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 A two-wheeled single seat Segway robot is a special kind of wheeled mobile 

robot, using it as a human transporter system needs applying a robust control 

system to overcome its inherent unstable problem. The mathematical model of 

the system dynamics is derived and then state space formulation for the system 

is presented to enable design state feedback controller scheme. In this research, 

an optimal control system based on linear quadratic regulator (LQR) technique 

is proposed to stabilize the mobile robot. The LQR controller is designed to 

control the position and yaw rotation of the two-wheeled vehicle. The proposed 

balancing robot system is validated by simulating the LQR using Matlab 

software. Two tuning methods, genetic algorithm (GA) and bacteria foraging 

optimization algorithm (BFOA) are used to obtain optimal values for controller 

parameters. A comparison between the performance of both controllers  

GA-LQR and BFO-LQR is achieved based on the standard control criteria 

which includes rise time, maximum overshoot, settling time and control input 

of the system. Simulation results suggest that the BFOA-LQR controller  

can be adopted to balance the Segway robot with minimal overshoot and  

oscillation frequency. 
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1. INTRODUCTION 

The Segway robot is an electric, two-wheeled self-balancing human transporter with a computer-

controlled gyroscopic stabilization and control system. This new vehicle is a complex and hybrid machine that 

requires engineering competence in many fields; vehicle dynamics, automatic control, battery technology, 

power electronics, software engineering, microcomputer programming, network and communication 

engineering. The two-wheeled robot was revealed by Dean Kamen in 2001 to replace the car or buggies which 

were more polluting [1]. The personal transporter has the wide applications in the military and civilian field due 

to its simple construction, high energy using rate, stable movement and ability to adapt with surrounding 

environmental conditions. However, the single-seat robot faces many challenges related to nonlinearity, high 

order variables, strong coupling and inherent unstable dynamics of the system. Therefore, balance problem and 

development of this type of vehicle is a hot research topic of interest to many robotics laboratories around  

the world. Segway is a known two-wheeled single-seat mobile robot which has been utilized as a commercial 

personal transportation vehicle. In the Segway robotic system a collection of tiltsensors and five gyroscopes are 

https://creativecommons.org/licenses/by-sa/4.0/
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used to remain the human user in the straight position [2]. Moreover, [3] use two teams, human transporter 

platform (HT) and robot mobility platform (RMP), to created a new mobile robot, called Segway Soccer.  

The walking robotic system is used to examine the coordination of dynamically formed, mixed personal-mobile 

robot teams within the domain of a team function that requires making a decision and response.  

An initial model of a digitally controlled mobile robot has been constructed in [4]. In the presented 

prototype, which is based on the inverted pendulum, the human rider is simulated by attaching weights to  

the scheme. A linear state feedback controller is used to stabilize the proposed personal mobile robot based on 

sensory information from motor encoders and a gyroscope. A new two-wheeled inverted pendulum mobile 

robot is presented by [5]. A control system based on pole placement technique is designed to stabilize the rider 

in an upright position. It is worth considering that, there are another models for two-wheeled self-balancing 

human vehicles invented by robotic engineers. In 2003, David P. A. built the Nbot balancing robot used  

a human transporter provided by a linear controller used to stabilize the system using information from motor 

encoder and the inertial sensor. Furthermore, [6] has successfully fabricated a new model of robot called 

Legway based on Mindstorms robotics kit. A linear controller is used to stabilize the electric vehicle based 

information of the tilt angle obtained from two electro-optical proximity detector (EOPD) sensors. However, 

fine tuning for the controller parameters is required to achieve a peter performance. Hussien et al. [7] introduced 

another model for two-wheeled mobile robot. Nonlinear control system based on model reference adaptive 

control (MRAC) using Lpayunovs stability theorem is employed to balance the proposed single-seat electric 

vehicle. Simulation and experimental results are presented to validate tracking performance of the proposed 

robot actuation system. However, the performance of the robot control system is based on the controller 

coefficients, which are chosen arbitrary, therefore, for peter performance an optimization algorithm should be 

used. All the proposed controllers used to stabilize the mobile robots are not optimized using optimization 

methods, the gain parameters are obtained using trial and error procedure. In order to achieve a stable actuation 

performance for mobile robot system a proper controller technique based on tuning algorithm should be used. 

The linear quadratic regulator (LQR) is among most popular linear state feedback controllers implemented in 

field of industrial applications. The implementation of the LQRcontroller can be noticed by research works 

published by [4, 8-11].  

In this study, the LQR controller is adopted to implement the control system used to balance  

the two-round human vehicle as it seeks basically a trade off between the best control performance and 

minimum power input [12, 13]. However, using this controller approach includes many problems and 

disadvantages such as relying on the designer experience and skill and the trial and error procedure in  

the determine of the controller weighting matrices 𝑄 and 𝑅. Therefore, there is a enormous concern by 

robotic engineers in computer-aided optimization algorithms that can be considered to obtain the global 

optimum solution of 𝑄 and 𝑅 matrices.. 

There are many optimization approaches that have been adopted by control engineers to obtain 

optimum values for elements of LQR matrices, such as a particle swarm inspired evolutionary algorithm  

(PS-EA), particle swarm optimization (PSO), genetic algorithm (GA) [14], combination of simulated 

annealing (SA) and GA [15], differential evaluation (DE) [16] and ant colony optimization (ACO) [17]. 

These intelligent optimization tools make the LQR controller system very robust, and insensitive to noisy 

and/or missing data. Bacteria foraging optimization algorithm (BFOA) is a new tuning algorithm that can be 

applied to optimize the cost function of several problems in different application fields. The BFOA is  

a combinatorial optimization algorithm which applied to achieve the best global solution for the proposed 

LQR controller. It is worth considering that there is a significant improvement inthe control response of  

the LQR controller is achieved by using these tuning algorithms, however, the research work is still open to 

explore for further controller improvements and developments. In this research, two tuning algorithms, GA 

and  BFOA are utilized to improve the behavior of the LQR controller.  

The remainder of the paper is organised as follows: section 2 presents modelling and dynamics of 

the proposed two-wheeled self-balancing human robot. In section 3, the technique of the controller system is 

introduced. Section 4, presents optimization methods of LQR controller. Section 5 and section 6 introduce 

controller design and simulation results of GA-LQR and section 7 introduce BFOA-LQR controllers for  

the robot system respectively. Conclusions and future work are presented in section 8. 

 

 

2. SYSTEM MODELING  

The performance of a walking robot depends on the reliability of the system modeling and 

robustness of the controller design. The structure of the two-wheeled Segway personal robot composes 

mainly of an electrical sub system and mechanical subsystem. Figure 1 demonstrates graphic model of  

the Segway robot. In this section, the motion equation of the inverted pendulum is derived and the dynamic 

model of the motors is formulated. The motor model is then utilized in formulation the dynamic model of  
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the personal robot scheme to give a functional relationship between applied voltage to the DC motors and 

adjusting magnetic torque required to stabilize the human mobile robot. 

 

2.1.  Electrical subsystem modeling 

The main part of the electric sub system is the DC motors, which are used to rotate the left and right 

wheel of the robot. The electric circuit of the DC motor is shown in Figure 2. Applying voltage 𝑉𝑎 (𝑉) to  

the motor terminals generates a current 𝑖(𝑡) (𝐴) in the motor armature. The excited motor produces a torque 

(𝑁𝑚) governed by the following relationship. 

 

𝐶 = 𝐾𝑚𝑖 (1) 

 

where 𝐾𝑚 is torque constant (𝑁𝑚/𝐴). The back electromotive (emf) voltage 𝑉𝑒 (𝑉) produced in  

the motor coil can be approximated as a linear function of motor angular velocity �̇� (𝑟𝑎𝑑/𝑠), as follows: 

 

𝑉𝑒 = 𝐾𝑒�̇� (2) 

 

where 𝐾𝑒 is torque constant (𝑉𝑠/𝑟𝑎𝑑). Applying Kirchoff’s voltage law to the motor circuit shown in  

Figure 2 yields the following expression: 

 

Va = Ri + L
di

dt
+ Ve (3) 

 

It is worth considering that the dynamic of the mechanical system is considered slow compared to that of 

electrical system, therefore, the current transients of the system can be omitted. Hence, solving (3) for  

the current yields: 

 

𝐢 =
𝐕𝐚−𝐕𝐞

𝐑
 (4) 

 
based on (2), (4) can be written as follows: 

 

i =
Va

R
−

Ke

R
θ̇ (5) 

 

substituting (5) in (1) gives an expression for the torque produced by DC motor: 

 

C =
Km

R
Va −

KmKe

R
θ̇ (6) 

 

 

 

 

 

Figure 1. Model of the two-wheeled robot [18] 

 

Figure 2. Electric model circuit of DC motor 

 

 

2.2.  Mechanical subsystem modeling 

It consists of chassis, which behaviors as inverted pendulum, and the left and right wheels.  

In this study, the parameter of mass, radius and moment of inertia of the two wheels are assumed the same. 

Based on this assumption the dynamic modeling of the right wheel is the same as that of the left wheel.  

In this research, formulation of the right wheel model is considered in detail. It is worth considering that  

the modeling strategy of the mechanical robot subsystem is based on an idea that the dynamics of  
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the inverted pendulum and wheels are modeled separately at the beginning, and then equations of motion 

which completely describe the dynamic behavior of the system are derived [19]. 

 

2.2.1.  Wheel model 

Figure 3 presents the free body diagram of the left and right wheels for the mobile Segway transport 

system. Using second Newton’s law of motion, the sum of the external forces 𝐹(𝑁) exerted on the wheel, 

which governs its translation motion in the horizontal x-direction is given by [20]. 

 
∑Fx = Mwa (7)  

 

Mwẍ = Hf − H (8) 

 

 

 
 

Figure 3. Free body diagram of the robot wheels 

 

 

where 𝑀𝑤(𝐾𝑔) is the wheel mass of the robot, a  is the gravity acceleration (𝑚/𝑠2) and𝐻𝑓is the friction 

force between ground and wheels(𝑁). While the rotational motion 𝑀𝑜 of the wheel is given by: go 

 

∑Mo = Iwθ̈w (9) 

 

Iwθ̈w = C − Hfr (10) 

 

where 𝐼𝑤 (𝐾𝑔𝑚2) and �̈�𝑤 (𝑚/𝑠2) are moment of inertia and acceleration of the wheels respectively, and r  

is the radius of wheel (𝑚). Based on (6), the above equation becomes: 

 

Iwθ̈w =
Km

R
Va −

KmKe

R
θ̇w − Hfr (11) 

 

Hf =
Km

Rr
Va −

KmKe

Rr
θ̇w −

Iw

r
θ̈ (12) 

 

where �̇�𝑤is the angular velocity of wheel (𝑚/𝑠). Substituting (12) into (8) yields (13) and (14) for the left 

and right wheels respectively. 

 

Mwẍ =
Km

Rr
Va −

KmKe

Rr
θ̇w −

Iw

r
θ̈w − HL (13) 

 

Mwẍ =
Km

Rr
Va −

KmKe

Rr
θ̇w −

Iw

r
θ̈w − HR (14) 

 

Because the center of the robot wheel is acted by the linear motion, the angular rotation of the wheel can be 

transformed into linear motion by the following simple transformation, �̈�𝑤𝑟 = �̈� → �̈� = �̈�/𝑟,  

�̇�𝑤𝑟 = �̇� → �̇� = �̇�/𝑟. By the linear transformation, (13) and (14) become as follows: 

 

Mwẍ =
Km

Rr
Va −

KmKe

Rr2 ẋw −
Iw

r2 ẍ − HL (15) 
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Mwẍ =
Km

Rr
Va −

KmKe

Rr2
ẋw −

Iw

r2
ẍ − HR (16) 

 

Adding (15) and (16) together yields the following expression, 

 

2(𝑀𝑤 +
𝐼𝑤

𝑟2)�̈� = 2
𝐾𝑚

𝑅𝑟
𝑉𝑎 − 2

𝐾𝑚𝐾𝑒

𝑅𝑟2 �̇�𝑤 − (𝐻𝐿 + 𝐻𝑅) (17) 

 

2.2.2.  Chassis model 

The chassis of the mobile robot can be modeled as an inverted pendulum, Figure 4 presents the free 

body diagram of the chassis. Again, based on Newton’s law of motion, the sum of forces acting on  

the chassis in the horizontal x-direction is given by [20]: 

 

∑Fx = Mpẍ (18) 

 

Mpẍ = HL + HR − Mplθp̈ cos θp + Mplθ̇
2
p sin θp (19) 

 

where 𝑀𝑝 is the wheel mass of the robot (𝐾𝑔) and 𝜃𝑝 is the rotational angle of the chassis (𝑟𝑎𝑑). The above 

equation is rearranged as follows: 

 

HL + HR = Mpẍ + Mplθ̈p cos θp − Mplθ̇
2
p sin θp (20) 

 

The sum of perpendicular forces acting on the pendulum is: 

 
∑Fp = Mpẍ cos θp (21) 

 

(𝐻𝐿 + 𝐻𝑅) 𝑐𝑜𝑠 𝜃𝑝 + (𝑃𝐿 + 𝑃𝑅) 𝑠𝑖𝑛 𝜃𝑝 − 𝑀𝑝𝑔 𝑠𝑖𝑛 𝜃𝑝 − 𝑀𝑝𝑙�̈��̈� = 𝑀𝑝�̈� 𝑐𝑜𝑠 𝜃𝑝 (22) 

 

where 𝑃𝐿and 𝑃𝑅 are the reaction forces between left and right wheel and chassis (𝑁) respectively and �̈�𝑝 is 

chassis angular acceleration(𝑚/𝑠2), sum of moments around the center of pendulum mass is given by: 

 

∑Mo = Ipθ̈p (23) 

 

Ipθ̈p = −(HL + HR)l cos θp − (PL + PR)l sin θp − (CL + CR) (24) 

 

where 𝐶𝐿 and 𝐶𝑅are the motor torque applied to left and right wheels respectively (𝑁𝑚) the motor torque 

exerted on the pendulum applied as defined in (6) and after linear transformation, 

 

CL + CR = 2
Km

R
Va − 2

KmKe

R

ẋ

r
 (25) 

 

substituting (25) into (24) yields, 

 

Ipθ̈p − 2
KmKe

R

ẋ

r
+ 2

Km

R
Va = −(HL + HR)l cos θp (PL + PR)l sin θp (26) 

 

substitute (26) in (22) after multiply (22) by(−𝑙) yields:  

 

Ipθ̈p − 2
KmKe

R

ẋ

r
+ 2

Km

R
Va + Mpgl sin θp + Mpl

2θ̈p̈ = −Mplẍ cos θp (27) 

            

 

Sum of moments around the center of pendulum mass is given: 

 

−Mplẍ cos θp = (Ip + Mpl
2)θ̈p − 2

KmKe

Rr2 ẋ + 2
Km

Rr
Va + Mpgl sin θp (28) 

 

to eliminate the term (𝐻𝐿 + 𝐻𝑅) from the motor dynamic (20) is substituted in (17). 

 

2
Km

Rr
Va = (2Mw +

Iw

r2 + Mp)ẍ + 2
KmKe

Rr2 ẋ + Mplθ̈p cos θp − Mplθ̇
2
p̈ sin θp (29) 
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for purpose of design a linear control system, the system dynamic (28) and (29) are linearized about  

an operating point based on the assumption 𝜃𝑤 = 𝜋 + 𝜙 where  denotes an angle measured from  

the vertical upward direction. Therefore, 𝑠𝑖𝑛 𝜃𝑝 = −𝜙, 𝑐𝑜𝑠 𝜃𝑝 = −1 and (𝑑𝜃𝑝/𝑑𝑡)2 = 0 for purpose of state 

space representation, the dynamic (28) and (29) are rewritten as follows: 

 

 

ϕ̈ =
MpI

(Ip+MpI2)
ẍ +

2KmKe

Rr(Ip+MpI2)
ẋ +

MpgI

Rr(Ip+MpI2)
ϕ −

2Km

(Ip+MpI2)
Va  (30) 

 

ẍ =
2Km

RrKw
Va −

2KmKe

Rr2Kw
ẋ +

MpI

Rr2Kw
ϕ̈ (31) 

 

where 𝐾𝑤 = 2𝑀𝑤 + 2𝐼𝑤/𝑟2. After a series of algebraic manipulation, the state equation becomes:  

  

[

�̇�
�̈�
�̇�

�̈�

] =

[
 
 
 
 
0 1 0

0
𝐾1(𝑀𝑝𝐼𝑟−𝐼𝑝−𝑀𝑝𝐼2)

𝑅𝑟2𝛼

𝑀2
𝑝𝑔𝐼2

𝛼

0 0 0

0
𝐾1(𝑟𝛽−𝑀𝑝𝐼)

𝑅𝑟2𝛼

𝑀𝑝𝑔𝐼𝛽

𝛼

0
0
1
0

] [

𝑥
�̇�
𝜙

�̇�

] +

[
 
 
 
 

0
2𝐾𝑚(𝐼𝑝+𝑀𝑝𝐼2−𝑀𝑝𝐼𝑟)

𝑅𝑟𝛼

0
2𝐾𝑚(𝑀𝑝𝐼−𝛽)

𝑅𝑟𝛼 ]
 
 
 
 

𝑉𝑎 (32) 

 

where,

 

𝐾1 = 2𝐾𝑚𝐾𝑒 , 𝛽 = 2𝑀𝑤 +
2𝐼𝑤

𝑟2 + 𝑀𝑝 and 𝛼 = [𝐼𝑝𝛽 + 2𝑀𝑝𝐼
2(𝑀𝑤 +

𝐼𝑤

𝑟2)]. 
It is worth considering that 

the system modeling is based on the supposition that both wheels of the walking robot are assumed in state of 

contact with the ground and without sliding. Cornering forces produced by vehicle wheels during cornering 

are also considered negligible [19].
 

 

 

 
 

Figure 4. Free body diagram of the chassis 

 

 

3. CONTROLLER TECHNIQUE 

In this research, LQR technique is utilized to implement the proposed robot control system. LQR is  

a common controller approach used effectively in the control applications of the movement systems. Figure 5 

shows block diagram of the Segway robot control system based on LQR controller. The state and output 

matrix equations describing the Segway robot equations of motion are given by: 

 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡) (33) 

 

𝑦(𝑡) = 𝐶𝑋(𝑡) + 𝐵𝑢(𝑡) (34) 

 

where 𝐴(𝑛𝑥𝑛), 𝐵(𝑛𝑥𝑚), 𝐶(𝑝𝑥𝑛), 𝐷(𝑝𝑥𝑚) are the system, input, output and feed forward matrix respectively. 

In this approach, the input vector: 

 

𝑢(𝑡) = −𝐾𝑋(𝑡) (35) 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020:  2642 - 2653 

2648 

where𝐾 = [𝐾1 𝐾2 𝐾3 𝐾4] is an optimal feedback gain matrix of the controller used to track the input 

command while the following performance index: 

 

𝐽 = ∫ (𝑋𝑇(𝑡)𝑄(𝑡)𝑋(𝑡) + 𝑢𝑇(𝑡)𝑅(𝑡)𝑢(𝑡))𝑑𝑡
∞

0
 (36) 

 

where 𝑄(𝑡) and𝑅(𝑡) are weighting state and input matrices respectively. The feedback gain matrix K  can be 

determined by using the following:  

 

𝐾 = 𝑅−1𝐵𝑇𝑃 (37) 
 

where P  denotes the solution of the following Riccati: 

 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (38) 

 

The controller weighting matrices should be tuned properly in order to minimize the following performance 

index )(J : 

 

𝐽 = ∫ (𝑞11𝑥1
2 + 𝑞22𝑥2

2 + 𝑞33𝑥3
2 + 𝑞44𝑥4

2 + 𝑅𝑢2)𝑑𝑡
∞

0
 (39) 

 

where 𝑞11, 𝑞22, 𝑞33 
and

44q represent the weighting elements of position, speed, angle and angular velocity of 

the proposed robot system respectively. It is worth considering that by using controller weighting matrices 

𝑄(𝑡) and 𝑅(𝑡) which govern the behavior of the robot system states and control effort respectively,  

the optimal LQR gain matrix 𝐾 is computed based on the Matlab command ” lqr ”. 

 

 

  

Figure 5. Segway robot control system using LQR controller 

 

 

4. LQR OPTIMIZATION METHODS 

In this research, two optimization algorithms, GA and BFOA, are used to tune the 𝑄(𝑡) and 𝑅(𝑡) 

matrices of the LQR controller, which are adopted to calculate the gain matrix required to balance  

the Segway system. Based on optimized gain matrix 𝐾 a good output time response with minimal of rise time 

(𝑡𝑟), settling time(𝑡𝑠), maximum overshoot (𝑀𝑜) and steady state error(𝑒𝑠𝑠) can be investigated.  

 

4.1.  Genetic algorithm 

GA is an optimization technique used to find global solution for more control problems. Based on  

the mechanisms of natural selection. In this optimization approach, the solution space is selected by 

generating a population of candidate individuals to find optimum values for the problem. The procedure of 

GA optimization method includes three basic steps, namely selection, crossover and mutation. By applying 

these stages new individuals can be created, which, could be better than their parents. Based on the fitness 

function of the system, the GA steps are repeated for many generations and eventually stop at generating 

candidate individual elements that can represent the best solution for the application problem [14]. Figure 6 

shows the graphical illustration of the GA loop.  

The definition of the GA steps is as follows Abdulla [14]: Random initial population - Choose 

individuals for mating - Mate the population to generate progeny - Mutate progeny - New individuals 

inserted into population - Are criteria satisfied? - End of solution searching. Each chromosome represented 

by five real value cells that correspond to the LQR controller weighting matrices 𝑄(𝑡) and 𝑅(𝑡) as shown in 

Figure 7. The chromosome elements 𝑞11, 𝑞22, 𝑞33, 𝑞44 and R should be adjusted properly by optimum 

positive numbers in order to achieve best control performance.  
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Figure 6. Genetic algorithm loop 
 

Figure 7. Chromosome definition 

 

 

4.2.  BFO algorithm 

The bacteria foraging behavior is a computational model, which, has attracted more attention as it is 

a rich source of potential engineering applications. BFO is a simple and powerful population-based numerical 

optimization algorithm that has been introduced by Passino in 2002 [21]. The BFO algorithm has been 

gaining a considerable interest in researchers due to its efficiency in solving and optimizing more engineering 

problems in several application domains, such as optimal control [22], harmonic estimation [23] and 

transmission loss reduction [24]. The strategy of bacteria selection for the BFO algorithm bases on an idea 

that the bacteria with poor foraging is eliminated and following up those bacteria which have successful 

foraging to maximize energy obtained per unit time [21]. It is worth considering that, in this new 

optimization algorithm a social foraging approach of the E-coli bacteria can be applied successfully to solve 

multi-optimal function optimization problem. The E-coli bacteria can move in two ways namely, swimming 

and tumbling. Figure 8 shows the swim and tumble movement of a bacterium. 

 

 

 
 

Figure 8. movement modes of a bacterium 

 

 

4.3.  BFO foraging strategy [25]  

− Chemotaxis: This process is related to movement of bacterium during search for food. The E-coli bacteria 

can move in two ways namely, swimming and tumbling, and they are able to alternate between these two 

movement styles for the whole of their lifetime. In the swimming mode, the bacteria walk in a certain 

direction for gathering food, while in the tumbling mode, they move with random directions. 

− Swarming: The swarming action means the bacteria with a good fitness value, try to attract others to form 

groups, so that they all can arrive at the desired location. These groups of E-coli cells arrange themselves, 

in which, they can move as concentric patterns for food searching.  

− Reproduction: In this stage, all the bacteria population are classified based on health status.  

The healthier bacteria, which, have had sufficient nutrients will be reproduced, while the less healthy 

bacteria will die. The surviving bacteria will split into an identical replica of itself placed in the same 

locations with a that number equals to the number of the dead ones.  

− Elimination and Dispersal: During this evolutionary step, gradual or sudden events or attacks in  

the local living environment of the bacteria, may occur due to significant rising of the temperature caused 

by occupancy of a high density of bacteria for a specific area. This high temperature may kill a group of 

bacteria and dispersal of others into some new locations. 

 

 

5. ROBOT CONTROL SYSTEM DESIGN 

In this research, an optimal control system for the Segway robot is designed using the state feedback 

LQR controller. The gain parameters of the controller are tuned effectively, using optimization algorithms,  

GA and BFOA. The proposed controller design is validated using Matlab programming. Based on step input, 

the control system is designed for the following requirements: rise time less than 10 (ms), settling time less 

than 30 (ms), maximum overshoot percentage less than 5%. The fitness function of the robot control system 

is as follows: 
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𝐹 = 𝑆. 𝑡𝑟 , 𝑡𝑟𝑚𝑎𝑥 +  𝑆. 𝑡𝑠, 𝑡𝑠𝑚𝑎𝑥 + 𝑆. 𝑂,𝑀𝑜  (40) 

 

where 𝑆 is the closed-loop transfer function of the Segway robot scheme 𝑡𝑟 is the rise time (s), 𝑡𝑟𝑚𝑎𝑥 is  

the maximum rise time (s), 𝑡𝑠 is the settling time (s), 𝑡𝑠𝑚𝑎𝑥 is the maximum settling time (s), 𝑂 is  

the overshoot value of the output response and 𝑀𝑜 is the maximum over shoot value. This function is 

considered in optimization process of the controller gain matrix using GA and BFO tuning algorithms. 

 

 

6. GA-LQR CONTROLLER DESIGN AND RESULTS 

The block diagram of the Segway control system using GA-LQR controller is shown in Figure 9. 

Based on the system parameters (𝑅 =1.6𝛺, 𝐿 =1.2𝑚𝐻, 𝑙 =0.16𝑚, 𝑀𝑤 =0.02𝐾𝑔, 𝑀𝑝 =0.52𝐾𝑔, 

𝐼𝑤 =0.0032𝐾𝑔𝑚2, 𝐼𝑝 =0.0038 𝐾𝑔𝑚2) the state and output equation are given in (41) and (42) respectively. 

The global optimal solution for the LQR controller problem is achieved using genetic algorithm 

programming. This solution includes determine optimum values for the weighting matrices elements, which, 

are given below.  Based on the optimized weighting matrices, the LQR gain matrix K was computed using   

the Matlab command “𝑙𝑞𝑟” as follows:𝑄 = 𝑏𝑙𝑘𝑑𝑖𝑎(𝑞11, 𝑞22, 𝑞33, 𝑞44) where 𝑞11 = 8.969., 𝑞22 =0.308, 

𝑞33 =0.121, 𝑞44 =0.0085, 𝑅 =2.123*10−5 and 𝐾 = [-6.4988 -3.8592 -5.1982 -0.7348]. 

 

[

�̇�
�̈�
�̇�

�̈�

] = [

0 1 0 0
0 −0.0316 0.3817 0
0 0 0 1
0 0.3927 49.5531 0

] [

𝑥
�̇�
𝜙

�̇�

] + [

0
0.05746

0
−0.7141

] 𝑉𝑎 (41) 

 

𝑦 = [
1 0 0 0
0 0 1 0

] [

𝑥
�̇�
𝜙

�̇�

] + [
0
0
] 𝑢 (42) 

 

The response of the system output 𝛥𝑥(𝑡) and 𝛥𝜙(𝑡) using the above optimized feedback gain 

matrix is shown in Figure 10. Figure 11 presents the input signal of the Segway system. It is clear from 

Figures 10 and 11 that the tuned controller utilizing the GA tuning method can effectively perform a fast and 

stable response under an acceptable input effort. Based on Figure 10, the output states 𝛥𝑥(𝑡) and 𝛥𝜙(𝑡) 

tracked the demand input trajectories without overshoot, rise time and settling time of approximately 80 ms 

and 95 ms respectively and approximately zero steady state error. Figure 12 presents converging of the LQR 

weighting matrices through iterations based on GA tuning method. 

 

 

 
 

Figure 9. Block diagram of Segway controller GA-LQR 
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Figure 10. System response using  

GA-LQR controller 

 

Figure 11. System input based  

on GA-LQR controller 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

 

Figure 12. Generation elements of 𝑄(𝑡) and 𝑅(𝑡) matrices for GA-LQR controller; (a) 𝑞11 element,  

(b) 𝑞22 element, (c) q33 element, (d) 𝑞44 element, and (e) 𝑅 element 

 

 

7. BFO-LQR CONTROLLER DESIGN AND RESULTS 

The design of LQR controller based on BFOA method is analogous to that of the GA-LQR control 

system as previously presented in Figure 9. The optimized LQR matrices 𝑄(𝑡) and 𝑅(𝑡) and controller gain 

matrix using BFO algorithm are as follows: 𝑄 = 𝑏𝑙𝑘𝑑𝑖𝑎(𝑞11, 𝑞22, 𝑞33, 𝑞44) where 𝑞11 =289.104,  

𝑞22 =-5.15*10−5,𝑞33 =-5*10−5, 44q  = -5.1*10−5 𝑅 =0.00028 and 𝐾 = [-1022 -260.2 886.72 77.7]. 

The time response of the robot states 𝛥𝑥(𝑡), 𝛥𝜙(𝑡) using BFOA-LQR controller is shown in  

Figure 13. Figure 14 shows the control effort required to stabilize the Segway robot system. Regarding  

the optimization of the controller, Figure 15 introduces converging elements of weighting matrices of  

the LQR controller through iterations based on BFOA tuning algorithm. By comparing the behavior of  

the robot system shown in Figures 10, 11, 13 and 14. It should be noted that the BFOA-LQR controller can 

achieve more stable and faster response through following the desired trajectories effectively. Table 1 shows 

comparison results between the GA-LQR controller and BFOA-LQR controller based on control criteria 

parameters.  Based on Table 1, the BFOA-LQR controller enabled the walking robot to follow the demand 

trajectories effectively. 
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Figure 13. Robot response using BFOA-LQR 

 

Figure 14. Control effort of robot system 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

 

Figure 15. Generation elements of 𝑄(𝑡) and 𝑅(𝑡) matrices for BFO-LQR controller; (a) 𝑞11 element,  

(b) 𝑞22 element, (c) q33 element(c) q33 element, (c) q33 element,  

(d) 𝑞44 element, and (e) 𝑅element (continue) 

 

 

Table 1. Performance parameters of the Segway using GA-LQR and BFOA-LQR controller 

Cont. Type System Output 
Control Criteria Parameter 

Rise Time Settling Time Max. Overshoot Control Input 
GA-LQR Position 1.25 s 1 s 5 % 1.3 V 

Yaw Angle 1.8 s 10 ms 120 % 
BFOA-LQR Position 0.5 s 0.33 s 0 % 1.4 V 

Yaw Angle 0.85 s 4 ms 130 % 

 

 

8. CONCLUSIONS 

In this research, an optimal linear control system was adopted to balance a Segway two-wheeled 

mobile robot. The dynamics of the robot system is modeled in state space form in order to design a state 

feedback stabilizing controller for the Seqway robot system. A LQR controller was proposed to stabilize  

the Segway robot in upright position. The controller is optimized using two tuning algorithms, GA and BFO. 
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An active stabilizing scheme for the Segway robot system has been implemented successfully using  

GA-LQR controller and BFOA-LQR controller. Simulation results of the controllers are introduced and then 

compared based on standard stabilizing parameters. The comparison revealed that the BFOA-LQR controller 

can be adopted to implement faster and a more stable balancing system for the Segway vehicle. 
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