) 1.00 1.01 1.21 5.33 12.24 2.70 

energyX (kJ) 78.98 56.90 93.55 64.57 343.12 0.48 
energyY (kJ) 153.25 72.85 120.60 333.08 1240.18 3.86 

energyZ (kJ) 85.44 83.50 140.17 79.12 345.94 0.02 

centroidX (Hz) 5.63 5.55 6.86 9.36 11.56 41.69 
centroidY (Hz) 4.04 4.46 6.01 7.16 8.75 39.98 

centroidZ (Hz) 5.07 4.86 6.56 10.18 14.26 44.73 

entropyX (bits) 1.67 1.89 1.51 2.21 1.66 1.21 
entropyY (bits) 1.04 1.56 1.17 1.37 1.16 1.26 

entropyZ (bits) 1.41 1.36 0.98 2.12 1.68 1.17 

meanfreqX (Hz) 1.70 1.68 2.19 4.33 5.93 45.12 
meanfreqY (Hz) 1.18 1.48 1.89 2.86 3.81 43.75 

meanfreqZ (Hz) 1.61 1.42 1.93 5.01 8.94 47.09 

 

 

3.1.  Signal classification using decision tree (DT) algorithm 

The decision tree classification is built based on a decision tree scheme. The types of DT algorithms 

used include simple DT, medium DT and complex DT. The difference in the three types of DT is based on  

the number of branches/decision tree nodes. The number of DT medium nodes is greater than that of simple DT, 

while the number of DT complex nodes is greater than the number of DT medium nodes.  The Simple DT decision 

tree has 7 nodes. The signal feature with the highest information gain (IG) is the mean absolute deviation on  

the z axis. This feature is used by the DT algorithm to classify earthquake signals and human activity signals. 

Other features used are spectral power and mean absolute deviation on the y axis. The simple DT algorithm is 

unable to classify signals of sitting, standing and lying activity due to the limited number of nodes. 

The Medium DT decision tree has 34 nodes. Features with high IG values used by the medium DT 

include mean absolute deviation, spectral power, spectral centroids, root mean square, mean frequency, 

standard deviation and dominant frequency. DT medium algorithm is able to classify almost all HAR data, 

except signal from sitting activity. Sitting activity signal cannot be classified properly because its features have 

a small IG value, therefore it is classified as other activity signals. The complex DT decision tree has  

193 nodes. All features are used in the complex DT algorithm. These features can classify signals of sitting, 

standing, lying, walking, running and earthquake signals. All signal features, both time and frequency domain 

features, are still used in the complex DT, hence this algorithm is more complex compared to other DT 

algorithms and this algorighm is able to map nodes with a small IG.  

Table 3 shows the results of testing the simple DT, medium DT and complex DT. The complex DT 

algorithm has higher level of classification accuracy compared to the medium DT, both when the smartphone 

is in shirt pocket and trouser pocket, with accuracy values of 84.36% and 83.49%, respectively. This proves 

that the number of decision tree nodesis directly proportional to the accuracy of the DT algorithm. An increase 

in the number of decision tree nodes can increase the classification ability of the DT algorithm.  
 

 

Table 3. The performance of DT algorithm 
Smartphone Position Type of DT True (TP+TF) False (FP+FN) Accuracy (%) 

Trouser Pocket Simple DT 1753 792 68.88 

Medium DT 1877 668 73.75 

Complex DT 2147 398 84.36 

Shirt Pocket Simple DT 1534 896 63.13 

Medium DT 1696 734 69.79 

Complex DT 2029 401 83.49 

 

 

3.2.  Signal classification using linear discriminant analysis (LDA) algorithm 

LDA algorithm classifies signals using vectors in the form of linear lines. Table 4 shows the accuracy 

of the LDA algorithm. The accuracy of this algorithm is lesser than the accuracy of the decision tree algorithm. 

Walking, running and earthquake signals have low predictive error rates in the LDA algorithm. Figure 2 shows 

the cluster of signal data based on features with the highest IG (information gain) value. These features include 

mean absolute deviation on the z axis and y axis and spectral power on the y axis. Figure 2 demonstrates that  

the three types of signals can be separated using linear lines vector to be classified properly. Sitting, standing and 

lying activity signals have overlapping clusters. Therefore, if these activities are plotted based on features with 

the highest IG, it will be difficult to separate using linear line vectors. This causes the signal of sitting, standing 

and lying activity cannot be classified properly by the LDA algorithm. Figure 3 shows the proof of such statement.  
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Table 4. The performance of LDA algorithm 
Smartphone Position True (TP+TF) False (FP+FN) Accuracy (%) 

Trouser Pocket 1900 645 74.67 

Shirt Pocket 1745 685 71.81 

 
 

 
 

Figure 2. Cluster data of locomotor activity signal and earthquake signal 
 

 

 
 

Figure 3. Cluster data of nonlocomotor activity signal 
 
 

3.3.  Signal classification using support vector machine (SVM) algorithm  

SVM algorithm uses hyperplane to classify signal classes. Types of SVM algorithms tested include linear 

SVM, quadratic SVM, cubic SVM, fine SVM, medium SVM and coarse SVM. These types are obtained based on 
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different types of hyperplane. Quadratic SVM and cubic SVM use polynomial kernels. This kernel projects 

hyperplane fields with nonlinear functions in three-dimensional space. Quadratic SVM uses polynomial power of 2, 

while cubic SVM has polynomial power of 3. The classification results of SVM algorithm with polynomial kernel 

report good accuracy, which is higher than 80%. Polynomial kernels are designed for nonlinear data and made 

hyperplane to be flexible in separating between classes of activity signal data, therefore the classification accuracy 

is relatively high.  

Fine SVM, medium SVM and coarse SVM use gaussian kernels with tiered kernel scale values. Kernel 

scale type fine SVM is 2.9; Medium SVM type is 9.1; and Coarse SVM type is 36. Kernel scale is a multiplier factor 

in the Gaussian kernel. An increase in the value of the kernel scale generally causes a decrease in the accuracy of  

the Gaussian type SVM algorithm as shown in Table 5, both for the location in the trouser pocket and shirt pocket. 

The increase in kernel scale decreses the hyperplane margins, therefore the classification between classes of activity 

data becomes more ambiguous. The confusion in classification results in suboptimal accuracy. 

Linear SVM does not utilize the kernel because it considers the activity signal data as linearly correlated 

data. SVM Linear algorithm is formed in the form of linear vector in two-dimensional space. Activity signal data is 

nonlinear data, therefore the results of linear SVM classification show lower accuracy compared to other types of 

SVM algorithm, except Coarse SVM. Figure 4 shows a cluster of activity signal data in the time domain feature. 

Figure 5 shows a cluster of activity signal data in the frequency domain feature. Both figures prove that activity 

signal data is difficult to classify using linear functions, because they overlap in the same plot area.  

 

 

Table 5. The performance of SVM algorithm 
Smartphone Position Type of SVM True (TP+TF) False (FP+FN) Accuracy (%) 

Trouser Pocket Linear 1887 658 74.14 

Quadratic 2435 110 95.67 

Cubic 2233 312 87.74 
Fine 2367 181 92.89 

Medium 2084 496 80.77 

Coarse 1785 759 70.16 

Shirt Pocket Linear 1727 703 71.07 

Quadratic 2168 262 89.22 

Cubic 2380 50 97.94 

Fine 2232 198 91.85 

Medium 1878 552 77.28 

Coarse 1588 842 65.35 

 

 

 
 

Figure 4. Cluster data of activity acceleration signal in time domain 

 



TELKOMNIKA Telecommun Comput El Control  

 

Algorithm performance comparison for earthquake signal recognition… (Hapsoro Agung Nugroho) 

2513 

 
 

Figure 5. Cluster data of activity acceleration signal in frequency domain 

 

 

3.4.  Signal classification using K-nearest neighbor (K-NN) algorithm 

Types of K-NN algorithms tested include fine K-NN, Medium K-NN, Coarse K-NN, Cosine K-NN 

and Cubic K-NN. The fine K-NN, Medium K-NN and Coarse K-NN algorithms are distinguished based on  

the number of nearest neighbors, while Cosine K-NN and Cubic K-NN are distinguished according to  

the provisions of the calculation of the distance to the nearest neighbor. Table 6 shows the results of testing  

the signal data classification using the K-NN algorithm. Fine K-NN only considers 1 nearest neighbor to 

classify data. Medium K-NN considers the 10 closest neighbors, while Coarse K-NN considers 100 closest 

neighbors in a data cluster. Table 6 demonstrates that the increase of the number of nearest neighbors as a 

consideration of the K-NN algorithm actually causes a decrease in the level of classification accuracy.  

The number of nearest neighbors as predictors actually adds to the level of algorithm ambiguity in determining 

the signal input class. Nonlinear HAR data has a cluster area with overlapping data classes, therefore it is 

heterogeneous. The criteria to increase the number of nearest neighbors expands the coverage of the cluster 

area, causing data classes to become more heterogeneous, and resulting in confusion over the results of 

classification predictions. The Cosine K-NN algorithm uses cosine metric distance to determine the distance 

to the nearest neighbor, while Cubic K-NN employs cubic metric distance. The accuracy of these two distance 

rules are not lower than the Euclidean distance used by fine K-NN and Medium K-NN to classify signals. 

Cosine K-NN and Cubic K-NN accuracy levels are lower than fine K-NN and Medium K-NN.  
 

 

Table 6. The performance of K-NN algorithm 
Smartphone Position Type of K-NN True (TP+TF) False (FP+FN) Accuracy (%) 

Trouser Pocket 2543 2 99.92 99,92 
1936 609 76.07 76,07 

1742 803 68.45 68,45 

1911 634 75.09 75,09 
1903 642 74.77 74,77 

Shirt Pocket 2420 10 99.59 99,59 

1781 649 73.29 73,29 

1631 799 67.12 67,12 

1771 659 72.88 72,88 

1729 701 71.15 71,15 

 

 

3.5.  Algorithm performance comparation result 

Each algorithm has a different level of classification accuracy. The algorithm selection criteria do not 

only include the level of accuracy, but also the speed of data processing and memory capacity. Table 7 shows 
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a comparison of all classifier algorithms based on these criteria. The accuracy of the algorithm is obtained from 

the average accuracy of the smartphone activity signal classification in trouser pocket and shirt pocket.  

 

 

Table 7. The performance comparison of the algorithms 
Algorithm Accuracy (%) Processing Time (seconds) Memory Capacity (kilobytes) 

Simple DT 66.01 5.17 12 

Medium DT 71.77 5.27 22 
Complex DT 83.93 6.91 54 

LDA 73.10 4.82 387 

Linear SVM 72.61 14.12 6,529 
Quadratic SVM 92.44 21.97 21,213 

Cubic SVM 92.84 25.57 16,564 

Fine SVM 92.37 81.2 65,411 
Medium SVM 79.03 32.05 29,087 

Coarse SVM 67.76 33.63 29,641 

Fine K-NN 99.75 15.93 6,044 
Medium K-NN 74.70 13.36 6,044 

Coarse K-NN 67.78 15.9 6,044 

Cosine K-NN 73.98 13.24 6,044 
Cubic K-NN 72.96 428.24 6,045 

 

 

DT algorithm has fast processing time with the smallest memory capacity, but the level of accuracy is 

lower compared to the fine K-NN algorithm and some types of SVM algorithms. The processing time and memory 

capacity of the DT algorithm increases proportionally with the number of nodes and the level of complexity of 

the decision tree it builds. The LDA algorithm has the fastest processing time with a small memory capacity, but 

the level of accuracy is lower than the average accuracy of DT, SVM and K-NN algorithms. SVM algorithm has 

the largest memory capacity with a longer processing time compared to the DT algorithm, LDA and some K-NN. 

The design of hyperplane in the SVM algorithm produces greater number of variables compared to the design of 

the decision tree on DT, linear lines on the LDA and calculation of the nearest neighbor distance on K-NN.  

The number of variables affects the processing time and memory capacity of the algorithm. The K-NN algorithm 

has a processing time of 13 to 16 seconds, except cubic K-NN. The calculation of cubic metrix distance is more 

complex than Euclidean distance or cosine metrix distance, thus cubic-KNN requires long processing time.  

The average memory capacity of the K-NN algorithm is 6,044 kilobytes. This capacity is far greater compared to 

DT and LDA, but smaller than SVM. The fine-KNN algorithm has the highest accuracy value, medium processing 

time and medium memory capacity.  

 

 

4. CONCLUSION 

Fine K-NN algorithm has the highest level of accuracy in the classification of human activity signals 

with lower memory capacity and shorter processing time. The number of fine K-NN's closest neighbors is only 

one, therefore it does not cause ambiguity in the classification process. The fine K-NN algorithm has  

an accuracy rate of 99.75% in the classification of human activity signals and earthquake signals with a memory 

capacity of 6,044 KB and a processing time of 15.93 seconds. This algorithm has the best classifier criteria 

compared to DT, SVM and LDA algorithms.  
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