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 Stereo vision is one of the interesting research topics in the computer vision 

field. Two cameras are used to generate a disparity map, resulting in  

the depth estimation. Camera calibration is the most important step in stereo 

vision. The calibration step is used to generate an intrinsic parameter of  

each camera to get a better disparity map. In general, the calibration process 

is done manually by using a chessboard pattern, but this process is  

an exhausting task. Self-calibration is an important ability required to 

overcome this problem. Self-calibration required a robust and good matching 

algorithm to find the key feature between images as reference. The purpose 

of this paper is to analyze the performance of three matching algorithms for 

the autocalibration process. The matching algorithms used in this research 

are SIFT, SURF, and ORB. The result shows that SIFT performs better than 

other methods.  
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1. INTRODUCTION  

Vision-based measurement has been one of the most interesting research topics in the last decades. 

Many applications have been developed using vision-based measurement [1]. The two major methods of 3D 

measurement can be categorized into active and passive methods. Structured illumination or laser is used in 

the active measurement. This method is not applicable in many cases. The passive 3D measurement is based 

on stereo vision and provides more advantages than active measurement. It requires simpler instrumentation, 

offering higher applicability in many environments. However, the major issue for passive measurement  

is the difficulty in finding accurate correspondence between stereo images [2].  

Stereo calibration is the most important step to find a correspondence point. Camera calibration is 

required to ensure that both cameras are in perfect position and to remove distortion. Traditionally, camera 

calibration is performed using the standard chess-board picture [3]. However, much work is required in  

the self-calibration methods. Stereo self-calibration refers to the automatic determination of stereo camera 

parameters from image sequences.  

Self-calibration is an important ability required for the introduction of stereo cameras into  

the market. Many works have been published with this method [4-11]. It can guarantee maintenance-free  

and the long-term operation, as the environmental conditions may change the camera position. Special 

expertise is required to do the offline calibration. Self-calibration may reduce regular offline calibration time 

https://creativecommons.org/licenses/by-sa/4.0/
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and cost. Even if human eyes have different characteristics with minus/plus/cylindrical properties, the human 

brain can automatically adjust. Consequently, the human being will have no difficulties in merging two 

visions from the left and right cameras. In designing a self-calibration method, a matching algorithm is  

an important tool to find a correspondence point between images of two cameras.  

The main objective of this paper is to analyze the performance of three matching algorithms for 

the autocalibration process. Two of the most common techniques for stereo correspondence are the sum of 

absolute differences (SAD) and the sum of squared differences (SSD). The corresponding points between 

images have been obtained by minimizing SAD or SSD in area-based block matching [12]. However, these 

two techniques result in low accuracy as their major drawback. An improvement by using sub-pixel block 

matching techniques has been explored in [4], but the obtained accuracy was still not enough. Recently, there 

have been many algorithms proposed on image matching using various techniques [13]. In this work, a set of 

experiments demonstrates that the stereo vision system employing the proposed technique can measure 3D 

surfaces of free-form objects with sub-mm accuracy. Three matching techniques used in this research are 

SIFT, SURF, and ORB. The matching algorithm provides the characteristics of each camera [14]. It used to 

transform the second image to perform automatic stereo calibration. The explanation of each algorithm is 

explained as follows. 

- SIFT 

Scale invariant feature transform (SIFT) is a matching algorithm proposed by Lowe [15].  

This algorithm works very well in finding a correspondence point of the image which is rotated and 

transformed. This algorithm consists of four steps. The first step is the estimation of scale-space extrema 

using the Difference of Gaussian method, being express using (1) and described in Figure 1.  
 

 (1) 

 

 

 
 

Figure 1. The estimation of scale-space extrema using Difference of Gaussian method 

 

 

In the next step, the key point candidates are refined by the elimination of low value. Laplacian of 

Gaussian σ2∇2G is used since it produces the most stable image feature than others. The correlation between  

the Difference of Gaussian and the Laplacian of gaussian can be expressed using (2) and (3). 

 

 (2) 

 

 (3) 
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The key point orientation is assigned by using an image gradient. The final step is the computation 

of the local image descriptor based on the gradient and orientation of the key point. Because of its algorithm 

complexity, SIFT requires a large computational capacity, even though it is very suitable for object 

recognition applications [16, 17]. 

- SURF 

Speed up robust feature (SURF) technique performs faster than SIFT [18]. In some cases,  

it performs with equal quality to SIFT. SURF technique is based on a descriptor and a detector, which is 

equal to SIFT. Instead of using the gaussian average of the images, SURF uses squares for approximation.  

It employs the Hessian matrix-based Blob detector to find the point of interest. Wavelet response is used for 

orientation assignment by applying gaussian weight. SURF feature descriptor is generated by the wavelet 

response of the subregion. The subregion is the division of the neighbor around the key point. Two points 

will form a correspondence (match) if they the same contrast, generated from Laplacian. 

- ORB 

Oriented FAST and rotated BRIEF (ORB) has been proposed by Rublee, et al. [19]. It is another 

alternative for SIFT. ORB is a combination of the FAST key point and the BRIEF descriptor. The FAST is 

used to determine the key point [20]. In the next step, Harris corner is used to find the top N point. FAST 

computes the intensity-weighted centroid, located at the center. The orientation is obtained by the vector 

direction to the centroid. 

 

 

2. RESEARCH METHOD  

The purpose of this research is to find the best algorithm for the auto-calibration of stereo vision.  

The first step of calibration is the finding of the corresponding points between two images. The accuracy of 

this step determines the accuracy of stereo vision. The object of this research is a microscopic object with  

the size of a few millimeters. The disparity of the points is converted into the intrinsic parameter  

of the camera.  

The method used in this research is described in Figure 2. The stereo image has been produced using 

two cameras. In order to handle the very narrow view area caused by the small-size objects, the converged 

camera setup is used. It is hard to put objects in the overlapped area if parallel cameras are used.  

The histogram equalization steps are required since the illumination of each image or camera color character 

possibly different [21]. To reduce the noises, the combination of Gaussian and medium filter applied.  

Both filters are proposed to improve the image quality [22]. Gaussian can be expressed in (4).  

While the median filter expressed in (5). A combination of both filter expressed using (6).  

 

 (4) 

 

 (5) 

 

 (6) 

 

The result of histogram equalization is processed using a feature extraction algorithm. Three feature 

extraction algorithms are used to find the match correspondence point on each set of images [20].  

The match correspondence point used for the rectification process [23]. Distance between each corresponding 

point is used to extract the stereo parameter. The output of this method is the stereo calibration  

parameter [24]. The result of this process can be transformed into a 3D surface. 

 

 

 
 

Figure 2. The distance measurement procedure 
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Two industrial standard HD camera is used in this research. These cameras are equipped with  

a 100x lens to enlarge the object size. Two captured images from both cameras are then compared and 

evaluated using the matching algorithm to find the corresponding point. Figure 3 shows the camera setup and 

the object size. 

 

 

 
 

Figure 3. The cameras set-up and the object size 

 

 

A millimeter template is used to measure the size of the object and as a reference of  

the auto-calibration. The dimension of the object is shown in Figure 4 (a), whereas Figure 4 (b) represents 

five pairs of image sets which are generated using the system for testing purpose. Each set is compared using 

three matching algorithms: SIFT, SURF, and ORB.  

 

 

 

 Set 1 

 

Set 2 

 

Set 3 

 

Set 4 

 

Set 5 

 
(a) (b) 

  

Figure 4. (a) The dimension of the object and (b) the datasets used in the research  

 

 

3. RESULTS AND ANALYSIS  

The execution of SIFT, SURF, and ORB on each pair of image sets has been performed to find  

the best method for image matching. In the obtained results, the green line indicates the correspondence point 

between the left and right images. The number of connected lines shows the number of matched points. How 
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ever, each algorithm still resulted in an error if the algorithm failed to match the correct points. The result of 

this matching is used to generate the calibration parameter of stereo vision. 

 

3.1. Matching results using SIFT, SURF, and ORB 

The result of implementing the SIFT, SURF and ORB algorithms on the captured object are given 

respectively in Figures 5 (a-c). As seen in the image set 1 and 5 of Figure 5 (a), only a few lines have been 

generated by the SIFT algorithm. The background has very high similarities between images. The result of 

SURF algorithm implementation given in Figure 5 (b) indicates that on the image set 1 there have been only 

a few lines generated by an algorithm and some lines indicated a major error. The rest of the image sets 

shows the correct corresponding points. The result of implementing the ORB algorithm shown in Figure 5 (c) 

also indicates that there have been only a few lines generated by the algorithm on the image set 1, with some 

lines indicated major error. The four other image sets indicated the correct corresponding points. 

The comparison of the matching results using SIFT, SURF, and ORB techniques is presented in 

Table 1. It indicates matching accuracy of the three algorithms SIFT, SURF, and ORB. It can be known from 

the table that the SIFT algorithm gives the highest average percentage accuracy. However, the percentage of 

correct lines varies depending on the image characteristics. For the image with high similarities, SURF failed 

to give a good result, whereas ORB could generate many lines, but with high error rates. 

 

 

1 

   

2 

3 

4 

5 

 (a) (b) (c) 
    

Figure 5. Experiment results of matching algorithm using: (a) SIFT, (b) SURF, and (c) ORB 

 

 

As seen in Figure 5 (a), the image set 1 and set 5 only have a few lines have been generated by  

the SIFT algorithm. The background has very high similarities between images. In contrast, the results of  

the SURF algorithm (Figure 5 (b)), which applied to the image set 1, only a few lines generated by  

the algorithm. The rest of the image sets shows the correct corresponding points. The result of implementing 

the ORB algorithm shown in Figure 5 (c) also indicates that there have been only a few lines generated by  

the algorithm on the image set 1, with some lines indicated major error. Parallel lines, which group together 

to form a thicker image symbolize accuracy. In contrast, line out of parallel, crisscrossing each other creating 

a dispersed image signify inaccuracy. 

The comparison of the matching results using SIFT, SURF, and ORB techniques is presented in 

Table 1. It indicates matching accuracy of the three algorithms SIFT, SURF, and ORB. As can be seen in  

the table, the SIFT algorithm gives the highest average accuracy percentage. However, the percentage of 

correct lines varies depending on the image characteristics. For the image with high similarities, SURF failed 

to give a good result, whereas ORB could generate many lines, but with high error rates.  

The result in Table 1 compared with the result from Karami et.all [13] with the case of varying 

intensity shown in Table 2. It shows that in both works, SIFT performs better than other methods. Table 3 

shows the comparison of the computational time of each algorithm. It shows that the SIFT method required  

a longer time than the others due to the complex algorithm computation. SIFT required a longer time when  

the image had high similarities in its texture. Figure 6 indicates that the ORB algorithm has the fastest 

computation time for all images sets. It takes less than 0.5s processing time. However, the ORB algorithm 
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gives less matching rates compared with other methods. The line chart in Figure 6 also indicates that  

the complexity of the images linear with the computation time. Image set 1 and 5 give the longest 

computation time than other images set because of their complexity.  

 

 

Table 1. Comparison of the matching results using the SIFT, SURF, and ORB techniques 

No. 
SIFT SURF ORB 

Lines Correct Point % Correct Lines Correct Point % Correct Lines Correct Point % Correct 

1 15 14 93.33% 14 2 14.29% 78 24 30.77% 

2 150 120 80.00% 443 430 97.07% 89 70 78.65% 

3 400 356 89.00% 278 256 92.09% 254 224 88.19% 
4 345 321 93.04% 600 467 77.83% 345 156 45.22% 

5 20 16 80.00% 125 112 89.60% 375 153 40.80% 

 Average 87.08% Average 74.17% Average 56.73% 

 

 

Table 2. Comparison of the matching results between Karami and this work 

Method 
Match Rate (%) 

Karami This Work 

SIFT 76.7 87.08 

SURF 72.6 74.17 

ORB 63.6 56.73 

 

 

Table 3. Computational time using the SIFT, SURF, and ORB techniques 

Image Set 
Computational Time 

SIFT SURF ORB 

1 2.114 0.926 0.052 

2 1.149 0.777 0.039 

3 0.788 0.6 0.033 

4 0.858 0.576 0.033 

5 1.36 1.149 0.075 

 

 

 
 

Figure 6. Computational time comparison chart 

 

 

3.2. Image rectification 

The matching point from previous steps is used for rectifying the images. The difference position 

between source and destination point used as a reference for transformation. Figures 7a and 7b show  

a distorted image from left and right camera. Figure 7a used as the reference, while the Figure 7b is the object 

of transformation. The result of the image transformation of Figure 7b displayed in Figure 7c.  

This transformation based on the homography equation to reduce distortion [25]. 
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(a) (b) (c) 

   

Figure 7. Rectification result (a) left Image as reference (b) right image (c) the result of rectification 

 

 

3.3. 3D surface generation 

The matching process results in the distance between points. Using the distance values, a 3D surface 

object can be generated by projecting them onto the z-axis [26, 27]. Distance value between both images 

assigned as the depth value. If the distance is small, the object is closer to the camera, and vice versa. Depth 

value for each pixel than converted to grayscale to distinguish the depth of point. Figure 8 shows  

the generated disparity map of the dataset using SIFT Adjustment. Correlated point produces by SIFT is used 

to calculate the stereo camera parameters. The result shows that the algorithm successfully generates match 

stereo, however, the noisy output is a bit challenging. Using the depth value as z-axis produce 3d view as 

shown in Figure 9 the algorithm successfully produces 3D reconstruction, but the noises reduce  

image quality. 

 

 

   
(a) (b) (c) 

   

Figure 8. Generated depth value based on SIFT matching algorithm 

 

 

   
(a) (b) (c) 

   

Figure 9. 3D surface reconstruction 

 

 

4. CONCLUSION  

In this paper, three different image matching techniques, SIFT, SURF, and ORB, for stereo 

autocalibration system have been compared. SIFT indicates the best performance in most scenarios under 

consideration. In the special case, when the images contain multiple high similarities texture, SURF failed to 

give good results. In the ORB implementation, the features are mostly concentrated in objects at the center of 

the image. While SIFT and SURF, the features are distributed over the image. The 3D reconstruction image 

has successfully generated, but the noise reduces the quality of the images. For future work, a good filtering 

algorithm required for a better result, without scarifying the details of images. 
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