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 Automated medical image processing, particularly of radiological images, can 
reduce the number of diagnostic errors, increase patient care and reduce 
medical costs. This paper seeks to evaluate the performance of three recent 
convolutional neural networks in the autonomous identification of fissures 

over two-dimensional radiological images. These architectures have been 
proposed as deep neural network types specially designed for image 
classification, which allows their integration with traditional image processing 
strategies for automatic analysis of medical images. In particular, we use three 
convolutional networks: ResNet (residual neural network), DenseNet  
(dense convolutional network), and NASNet (neural architecture search 
network) to learn information from a set of 200 images labeled half as fissured 
bones and half as seamless bones. All three networks are trained and adjusted 

under the same conditions, and their performance was evaluated with the same 
metrics. The final results consider not only the model's ability to predict  
the characteristics of an unknown image but also its internal complexity.  
The three neural models were optimized to reduce classification errors without 
producing network over-adjustment. In all three cases, generalization  
of behavior was observed, and the ability of the models to identify the images 
with fissures, however the expected performance was only achieved with  
the NASNet model. 
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1. INTRODUCTION 

In recent years there have been more and more advantages of the use of digital image processing is 

used as a tool to support the diagnosis from medical images [1, 2] and it’s even proved very valuable to track 

throughout images (temporal quantification and growth) both damage and behavior of tissues [3, 4].  

An automated system has the advantage of quickly identifying specific patterns in large volumes of images 

with a high degree of reliability. As a support tool for specialized medical personnel, this tool can not only 

reduce diagnostic time but also reduces confusing or misdiagnoses [5]. The great advantage of diagnostic 

imaging is its non-invasive character since most of these images are captured by resonance or radiography [6].  
In general terms, these tools use a certain algorithm of classification on the image to determine if it 

possesses or not a certain characteristic, and thus to classify it [7, 8]. Images are normally pre-processed to 

maximize the ability to detect the characteristics of interest [9-11]. The classification algorithm, in general,  

is not applied to an image indiscriminately, on the contrary, a region of interest (ROI) is identified on the image, 
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which can be done manually, or even automatically in more advanced schemes, for example, through 

segmentation strategies [12-14]. It is also possible to use iterative searches on certain image structures to 

determine characteristics and ROI. Statistical methods are also used in which the image is navigated from 

previous information of characteristic behaviors [15]. 

Deep convolutional neural networks have become a powerful tool for image classification, with 

particular application to medical images [16, 17]. These correspond to regularized versions of the traditional 

multilayer perceptrons (fully connected forward layers) [18, 19]. Thanks to this regularization process, 
convolutional networks achieve complex structures with simple patterns that reduce the problem of network 

over-adjustment [20, 21]. We trained three models of deep neural networks to identify fissures on digitized 

radiological images. The images used for the training correspond to sections of bones in which ROI has been 

previously identified, but no morphological operation is applied to them [22, 23]. The types of deep nets 

selected correspond to the state of the art in convolutional nets for image classification [24, 25]. The following 

part of the paper is arranged in this way. Section 2 presents preliminary concepts and problem formulation. 

Section 3 illustrates the design profile and development methodology. Section 4 we present the preliminary 

results. And finally, in Section 5, we present our conclusions. 

 

 

2. PROBLEM FORMULATION 

We evaluate models based on deep neural networks by identifying characteristics in bone structures 
as shown in Figure 1. In particular, we look for models that identify and classify bones with fissures  

and fractures in one category, and those healthy bones in a second category. In deep learning, a convolutional 

neural network (CNN) is a class of deep neural networks commonly applied to analyzing images. They have 

the great advantage that they require much less image pre-processing to identify the features of interest than 

any other digital processing strategy. They operate as classification algorithms in which an adjustable weight 

value is assigned to the characteristics of the image that make it distinguishable from others. With proper 

training and adjustment, a convolutional network can replicate the behavior of a sophisticated filter on  

the image. Besides, unlike traditional neural networks, a convolutional network can identify special  

and temporal dependencies in images. 

The high performance of convolutional networks is due to the design of their network architecture. 

While their operation is still a black box, their high performance is attributed to characteristics such as network 
depth, network width (greater number of parameters), and skip connections (whether dense or residual, which 

increases the complexity of the network and its ability to represent information). Consequently, the networks 

selected for the visual categorization task of this performance test are ResNet (residual neural network), 

DenseNet (dense convolutional network), and NASNet (neural architecture search network). 

 

 

 
 

Figure 1. Sample database of cracked bone images used for model training 
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3. METHODOLOGY 

The training of the three models is performed with the same dataset, a custom set of X-ray images 

separated into two categories (fissured and seamless). The images corresponding to a category are stored in  

the same folder for easy identification by category (the name of the folder is the name of the category). We use 

1000 images for each category keeping the balance of classes to avoid biases in the model. We use TensorFlow 

as the framework on which we run Keras. Numpy, Scikit Learn, Pandas, OpenCV and Matplotlib were also 

used as support libraries. 

The images were randomly mixed in the data list to improve network performance. Besides, they are 

all resized to the same size (256*256 pixels) with the same goal. We do not consider the aspect ratio of  
the images when resizing them. In all three cases, the dataset was divided into two groups, a training group, 

and a test group. We used 70% of the data for training and 30% for performance evaluation. 

The three models are compiled specifying the optimization function, the cost or loss function,  

and the metrics. We use the stochastic gradient descent optimization function, the categorical cross-entropy 

function, which can be used to reflect the accuracy of the predictions, and for the metrics, accuracy (or hit rate) 

and mse (mean of the quadratic errors). 

 

3.1. ResNet (residual neural network) 

This network mimics the structure of pyramidal cells in the cerebral cortex. This structure is achieved 

by jumping (double or triple) over some of the layers, which use ReLu (Rectified Linear Units) activation 

function as shown in Figure 2. 
 

 

 
 

Figure 2. Building block (ResNet) 

 

 

3.2. DenseNet (dense convolutional network) 

The DenseNet structure also has similar jumps to the ResNet, but each layer receives input from  

the previous layers, and connects to the subsequent layers (each layer receives knowledge from the previous 

layers as shown in Figure 3. 

 

 

 
 

Figure 3. Building block (DenseNet) 
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3.3. NASNet (neural architecture search network) 

The NASNet network consists of a specific block, the best convolutional structure for CIFAR-10, 

which is then generalized for ImageNet, and finally replicated as a block for large datasets as shown  

in Figure 4. 
 
 

 
 

Figure 4. ImageNet architecture (NASNet) 
 
 

4. FINDINGS 

To evaluate the performance of the three models, in addition to loss and accuracy with training  

and validation data, we have used precision, recall, and F1-score as performance metrics. The results show 

superior NASNet performance over ResNet and DenseNet. ResNet had the poorest performance, not only are 

its metrics very low, but its accuracy does not increase significantly with loss reduction, and the model is the 

most complex (over 23 million parameters). DenseNet has similar performance but with only 7 million 
parameters, but with still very low metrics. NASNet is the only one that gets an acceptable performance  

and with a lower number of parameters (a little over 4 million). Summary of the model: ResNet (residual neural 

network as shown in Figures 5, 6 and 7): 

− Total params: 23,591,810 

− Trainable params: 23,538,690 

− Non-trainable params: 53,120 

Summary of the model: DenseNet (Dense Convolutional Network as shown in Figures 8, 9 and 10): 

− Total params: 7,039,554 

− Trainable params: 6,955,906 

− Non-trainable params: 83,648 
Summary of the model: NASNet (Neural Architecture Search Network, Figures 11, 12 and 13): 

− Total params: 4,271,830 

− Trainable params: 4,235,092 

− Non-trainable params: 36,738 
 
 

 
 

Figure 5. Training loss and accuracy (ResNet) 
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Figure 6. Confusion matrix (ResNet) 
 

 

 

 
(a) (b) 

 

Figure 7. Performance metrics (ResNet): 

(a) Classification report (ResNet), (b) ROC curve and ROC area (ResNet) 

 

 

 

 
 

Figure 8. Training loss and accuracy (DenseNet) 
 

Figure 9. Confusion matrix (DenseNet) 
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(a) (b) 

 

Figure 10. Performance metrics (DenseNet): 

(a) Classification report (DenseNet), (b) ROC curve and ROC area (DenseNet) 

 

 

 

 
 

Figure 11. Training loss and  

accuracy (NASNet) 

Figure 12. Confusion matrix (NASNet) 

  

 

 

 

 
(a) (b) 

 

Figure 13. Performance metrics (NASNet): 

(a) Classification report (NASNet), (b) ROC curve and ROC area (NASNet) 
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The convolutional network models used have an optimized structure for image classification.  

The ResNet network-based model achieves a considerable reduction compared to the number of adjustable 

parameters for a deep network, however the number of parameters remains high, and the best optimisation still 

shows an under-adjustment of the data (50% accuracy). The DenseNet model with a much denser architecture 

achieves higher accuracy than ResNet (58%), but with a much higher number of parameters.  

Finally, the optimized NASNet architecture achieves the highest metric values (75% accuracy) with a much 

lower number of parameters, becoming the right solution to the problem. 

 

 

5. CONCLUSION 

In this paper, we have evaluated the performance of three convolutional neural networks in  

the identification of fissures on bones. The aim of the research is to find an automatic model that is capable  

of processing radiological images and giving a preliminary diagnosis of possible bone fissures, in the hope  

of reducing the probability of misdiagnosis, increasing the percentage of patients attended and improving  

the quality of medical service. The selected networks were: ResNet (residual neural network), DenseNet (dense 

convolutional network), and NASNet (neural architecture search network). The performance of each  

of the models was evaluated by calculating the precision, recall, and F1-score metrics. The models were also 

used to evaluate loss and accuracy with training and validation data. Details of the number of parameters  

of each model, confusion matrices and ROC curve were also shown. After analyzing the behavior of the 

models, it was found that only the NASNet network produces an acceptable classification for the problem. The 
precision values of the NASNet model were higher than the other two models. Similar behavior was observed 

in the other calculated metrics. In addition, the NASNet model is the smallest of the three, requiring a little 

more than 4 million trainable parameters, compared to 7 million in the DenseNet model and more than 23 

million in the ResNet model. These results are important for the correct selection of an automated diagnostic 

model, and show that it is possible to improve the performance of this model through a larger set of training 

images and better tuning of parameters. Future work will focus on improving the fit of this network by altering 

its depth and using images with more visual information. 
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