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Abstract 
Test generation algorithm based on the SVM (support vector machine) generates test signals 

derived from the sample space of the output responses of the analog DUT. When the responses of the 
normal circuits are similar to those of the faulty circuits (i.e., the latter have only small parametric faults), 
the sample space is mixed and traditional algorithms have difficulty distinguishing the two groups. 
However, the SVM provides an effective result. The sample space contains redundant data, because 
successive impulse-response samples may get quite close. The redundancy will waste the needless 
computational load. So we propose three difference methods to compress the sample space. The 
compressing sample space methods are Equidistant compressional method, k-nearest neighbors method 
and maximal difference method. Numerical experiments prove that maximal difference method can ensure 
the precision of the test generation. 
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1. Introduction 

A recent trend in analog test strategies is called test generation. It can establish 
convenient signals to excite the input of the device under test (CUT), observe the response [1], 
and decide whether the CUT is faulty based on the response [2]-[12]. The analog test 
generation is different from the digital test generation [13],[14]. 

Fault detection and classification in this paper are based on a Support Vector Machine 
(SVM), so that the response vectors of normal and faulty circuits can be distinguished on the 
basis of nonlinear classification. SVM [15],[16] is to classify small samples based on statistical 
learning theory. This method has proven adept at dealing with highly nonlinear classification 
problems. The rule-less response data sampled from electronic systems are an excellent 
example. When the bandwidth of the DUT is much smaller than the sampling frequency of the 
DAC/ADC, the sample vectors of the impulse-response become quite large. The response data 
of the sample space contains redundant data, because successive impulse-response samples 
may get quite close. The redundancy will waste the needless computational load. In this paper 
we propose a maximal difference method to compress the sample space, and reduce 
computational load. 
 

 
2. Test generation algorithm 

An analog DUT can be treated as a discrete time digital system by placing it between a 
digital-to-analog converter (DAC) and an analog-to-digital converter (ADC) [12]. Many circuit 
instances, which are either normal or given parametric faults, must be simulated for the test 
generation. Each instance is labeled as ‘passed’ or ‘failed’. A passed instance means that the 
simulated parameters match their specifications. A failed instance means that the simulated 
parameters do not match their specifications. A response vector is constructed for each circuit 
instance by sampling the analog output signal [12]. So we can sample the output response of a 
passed or failed instance to represent the circuit. Then the sample space can be obtained from 
many circuit instances. This space will be used as training set or testing set [17]-[19] for 
classification in the test generation.  

The process of the test is illustrated in Figure 1. 
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Figure 1. Process of the test algorithm based on SVM 
 

 
The classification hyperplane determined for the output response space is the same as 

that determined for the impulse-response space [12]. Thus, we can also obtain the simulated 
parameter sets by sampling the impulse responses of the circuit instances. The simulated 
parameter sets can themselves be considered output vectors, and used to build the sample 
space.     

Sv=(S[0], S[1], S[2],···) is a sample vector for one impulse response. Many such vectors 
construct the sample space (Sv1, Sv2, Sv3, ···). However, the output response mainly comes 
from the range S = (s[0], s[1],···, s[d−1]), where d=Fs/BW and BW is the bandwidth of the LTI. 
So impulse-response sample space (S1, S2,···, Si,···) is constructed by S-vectors. 

In the analysis of some analog systems the responses of normal circuits are similar to 
those of circuits with small parametric faults, so the response vectors are mixed together. It is 
difficult to classify the sample space constructed by these response vectors with any existing 
test generation algorithm. A SVM can deal with this sample space by mapping it to a higher-
dimensional feature space and separating the groups with a hyperplane. We can use SVM for 
the test generation to execute the classification process, and obtain the test signals from the 
classification hyperplane.  

The optimal hyperplane algorithm proposed by Vladimir Vapnik was a linear classifier. 
Reference [20] proposed a way to create nonlinear classifiers by applying the kernel functions to 
maximum-margin hyperplanes. 

We obtain support vectors from the training set with the SVM algorithms [21]. The 

hyperplane can be built from the support vectors. TS is the transpose of S . The test signals 
can then be calculated by the optimal hyperplane as the test sequence. 
 
 
3. Compression of the sample space 
3.1. Equidistant compressional method 

When the bandwidth BW of the DUT is much smaller than the sampling frequency Fs of 
the DAC/ADC, the sample vectors of the impulse-response become quite large considering 
d=Fs/BW. Then the sample space of the impulse-response becomes quite large too. This 
sample space contains redundant data, because successive impulse-response samples may 
get quite close. The redundancy will waste the needless computational load. For reducing 
computational load, a small number of impulse-response samples can be extracted from the 
vector H to build the new sample space. So the compression of the sample space means 
decreasing the length of every sample vector. 

Reducing the length of a sample vector always decreases the cost of the calculation, 
but may imply a loss of information.  So before decreasing the sample space, we must ensure 
that the remaining information suffices for the classification. In this paper, we require that the 
efficiency of the test remains satisfactory, meaning that the parameters generated by the test 
algorithm are effective. The efficacy of the test is dependent on the precision of the 
classification. 

A method to compress the sample vectors of impulse-response is the equidistant 
compressional method [12]. For example (s[3], s[7], s[11] , s[15]···) would be a new sample 
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vector after extracting samples from H = (s[0], s[1],···, s[d−1]) with distance 4. This method is 
easy to be executed. But it cannot ensure that the remaining information suffices for the 
classification, when the length of every new sample vector is very small, because the extracted 
s[i] for the new sample vectors is not always the most effective for classification in this method.  

We use the circuits in Figure 2 to show the results of the equidistant compressional 
method, and assign normal and faulty parameters to the components in Figure 2 to build normal 
and faulty circuit instances. All the parameters fall inside their respective ranges of tolerance in 
normal circuit.  

We can construct a sample space with sample vectors from the circuit shown in 
Figure 2. A sample vector, which length is set to 30, is obtained by sampling the impulse 
response of a circuit instance. It can be written as (s[0], s[1],···, s[28] , s[29]). In the training set, 
each sample vector is labeled as ‘passed’ or ‘failed’ according to the circuit specifications. The 
testing set classifications are derived by comparing the output response to a threshold derived 
from the hyperplane coefficients, following the test generation method based on SVM. 
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(a) three-pole active filter 
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(b) five-pole active filter 
 

Figure 2. Example circuits 
 
 
Table 1 shows the misclassification rates for the circuits in Figure 2 by the test 

generation algorithm based on SVM.  For the passed (failed) population, the misclassification is 
defined as the ratio between the number of correctly classified passed (failed) instances to the 
number of instances labeled as passed (failed). The test generation method based on SVM 
implemented in this paper achieves low misclassification rates. 

 
 
Table 1. Misclassification Rates of Test Generation based on SVM for Figure 2 

Misclassification 
rate (%) 

Figure 2 (a) Figure 2 (b) 
Training 

set 
Testing 

set 
Training 

set 
Testing 

set 
misclassification for 
passed population 

0.67% 0.875% 1.6% 0 

misclassification for 
failed population 

0.67% 1.5% 1.6% 1% 

misclassification for 
total population 

1.34% 2.38% 3.2% 1% 

 
 
We can use the equidistant compressional method to extract samples and reduce the 
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length of every impulse-response sample vector. We use k to represent the length of the new 
sample vector after extracting samples. If k=15, the sample vector would be (s[1], s[3],···, s[27], 
s[29]). We could also construct the sample vectors (s[2], s[5],···, s[26], s[29]) and (s[4], s[9], 
s[14], s[19], s[24], s[29]) with k=10 and k=5 samples respectively. Figure 3 shows the 
misclassification rates for the circuits of Figure 2, with different values of k. The misclassification 
rates for passed and failed population are denoted in Figure 3 by different bars. The sum of the 
misclassification rates for passed and failed population means the misclassification rate for total 
population.  

Figure 3(b) shows that the misclassification rates for the total training or testing set of 
Figure 2(b) for k=15, k=10 and k=5 respectively. Consulting the misclassification rates in Table 
1, the effect of reducing the length of every sample vector is acceptably small, and the 
equidistant compressional method is useful even for sample vectors of low dimension. 

But for the circuit of Figure 2(a), Figure 3(a) shows that the misclassification rates for 
the total training and testing set can achieve 80% and 44% when we reduce the length of every 
sample vector. The misclassification rates are very high, and cannot be accepted. So for Figure 
2(a) the equidistant compressional method is disabled. Because the new sample vectors are not 
the most effective for classification. 

 
 

     
 

      (a) misclassification rates of  Figure 2(a)             (b) misclassification rates of Figure 2(b) 
 

 
 

Figure 3.  Misclassification rates for different values of k by equidistant compressional method 
 
 
In the following sections we will propose two other different methods to compress the 

sample space, and contrast the three methods. We will show the best method for compression 
of sample space by the extensive experiment results. 

 
 

3.2. k-nearest neighbors method 
In this section we will propose a method to compress the impulse-response sample 

space based on k-nearest neighbors algorithm.  
Suppose that an impulse-response sample space is (S1,···Sn, Sn+1, ···Sm). In this 

sample space the number of impulse-response sample vectors labeled as ‘passed’ is n, and the 
number of impulse-response sample vectors labeled as ‘failed’ is m-n. Hi which is (si[0], si[1],···, 
si[d-1]) (i=1,···n, n+1,···m) denotes one impulse-response sample vector. The original length of 
Si is d. The compression of the sample space is to reduce the value of d to construct a new 
sample space. After reducing d the new length of Hi is k. We set Pj=(s1[j],···, sn[j], sn+1[j],···, sm[j]) 
(j=0,···d-1). The compression is to select some Pjs from {P0, P1, ···Pd-1}. The number of the 
selected Pjs for the new sample space is k. If we execute the classification for every Pj, Pjs with 
low misclassification rates should be selected, since these Pjs can make greater contribution to 
the classification of the sample space, and reduce the misclassification rate of the sample space 
for the test generation. After the compression the new sample space can hold the crucial 
characteristics for the test generation. 
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The k-nearest neighbors algorithm is a useful method for pattern classification [22]. The 
testing set here is the target set for classification. For one sample in the testing set, this method 
can be run in the following steps:  

1) For this sample, locate the t nearest samples of the training set. t is the number of 
the nearest samples. 

2) Examine that most of the t nearest samples belong to which category of the training 
set. 

3) Assign this category to this sample in the target dataset. 
A Euclidean distance measure is used to calculate how close each sample of the 

testing set is to the training set. Given sx = (sx1,sx2,..., sxn) which is a sample in the testing set 
and sy = (sy1,sy2,..., syn) which is a sample in the training set as two points, the Euclidean 
distance from sx to sy is given by: 
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So k-nearest neighbors method classifies the testing set based on the class of their 

nearest neighbors. It can be executed fast for the low-dimensional space. So it can be used to 
execute the classification for Pj . 

The compressional method of the impulse-response sample space based on k-nearest 
neighbors algorithm can be run in the steps as follows: 

1) Calculate the misclassification rate for each Pj with k-nearest neighbors algorithm. 
2) Based on the misclassification rates obtained by step 1), select k Pjs with low 

misclassification rates to construct the new sample space. 
Then the new sample space can be used to the test generation. 
The k-nearest neighbors method is a classification method here. The crucial problem for 

all the classification methods is to reduce misclassification rates. When the misclassification 
rates are too high, we must find other methods to reduce them. It makes the k-nearest 
neighbors method complex to apply to compress the sample space. The next section will 
present another method to compress the sample space without the classification. 

 
 

3.3. Maximal difference method 
In this section we will propose another method to compress the impulse-response 

sample space based on maximal difference of the categories. It’s called the maximal difference 
method.  

We use the impulse-response sample space (S1,···Sn, Sn+1, ···Sm) which was illustrated 
in last section to show the maximal difference method. The method just utilizes the training set 
for compression. It can be run in the steps of Figure 4. 

 

 
 

Figure 4.  Process of the maximal difference method 
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The features of ‘passed’ or ‘failed’ category are the average values in the training set. 
Use vector Fp =(Fp1, Fp2, Fp3,···) to represent the feature of ‘passed’ category, and vector Ff 
=(Ff1, Ff2, Ff3,···) to represent the feature of ‘failed’ category.  

The difference features of sample points are obtained by measuring the distances of Fp  
and Ff . The maximal difference method selects the maximal features to construct the new 
sample space. 

 
 

3.4. Comparison  
We use different methods to compress sample space of impulse-response. These 

methods are equidistant compressional method, k-nearest neighbors method and maximal 
difference method. Figure 5 shows that the sample points of the compressed sample space of 
impulse-response. The equidistant compressional method is to extract samples with invariable 
distance. So the new sample vectors of the compressed sample space for the circuits of Figure 
2 are alike. 

 
 

                 
 

(a) sample points of  Figure 2(a) when k=15            (b) sample points of  Figure 2(a)  when k=10 
 
 

                
 
(c) sample points of  Figure 2(a) when k=5             (d) sample points of  Figure 2(b)  when k=15 
                

                                     

                  
 

(e) sample points of  Figure 2(b) when k=10             (f) sample points of  Figure 2(b)  when k=5 
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Figure 5.  Sample points of the compressed sample space of impulse-response from different 
methods 

 
 
Contrast to the k-nearest neighbors method and the maximal difference method, the k-

nearest neighbors method is a classification method. This method is more complex than the 
maximal difference method. The maximal difference method only needs to calculate the 
average values of each category, and doesn’t need to consider the testing set. It is not a 
classification method, and doesn’t need to recognize the two categories. So it is not a complex 
classification process. The computational process of it is simpler than the k-nearest neighbors 
method. So we can choose it for the compression of the sample space if its misclassification 
rates are low enough for the test. 

The misclassification rates for the different compressional methods are illustrated in 
Figure 6. We compare the three compressional methods presented by Figure 6. For example, 
Figure 6(a) shows the misclassification rates for Figure 2(a) when k=15, 10 and 5. So according 
to the misclassification rates in Figure 6 the k-nearest neighbors method is more effective than 
the equidistant compressional method, and the maximal difference method is more effective 
than the k-nearest neighbors method. 

So considering the complexity of the computational process and the misclassification 
rates, the maximal difference method is the best choice for the compression of the sample 
space. 

 
 

 
 

(a) misclassification rates for Figure 2(a) 
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(b) misclassification rates for Figure 2(b) 
 

Figure 6. Misclassification rates for different compressional methods 
 
 

4. Conclusions 
In this paper we have proposed an effective test generation algorithm for analog circuits 

with compressing sample space methods. The algorithm uses a SVM to obtain the test signals.  
For the compression of the sample space we contrast three compressional methods, 

including equidistant compressional method, k-nearest neighbor’s method and maximal 
difference method. Considering the complexity of the computational process and the 
misclassification rates, we can choose the maximal difference method as the compressional 
method. The experiments can prove the efficiency of the maximal difference method. 
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