
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 19, No. 1, February 2021, pp. 182∼191
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v19i1.15026 r 182

Fine-grained or coarse-grained? Strategies for
implementing parallel genetic algorithms in a

programmable neuromorphic platform
Indar Sugiarto1, Steve Furber2

1Department of Electrical Engineering, Petra Christian University, Indonesia
2School of Computer Science, University of Manchester, United Kingdom

Article Info

Article history:

Received Dec 19, 2019
Revised Apr 10, 2020
Accepted Sep 24, 2020

Keywords:

Genetic algorithm
Network on chip
Neuromorphic computing
Parallel computing
SpiNNaker

ABSTRACT

Genetic algorithm (GA) is one of popular heuristic-based optimization methods that
attracts engineers and scientists for many years. With the advancement of multi-
and many-core technologies, GAs are transformed into more powerful tools by par-
allelising their core processes. This paper describes a feasibility study of implement-
ing parallel GAs (pGAs) on a SpiNNaker. As a many-core neuromorphic platform,
SpiNNaker offers a possibility to scale-up a parallelised algorithm, such as a pGA,
whilst offering low power consumption on its processing and communication over-
head. However, due to its small packets distribution mechanism and constrained pro-
cessing resources, parallelising processes of a GA in SpiNNaker is challenging. In
this paper we show how a pGA can be implemented on SpiNNaker and analyse its
performance. Due to inherently numerous parameter and classification of pGAs, we
evaluate only the most common aspects of a pGA and use some artificial benchmark-
ing test functions. The experiments produced some promising results that may lead to
further developments of massively parallel GAs on SpiNNaker.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Indar Sugiarto
Department of Electrical Engineering
Petra Christian University
Jl. Siwalankerto 121-131, Surabaya, 60236, Indonesia
Email: indi@petra.ac.id

1. INTRODUCTION
The advent of multi- and many-core platform makes the parallel and distributed computing more

feasible and attractive. The same is also a valid case for algorithms that are inherently feasible for parallelism
such as a genetic algorithm (GA). However, the real implementation of parallelism for such algorithms may
be challenged by the fact that many current computing platforms inherent serial processing mechanism of von-
Neumann architecture [1, 2]. This makes the implementation of parallel information processing complicated
and expensive [3, 4]. In the case of GAs, the parallelism concept has been applied in recent years in order to
achieve a higher performance throughput. One common method to achieve such acceleration is by utilizing
accelerator such as graphics processing units (GPUs) [5–8], it is well-known that single instruction multiple
data (SIMD) mechanism in a GPU plays an important role to achieve such very high computation throughput
[9, 10].

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA



TELKOMNIKA Telecommun Comput El Control r 183

GA belongs to the larger class of evolutionary algorithms (EA) and inherently works as a sequential
process [11, 12]. Even though the inner processes in a GA are sequential, the data on which the processes take
place are partitionable. This allows a GA to be parallelized [13]. A parallel GA (pGA) usually exploits the
abundant processing elements in a parallel/distributed system, and can be roughly classified into two categories:
coarse-grained parallel GA (cpGA) and fine-grained parallel GA (fpGA). The most distinctive features of the
two can be inferred from the GA’s population granularity and the communication overhead. The most popular
example of the cpGA is the island model, whereas in fpGA cellular GA is the most common model.

In this paper we present our preliminary study of pGAs implementation on a novel many-core neu-
romorphic platform called SpiNNaker. SpiNNaker (spiking neural network architecture) is a many-core neu-
romorphic platform that is designed to emulate brain’s processing and connectivity in neuronal level [14–16].
Due to enormous features of pGAs [17,18], we cannot explore and present all features of both pGA categories
in this paper. Thus, this paper serves as the starting point for future exploration of pGAs in SpiNNaker. To our
knowledge, this is the first paper that describes methods for implementing pGAs on a neuromorphic platform.
Thus, benchmarking the performance evaluation of pGAs on SpiNNaker with other available neuromorphic
platforms is not possible. Rather, the emphasis is on testing the SpiNNaker platform as a viable device to im-
plement a massively parallel GA. The results of this paper can be used for future exploration on a collaboration
between extensive optimization and deep learning [19, 20]. The paper is organized as follows. After the intro-
duction in this section, related works on pGAs and SpiNNaker for conventional non-spiking applications are
described. In section 3, the detailed implementation of pGAs on SpiNNaker is described. Section 4 presents
the experiment setup and the collected results, followed by their analysis and discussion. Finally, this paper is
closed by conclusions in section 5.

2. RELATED WORKS
GA is a nature (biology) inspired algorithm mostly popular to be used to solve complex optimization

problems [21, 22]. It is a metaheuristic method inspired by the process of natural selection that involves bio-
inspired operations such as gene mutation and crossover. There are different families of GAs, and in the recent
decade, they have been showing to converge [23, 24]. Conceptually, inner working principles in a GA are
sequential processes. To speed them up, parallelism strategies are applied on those processes. At some extent,
the parallelism also involves distributed processes. In this paper, we refer a parallel distributed GA to as simply
a parallel GA. This is conceptually a straightforward method, since GA normally works on regular data in
a partitioned solution space. However, in real implementation, there is a complication issue due to various
options that could be traded off in order to match between the hardware platform and the GA-encoded problem
description.

In general, a parallel process/algorithm can work in a fine-grained or coarse-grained fashion. A fine-
grained parallel GA (fpGA) commonly takes a form in a cellular model; whereas a coarse-grained parallel GA
(cpGA) utilizes a concept of group separation, such as in island models. The granularity of pGA can also be
described in a finer continuum, creating a broader range of classification; in this paradigm, any new pGA model
can fall in between fine- and coarse-grained classes. Furthermore, they can also be stacked hierarchically for
creating a hybrid class from any possible combination of existing models.

Comprehensive lists of pGA models have been presented in various recent review papers, for example
[25–30]. The morphology, genetic operation, and communication principle between elements on those various
pGA models have also been described on those papers. Hence, we will not cover detailed aspects of a pGA in
this paper. Instead, we present a general concept of pGAs only for these simplified classes: fine- and coarse-
grained models. Fine-grained pGAs are strongly associated with the massively parallel machines in the form
of multi-core computers. On the other hand, coarse-grained pGAs are commonly implemented in a distributed
platform and closely related to the concept of migration islands. Due to numerous tuning properties of a pGA as
well as a tight coupling between pGA design and the problem it tries to solve, it is almost impossible to create
a generic pGA framework that unifies both classes. Fortunately, the SpiNNaker platform is generic enough to
be used as both parallel and distributed computing. In this paper, we use some parallelism strategies and tools
developed in our previous work [31].

Strategies for implementing parallel genetic algorithms in neuromorphic platform (Indar Sugiarto)



184 r ISSN: 1693-6930

3. RESEARCH METHOD
3.1. Brief overview of SpiNNaker

SpiNNaker (spiking neural network architecture) is a neuromorphic platform originally designed to
simulate brain processing in a biologically plausible mechanism [32]. On hardware level, SpiNNaker is a field
programmable neuromorphic platform that is built on many-core concept using massively connected multi-
core chips [33]. SpiNNaker working mechanism are based on small packet transaction between nodes/chips.
These packets are very fast to be distributed intra- and inter-chips to mimic biological realm of the brain where
many small spikes are interchanged among neurons in the brain. This way, the SpiNNaker allows brain-like
parallel, asynchronous computation, and in real time with time-steps at about ∼ 1 ms. In terms of power
efficiency, SpiNNaker has demonstrated superiority over supercomputing-clusters when simulating large-scale
biological networks [34]. Currently, the full SpiNNaker machine construction is underway and it will host 50K
SpiNNaker chips; hence, it will have one million processors with 7 terabytes of memory running in parallel. It
is expected that the machine will consume at most 90kW of electrical power [35]. Figure 1 shows the structure
of the SpiNNaker machine.

Figure 1. The SpiNNaker machine is composed of many SpiNNaker chips assembled on a board.
Each SpiNNaker board contains 48 chips, arranged in 2D triangular mesh

3.2. fpGA implementation
3.2.1. Basic cellular model

An fpGA is implemented usually as a cellular model. In this model, population is spatially distributed
across a grid population in which genetic interactions may only take place in a small neighborhood of each
individual. In a basic cellular model, a node/processor is responsible for processing only one (or very limited
number) GA chromosome and performs the GA operations in a reproductive cycle together or after interaction
with its adjacent neighbor. In this model, a 2D grid of processors is used where the neighborhood is defined
using the Manhattan distance from one point to others in the grid.

Figure 2 shows examples of fpGA networks. The neighborhood refers to the set of potential mates
of an individual. Consequently, each node in the grid has a neighborhood that overlaps the neighborhoods of
nearby nodes. The geometrical simplification is used in the sense that all the neighborhoods have the same
size and identical shapes. There are various configurations in which a cellular pGA can be formed. The two
most commonly used are L5, also called Von Neumann or NEWS (North, East, West and South), and C9, also
known as Moore neighborhood.

3.2.2. Realisation in SpiNNaker
Implementing the pGA basic cellular model on SpiNNaker is straight forward. However, there are

several considerations for implementation. First, SpiNNaker uses triangular mesh layout, whereas the common
pGA cellular models use rectangular mesh topology. In our work, we create a modification to the SpiNNaker
routing such that only four links are used to mimic the standard rectangular cellular model: north, west, south
and east links are used for pGA interaction. However, we keep the other two links (northeast and southwest)
alive for the purpose of fault tolerance; i.e., they only be used as backups if the main pGA links fail to work,
either permanently or intermittently.

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 182 – 191



TELKOMNIKA Telecommun Comput El Control r 185

Second, the SpiNNaker machine can be used per board basis or per group of board basis. In order
to create a continuous torus, at least three SpiNNaker boards are needed. In this three board setup, a closed
grid of 12x12 nodes can be accomplished and a normal cellular pGA model can operate properly. In some
circumstances, however, a square grid cannot be closed since the torus is discontinued; for example, when only
one SpiNNaker board is used. For this particular situation, we define a maximum neighborhood distance as
the maximum squared odd-number of chips available on the system. In this paper, we use three board system
but they are not connected in a torus. The grid structure of this three board system is shown in Figure 3. Here
we use 8x15 grid for the model. In such a configuration, the maximum neighborhood distance allows to create
either L13 or C49 model.

Figure 2. Example of fpGAs as cellular models. Colored nodes represent a neighborhood.
Here, L stands for linear while C stands for Compact. It is possible to arrange nodes in the grid differently,

such as using a diamond-like layout

Figure 3. The proposed layout for a pGA cellular model on a three SpiNNaker board

Our method for implementing fpGA based on the idea of run-time improvement; here, the multi-core
feature of SpiNNaker chips provides a redundancy that can be exploit for amelioration. Here, we propose to
use the similar approach presented in our previous work (see [36]), where we use a spawning task mechanism
on several cores for improving performance through local parallelism (i.e., those cores will be loaded with the

Strategies for implementing parallel genetic algorithms in neuromorphic platform (Indar Sugiarto)



186 r ISSN: 1693-6930

same GA code and work in synchrony) and the rest of the cores will serve as the backup cores for providing
higher reliability through a fault tolerance mechanism.

As a summary to our implementation strategy, Figure 3 shows the proposed layout to implement an
fpGA in a cellular model on SpiNNaker. The torus is created on the 8x15 grid, in which each of the blue-colored
nodes processes one GA chromosome/individual. In the diagram, just two GA chromosomes are depicted to
show how the neighborhood in L13 is formed: one with purple color, and the other with yellow color. The num-
ber inside the square indicates the coordinate of the node used for routing by the SpiNNaker routing mechanism.

3.3. cpGA implementation
3.3.1. Basic island model

In contrast to the fpGA models, cpGA models try to achieve higher computation performance whilst
reducing the communication overhead. In this paradigm, the proponent of these models argue that it is better
to localise the intense GA operations into a group of processing units. In reality, this concept is commonly
implemented as a network of processing islands; hence comes the name of island model. By distributing and
localising the GA processors, the solution space is expected to be partitioned and each island can specialize
itself to a certain solution region. In order to improve the convergence, an additional operation called migration
is introduced in these models. The conceptual island model is presented in Figure 4.

Figure 4. Example of cpGA in an island model

3.3.2. Realisation in SpiNNaker
In contrast to the approach for implementing fgGA on SpiNNaker, implementing island models on

SpiNNaker is not straight forward. There are some constraints that need to be considered. For example, how
an island is defined in terms of hardware resources of SpiNNaker; i.e., how many cores or chips are used to
contain an island? This corresponds to the common problem in this island model: specifying/tuning the island
size and numbers. This is closely related with the mapping strategy that will be employed by the SpiNNaker
tool-chain.

There are two options for this: static mapping and dynamic mapping. In static mapping, the num-
ber of cores or chips that will contain an island and the routing table for those cores/chips are predefined in
compile-time; i.e., the designer must specify them explicitly (hardcoded) in the SpiNNaker program code. The
second option involves a dynamic mapping approach in the sense that the number of cores/chips along with
the routing among them can be obtained automatically, even though not during run-time. In this paper, we use
the static mapping approach since the problem formulated for our evaluation is small. Regarding the island
implementation, all cores in a chip are orchestrated to handle one population that consists of 120 individual.
Since there are only 16 cores available for computation in each chip, each core is responsible for handling up
to 8 individuals (some of them handle just 7 individual). In this paper, we design an island to be contained in a
SpiNNaker chip.

4. RESULTS AND ANALYSIS
4.1. Experiments setup

For evaluating the performance of pGA on SpiNNaker, we use two standard benchmarking functions:
Rastrigin and the second Schaffer function. They are expressed in the following formula:

f(x1 · · ·xn) = 10n+

n∑
i=1

(x2i − 10cos(2πxi)) (1)

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 182 – 191



TELKOMNIKA Telecommun Comput El Control r 187

where
−5.12 ≤ xi ≤ 5.12

f(x, y) = 0.5 +
sin2(

√
x2 + y2)− 0.5

[1 + 0.001 · (x2 + y2)]2
(2)

where
−100 ≤ xi ≤ 100

Both functions have minimum value at (0,0). The Rastrigin function in (1) is an example of non-convex and
non-linear multimodal function. Finding the minimum of this function is a fairly difficult problem due to its
large search space and its large number of local minima. The second Schaffer function in (2) is also non-convex
and non-linear multimodal function, but it has a broader search space than the Rastrigin function. It is used here
along with the Rastrigin function so that we can evaluate the extensibility of our pGA framework for solving a
similar but bigger solution space.

In this paper we use only three SpiNNaker boards. For the fpGA models, we use L13 and C49 model
as described in section 3.2.2.. For the cpGA models, we use varied number of islands from 2 to 21. An example
of cpGA model implementation with 21 islands is depicted in Figure 5. Note that the position of islands do
not give any effect on the pGA performance, but only on the creation of the routing table for SpiNNaker
packets. For the sake of simplicity, the mapping was static one as described in section 3.3.2.; hence, the routing
for SpiNNaker packets were defined manually. If the islands position in Figure 5 are changed, then a new
routing table must be defined. We are aware of this limitation, and we plan to use a dynamic mapping in our
future work. To make a fair comparison between fpGA and cpGA, we use the same GA parameters as shown
in Table 1. Regarding the population generation in fpGAs, there are two mechanism that can be employed:
synchronous and asynchronous. In this paper, we use the synchronous approach as the parallel update policy,
in which all nodes are updated simultaneously in each operation.

Figure 5. Example of an fpGA model with 21 islands using only a single SpiNNaker board.
Here the green-colored links are predefined as the route for migration

Table 1. Common GA parameters used for both fpGA and cpGA in the experiments
Parameter Value

GA encoding binary 16-bit
Elitism none

Crossover Type single point
Crossover Rate 0.1
Mutation Rate 0.02
Migration Rate 0.05
Population Size 120

4.2. Experiment results
We run the fpGA as a cellular model for the Rastrigin and Schaffer functions on SpiNNaker using

L13 and C49 configurations. The network was executed for maximum 100 iterations, which corresponds to
generating 100 generations in the GA process. The result is shown in Figure 6. Just for convenience, the plot

Strategies for implementing parallel genetic algorithms in neuromorphic platform (Indar Sugiarto)



188 r ISSN: 1693-6930

shows the objective value instead of fitness value; plotting the fitness value will show the similar pattern. We
also run the cpGA version using an island model with various number of islands. We use the model to find the
global minima for both the Rastrigin and the second Schaffer test functions. Similar to the previous experiment
on fpGA, we run the model for 100 generations. The result is shown in Figure 7 (a) for Rastrigin, and Figure 7
(b) for the Schaffer function.

4.3. Evaluation and discussion
We have run initial experiments using two standard optimization test functions and we found that our

implementation of both fpGA and cpGA produced satisfying results. Both models found the global optimum
very quickly, which is measured as number of generations needed to achieve the convergence result. Particular
evaluations of each model are presented as follows.

4.3.1. Performance on fpGA models
We use two cellular models for implementing fpGA on SpiNNaker: L13 and C49. In both cases, multi-

core feature of SpiNNaker chips are employed for amelioration and reliability purposes; hence, the number of
individual in the population is the same as the size of the grid, which is 120. As we can see in Figure 6, both
L13 and C49 models work properly and quite fast to converge into the correct solution. In general, we can
observe that solving the second Schaffer function is a bit faster than the Rastrigin function. This is interesting
because the Schaffer function has a larger search space than the Rastrigin function; one would expect that the
searching for the solution should be longer. However, Rastrigin function has much more local minima than the
Schaffer function. We argue that this explains the convergence speed behaviour in our models.

0 10 20 30 40 50 60 70 80 90 100

Generation

0

5

10

15

20

25

30

35

O
b

je
c
ti
v
e

 V
a

lu
e

L13_on_Schaffer

L13_on_Rastrigin

C49_on_Schaffer

C49_on_Rastrigin

Figure 6. The result of running cellular models using L13 and C49 configurations to find the global minima
for Rastrigin and Schaffer functions

Also, we notice that C49 model runs in a more steady fashion than the L13 model. As we can see
from the plot, C49 model needs almost the same number of generations to converge for both test functions,
which happens at 15th generation. However for L13 model, even though it reach the convergence for the
Schaffer function at generation 13th, the convergence for the Rastrigin function starts imminently after the
25th generation. We admit that we could not give further insight why this happens, and we plan to carry further
evaluation using some more complex functions in our future work.

4.3.2. Performance on cpGA models
The similar test mechanism was also applied for our island model as a representation of cpGA class.

Here, we use the number of islands as the indicator for performance. As we can see in Figure 7, higher number
of islands means higher convergence rate. In both test cases, the convergence has been achieved before the
10th generation when using 20 islands (in the Schaffer test, the convergence starts at the sixth generation). As
in the fpGA case, we also notice that the network performance for solving the Schaffer test problem is a bit
faster than for the Rastrigin test function.

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 182 – 191



TELKOMNIKA Telecommun Comput El Control r 189

0 10 20 30 40 50 60 70 80 90 100

Generation

0

5

10

15

20

25

30

35

O
b
je

c
ti
v
e
 V

a
lu

e

2 islands

4 islands

6 islands

8 islands

10 islands

12 islands

14 islands

16 islands

18 islands

20 islands

(a)

0 10 20 30 40 50 60 70 80 90 100

Generation

0

5

10

15

20

25

30

35

O
b
je

c
ti
v
e
 V

a
lu

e

2 islands

4 islands

6 islands

8 islands

10 islands

12 islands

14 islands

16 islands

18 islands

20 islands

(b)

Figure 7. cpGA results for: (a) rastrigin, and (b) schaffer function

4.3.3. Further improvement ideas
Comparing the island model and the cellular model, our experiments show that the island model

converges faster than the cellular model at higher number of islands. However, when the number of islands is
small, the island model does not show better performance than the cellular model. We argue that increasing the
number of islands means that the number of individuals searching for the solution is also increased. We also
observe that in the cellular models, similar individuals tend to cluster creating niches, and these groups operate
as if they were separate sub-populations similar to islands in the island model. For practical implementation
consideration, we show here two observations:

1. For solving small problems, in general, implementing the “constrained” island models on SpiNNaker is
easier than the cellular models. In this case, the island models require less SpiNNaker resources in terms
of the number of chips and the packet routing mechanism. However, this does not scale-up with problem
size.

2. For solving bigger problems which require longer GA strings for encoding, the cellular models are pre-
ferred because we can achieve higher computation performance by applying local parallelism inside the
chip. This cannot be achieved when using island models, because all cores in the chip have been used
already and leave no space for performance improvement.

There are several other features that still need to be explored in future. For example, in the fpGA models, what
if the neighborhood takes non-canonical forms as in a diamond or even in a trapezoid shape? Also, how the
synchronous and asynchronous updates affected the performance on the models? For the cpGA models, there
are also many features that need to be explored. For example, what are the effects of different migration rates
as well as the direction of migration? Also, how to merge islands and what is the effect of dynamic immigrant
size? Nevertheless, this paper serves as an initial starting point to explore the vast potential of pGA applications
on the SpiNNaker platform.

Strategies for implementing parallel genetic algorithms in neuromorphic platform (Indar Sugiarto)



190 r ISSN: 1693-6930

5. CONCLUSIONS
This paper presents a preliminary work on the feasibility for implementing parallel genetic algorithms

(pGA) with some degrees of flexibility on a neuromorphic platform. SpiNNaker, a many-core programmable
neuromorphic platform, is used to implement two classes of pGA: fine-grained pGA (fpGA) and coarse-grained
pGA (cpGA). Due to numerous variability of these models, not all possible configurations are presented. How-
ever, the experiment results show the promising flexibility that potentially can be used to implement any
model configuration from both fgGA and cpGA domains. Some considerations are presented regarding the
expected performance of the implemented pGA with regard to hardware constraint. The trade-off between
performance and scalability is also presented. We argue that once the hurdle with the mapping complexity
has been overcome, SpiNNaker will become a superior platform for implementing a massive parallel genetic
algorithm framework to solve various multi-objective optimisation problems. This will be a precious added
value for SpiNNaker as a many-core neuromorphic platform, not only for performing brain-style information
processing, but also as a generic high performance computing system.

ACKNOWLEDGMENT
This work was supported partially by the United Kingdom Engineering and Physical Sciences Re-

search Council (EPSRC) through the Graceful project (grant EP/L000563/1). The design and construction of
the SpiNNaker machine was supported by EPSRC (the UK Engineering and Physical Sciences Research Coun-
cil) under grant nos. EP/D07908X/1 and EP/G015740/1, in collaboration with the universities of Southampton,
Cambridge and Sheffield and with industry partners ARM Ltd, Silistix Ltd and Thales. Ongoing development
of the software is supported by the EU ICT Flagship Human Brain Project (H2020 785907 and 945539), in
collaboration with many university and industry partners across the EU and beyond. The development of the
pGA test cases on SpiNNaker was supported by Petra Christian University through the Special Grant (grant
009/SP2H/LT-MULTI/LPPM-UKP/III/2020 and 016/SP2H/LT-MULTI/LPPM-UKP/III/2020).

REFERENCES
[1] A. O. Moraes, J. F. Mitre, P. L. Lage, and A. R. Secchi, “A robust parallel algorithm of the particle swarm

optimization method for large dimensional engineering problems,” Applied Mathematical Modelling, vol. 39, no. 14,
pp. 4223–4241, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0307904X14007094

[2] J. Domı́nguez and E. Alba, “Dealing with hardware heterogeneity: a new parallel search model,” Natural Computing,
vol. 12, no. 2, pp. 179–193, 2013.

[3] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen,
J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Communication of the ACM,
vol. 52, no. 10, pp. 56–67, 2009. [Online]. Available: http://doi.acm.org/10.1145/1562764.1562783

[4] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee, “Efficient hierarchical parallel genetic algorithms using grid
computing,” Future Generation Computer Systems, vol. 23, no. 4, pp. 658–670, 2007.

[5] J. Luo, S. Fujimura, D. El Baz, and B. Plazolles, “GPU based parallel genetic algorithm for solving an energy
efficient dynamic flexible flow shop scheduling problem,” Journal of Parallel and Distributed Computing, vol. 133,
pp. 244–257, 2019. [Online]. Available: http://doi.org/10.1016/j.jpdc.2018.07.022

[6] N. Hou, F. He, Y. Zhou, Y. Chen, and X. Yan, “A parallel genetic algorithm with dispersion correction for hw/sw
partitioning on multi-core cpu and many-core GPU,” IEEE Access, vol. 6, pp. 883–898, 2018.

[7] S. Kang, S.-S. Kim, J. Won, and Y. M. Kang, “GPU-based parallel genetic approach to large-scale travelling salesman
problem,” The Journal of Supercomputing, vol. 72, no. 11, pp. 4399–4414, 2016.

[8] A. Ferigo and G. Iacca, “A gpu-enabled compact genetic algorithm for very large-scale optimization problems,”
Mathematics, vol. 8, no. 5, pp. 758 (1–26), 2020.

[9] B. Plazolles, D. El Baz, M. Spel, V. Rivola, and P. Gegout, “SIMD monte-carlo numerical simulations accelerated on
GPU and xeon phi,” International Journal of Parallel Programming, vol. 46, no. 3, pp. 584–606, 2018.

[10] B. Ren, S. Balakrishna, Y. Jo, S. Krishnamoorthy, K. Agrawal, and M. Kulkarni, “Extracting SIMD parallelism from
recursive task-parallel programs,” ACM Trans. Parallel Comput., vol. 6, no. 4, pp. 1–37, Dec. 2019.

[11] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 2nded. Springer, 2015.
[12] J. Pérez Heredia, “A computational view on natural evolution: On the rigorous analysis of the speed of adaptation,”

Ph.D. dissertation, University of Sheffield, 2017.
[13] Y. Y. Liu and S. Wang, “A scalable parallel genetic algorithm for the generalized assignment problem,” Parallel

computing, vol. 46, pp. 98–119, 2015.
[14] S. Furber, “Large-scale neuromorphic computing systems,” Journal of neural engineering, vol. 13, no. 5, pp. 1–14,

2016.
[15] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday, and et al., “Loihi: A neuromorphic manycore

processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.
[16] Y. van De Burgt, A. Melianas, S. T. Keene, G. Malliaras, and A. Salleo, “Organic electronics for neuromorphic

computing,” Nature Electronics, vol. 1, no. 7, pp. 386–397, 2018.
[17] Y. Y. Wong, K. H. Lee, K. S. Leung, and C.-W. Ho, “A novel approach in parameter adaptation and diversity mainte-

nance for genetic algorithms,” Soft Computing, vol. 7, no. 8, pp. 506–515, 2003.

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 182 – 191



TELKOMNIKA Telecommun Comput El Control r 191

[18] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Parameter control in evolutionary algorithms: Trends and chal-
lenges,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 167–187, 2015.

[19] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, “Deep neuroevolution: Genetic
algorithms are a competitive alternative for training deep neural networks for reinforcement learning,” CoRR, vol.
abs/1712.06567, 2017. [Online]. Available: http://arxiv.org/abs/1712.06567

[20] A. AbuZekry, I. Sobh, E.-S. Hemayed, M. Hadhoud, and M. Fayek, “Comparative study of neuro-evolution algorithms
in reinforcement learning for self-driving cars,” European Journal of Engineering Science and Technology, vol. 2,
no. 4, pp. 60–71, 2019.

[21] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2, pp. 65–85, 1994.
[22] M. Srinivas and L. M. Patnaik, “Genetic algorithms: a survey,” Computer, vol. 27, no. 6, pp. 17–26, June 1994.
[23] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,” IEEE Transactions on Evolutionary Computa-

tion, vol. 6, no. 5, pp. 443–462, Oct 2002.
[24] J. R. Cheng and M. Gen, “Accelerating genetic algorithms with GPU computing: A selective overview,” Computers

& Industrial Engineering, vol. 128, pp. 514–525, 2019.
[25] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs paralleles, reseaux et systems repartis, vol. 10,

no. 2, pp. 141–171, 1998.
[26] E. Alba and J. M. Troya, “A survey of parallel distributed genetic algorithms,” Complexity, vol. 4, no. 4, pp. 31–52,

1999.
[27] D. Knysh and V. Kureichik, “Parallel genetic algorithms: a survey and problem state of the art,” Journal of Computer

and Systems Sciences International, vol. 49, no. 4, pp. 579–589, 2010.
[28] B. Johnson and Y. Qu, “Towards an autonomously configured parallel genetic algorithm: Deme size and deme num-

ber,” in 2016 2nd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2016, pp.
278–288.

[29] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou, “Multi-population techniques in nature inspired optimization
algorithms: A comprehensive survey,” Swarm and Evolutionary Computation, vol. 44, pp. 365–387, 2019. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S2210650217306363

[30] Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, and J.-J. Li, “Distributed evolutionary algorithms
and their models: A survey of the state-of-the-art,” Applied Soft Computing, vol. 34, pp. 286–300, 2015. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1568494615002987

[31] I. Sugiarto, G. Liu, S. Davidson, L. A. Plana, and S. B. Furber, “High performance computing on SpiNNaker neuro-
morphic platform: A case study for energy efficient image processing,” in 2016 IEEE 35th International Performance
Computing and Communications Conference (IPCCC). IEEE, 2016, pp. 1–8.

[32] B. Sen-Bhattacharya, S. James, O. Rhodes, I. Sugiarto, A. Rowley, A. B. Stokes, K. Gurney, and S. B. Furber,
“Building a spiking neural network model of the basal ganglia on SpiNNaker,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 10, no. 3, pp. 823–836, 2018.

[33] A. Yousefzadeh, L. A. Plana, S. Temple, T. Serrano-Gotarredona, S. B. Furber, and B. Linares-Barranco, “Fast predic-
tive handshaking in synchronous FPGAs for fully asynchronous multisymbol chip links: Application to SpiNNaker
2-of-7 links,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 8, pp. 763–767, 2016.

[34] T. Sharp, F. Galluppi, A. Rast, and S. Furber, “Power-efficient simulation of detailed cortical microcircuits on SpiN-
Naker,” Journal of Neuroscience Methods, vol. 210, no. 1, pp. 110–118, 2012.

[35] A. G. D. Rowley, C. Brenninkmeijer, S. Davidson, D. Fellows, A. Gait, D. Lester, L. A. Plana, O. Rhodes, A. Stokes,
and S. B. Furber, “Spinntools: the execution engine for the SpiNNaker platform,” Frontiers in Neuroscience, vol. 13,
pp. 231–251, 2019.

[36] I. Sugiarto, P. Campos, N. Dahir, G. Tempesti, and S. Furber, “Optimized task graph mapping on a many-core neuro-
morphic supercomputer,” in 2017 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2017,
pp. 1–6.

BIOGRAPHIES OF AUTHORS

Indar Sugiarto was a postdoctoral researcher at the Advanced Processor Technology of the Univer-
sity of Manchester. He obtained PhD Degree from Technische Universität München in 2015. His
researches are in fields of parallel computing, artificial intelligence, machine learning, and robotics.
In his postdoctoral work, he developed a fault-tolerance and optimization method for the SpiNNaker
neuromorphic supercomputer. He is affiliated with IEEE and ACM as an active member. He serves as
an officer for the Indonesian Chapter of IEEE Computer Society. He is also the Deputy of Artificial
Intelligence Research Center at Petra Christian University.

Steve Furber received the B.A. degree in mathematics and Ph.D. degree in aerodynamics from the
University of Cambridge, Cambridge, U.K., in 1974 and 1980, respectively. He was with the RD
Department, Acorn Computer Ltd. from 1981 to 1990 and was a Principal Designer with BBC Micro
and the ARM 32-bit RISC microprocessor. He moved to his current position as ICL Professor of
Computer Engineering with the University of Manchester, Manchester, U.K., in 1990. Prof. Furber
is a Fellow of the Royal Society, the Royal Academy of Engineering, the BCS, and the IET.

Strategies for implementing parallel genetic algorithms in neuromorphic platform (Indar Sugiarto)


