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 Individuals with hearing and speaking impairment communicate using sign 

language. The movement of hand, body and expressions of face are  
the means by which the people, who are unable to hear and speak,  

can communicate. Bangla sign alphabets are formed with one or two hand 

movements. There are some features which differentiates the signs. To detect 

and recognize the signs, analyzing its shape and comparing its features  
is necessary. This paper aims to propose a model and build a computer 

systemthat can recognize Bangla Sign Lanugage alphabets and translate  

them to corresponding Bangla letters by means of deep convolutional  

neural network (CNN). CNN has been introduced in this model in form of  
a pre-trained model called “MobileNet” which produced an average accuracy 

of 95.71% in recognizing 36 Bangla Sign Language alphabets. 
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1. INTRODUCTION  

Communication is one of human society's cornerstones. Human communicates by the means  

of spoken language primarily. The persons who are unable to speak and hear, however, cannot communicate 

this way. Therefore, many cultures have developed their own language for communicating with the speaking 

and hearing impairedpeople. All the letters and words are represented visually to the impaired person.  

This language is called sign language. Sign language mostly consists of specific gestures made with one  

or two hands where the position of the palm and placement of fingers combined make up letters of  

the language. Each alphabet has a predetermined pattern of hand and finger position. The variant of sing 

language for Bangla language is referred to as the Bangla Sign Language (BSL). Figure 1 shows the hand 

sign images for BSL vowels and Figure 2 shows Bangla numerical signs.  

Learning the sign language can be quite a daunting task to an able person because speaking  

as a means of communication becomes their nature. As a result, most people of this country do not know sign 

language of Bangla language. As such with hearing and speech impaired people hardly becomes a full 

functioning member of the society. Therefore, an automated process that can translate the sign language into 

natural spoken language is necessary. As every language consists of alphabets, recognition and translation  

of alphabets is the first step towards a complete real-time translation system. 

Creating a computer system that can recognize BSL alphabet sign from an image and translate  

it to Bangla letter for Bangla speaking people based on CNN [1], is the obtective of this paper. We present  
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a simple and compact scheme for recognition of BSL in this paper. MobileNet V1 has been used based  

on transfer learning. MobileNet is a class of lightweight deep convolutional neural network which are vastly 

smaller in size and faster in performance. It is fine-tuned to adapt to our problem. Ishara-Lipi dataset [2]  

was used to train and evaluate our model. This approach also requires less storage than other existing 

solutions. We have built a model for desktop computer, but due to low memory usage, it can also be extended 

to mobile devices as well.  

Contribution of this work can be written as follows:  

- BSL alphabets recognition model has been proposed and implemented. 

- A reliable desktop application has been built which can translate 36 BSL alphabets. 

 

 

  
  

Figure 1. BSL vowels hand sign [3] Figure 2. BSL numericals [4] 

 

 

2. RELATED WORKS 

Various machine learning techniques with image processing have already been used by various 

researchers for BSL recognition. Some of these methods are discussed briefly here. In paper [5], the authors 

proposed a method using ANN for translating the BSL alphabet to corresponding Bangla letter. For image 

processing operations, Matlab tools were applied. A total of 828 images were collected for training and 

testing. The system can recognize 36 BSL alphabets. The accuracy of the system is 80.902% [5].  

In paper [6], the authors developed a model for BSL recognition by image processing. Initially skin color 

is detected using YCbCr skin detection algorithm. Extracted features from images were fed into SVM classifier for 

training and testing. They collected images of 15 Bangla consonant hand signs. Each class  

of signs has 52 or 56 images of 29 different bare hands. The 95% average accuracy has been received for training 

set and 86% has been received for evaluation set. For the letters ‘ঙ’ and ‘চ’ it got very low accuracy [6]. 

CNN approach was taken by Rony et al. for single-hand BSL character Recognition. This system  

of BSL interpreter has been designed with the purpose of providing real time communication. This system  

is trained by using Tensorflow Inception-v3 Model and tested by applying CNN. It uses a camera to detect 

sign in real time. They achieved an average recognition accuracy of 92.85% [7]. 

Another method has been proposed by Shanta et al. to detect BSL using SIFT and CNN.  

This method extracts feature descriptors of ROI (Region of Interest) using SIFT, then clusters the features 

using K-means clustering to get clustered descriptors, uses Bag of interest (BOI) to represent clustered 

features as histograms and then input the histograms in CNN. This method was done both with and without 

SIFT where using SIFT yields higher accuracy on every sign. Using SIFT this method can detect 38 hand 

sign for 51 letters with 88.52% accuracy on average [8]. 

BSL Recognition Using Deep CNN has been introduced by Hossen et al. This system is made  

to detect static hand sign from images taken under various lighting conditions, different background  

and positions of the hand. This system can detect 37 BSL alphabets with validation accuracy of 84.68% [9]. 

Islam et al. proposed a model to identify BSL digits using CNN. This model uses multi-layer CNN with  

2 sub layers and ADAM optimizer. A flatten and dense layer was used after max-pooling layer  

and on the final output layer softmax activation has been used. Ishara-Lipi dataset [8] was used and  

the model has shown 94.88% accuracy for digit 0 to 9 [10]. 

Recognition of BSL alphabets by CNN was proposed by Islam et al. They applied their model  

on Ishara-Lipi dataset [2] which contains 36 BSL characters. The model had multi layered CNN and used 

Adam optimizer with 0.001 learning late. On this dataset, the model achieved 92% accuracy [11]. A BSL 

recognition system offered by Hasan et al. which applied ANN for training and classification and Freeman 
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Chain Code was used for feature extraction. YCbCr was used as skin detection algorithm. The system could 

recognize 20 alphabets and 96.5% average accuracy rate was achieved. But this system can detect only  

one handed signs [12]. 

Another system developed by Yasir et al. to recognise two hand sign. ANN was used to train  

the system and YCbCr algorithm for skin detection. Two different techniques namely PCA and LDA were 

used and compared as feature extractor where PCA stands for principal component analysis and LDA stands 

for Linear Discriminant Analysis. Images of 15 Bangla alphabets were collected from 22 people.  

ANN classifier with LDA produced an excellent result. The result is much better than ANN with PCA  

or raw image [13].  

A new approach was proposed by Hasan et al. Hybrid color model (RGB-YCbCr-HSV) was used 

for skin detection. A combination of PCA and FLDA (fisher’s linear discriminant analysis) was introduced to 

extract features. They adopted a new classifier LSVM. The system can identify 10 Bangla numbers [14]. 

Yasir et al. introduced a SIFT (System Invariant Feature Transform) based approach for two handed sign 

alphabets recognition. After normalization of input images geometrical based SIFT method is used for 

extracting features. SVM was applied as classifier. Comparing between classifiers K-NN (experimental 

results of Rahaman et al. [5]) and SVM recognition rates, k-NN classifies better as the dataset was small [15]. 

Karmokar et al. introduced a BSL recognition system which recognizes 47 alphabets of Bangla Sign 

Language by NNE (neural network ensemble). A method combining feature extraction and NNE was 

proposed. A total 235 samples (5 for each alphabet) were used for training of the system. NCL algorithm was 

employed for faster training. The experimental result shows NCL with feature extraction gives  

an approximate accuracy of 93%. Varying lighting, presence of skin colored objects, quality of the image 

causes it to face problem in recognizing the alphabets [16]. 

Aziz et al. approached a different method for recognition of BSL. The process of recognition  

is based on dynamic calibration of skin as well as geometric hashing. Input image is converted into binary 

image. This process of conversion is done by dynamic color-based skin threshold and mean shift 

segmentation algorithm. Hash table was trained with 1147 samples of 37 alphabets. The hand sign  

is identified by hashing [17]. For working with images of different backgrounds, a model was proposed by 

Haque et al. which identifies two handed signs using PCA algorithm and ANN. The mechanism was to  

pre-process images and use PCA for feature extraction. K-Nearest Neighbor was chosen as classifier. It can 

recognize 26 Bangla alphabets with an average accuracy rate of 77.846%. The mechanism can give 

satisfactory results for input images with different backgrounds [18].  

In paper [19], the authors developed a BSL recognition system.The system is basially a real time 

computer vision based system where hand area is detected from the input image using the classifier namely 

Haar-like feature-based cascaded classifier [20].Using K-Nearest Neighbor classifier, hand sign is extracted 

by the proposed system from Hue and Saturation values of HSV color model where HSV stands for Hue, 

Saturation, and Value. HSV color model is frequently used instead of the RGB color model in application 

programs such as graphics and paint programs. The system can recognize 30 consonants with an accuracy  

of 94.75% and 6 vowels with an accuracy of 98.17%. The system can give output in real time. The system 

has some problems recognizing the similar hand signs. “র” with ‘ল’ and ‘ফ’ with ‘ঝ’ can be the examples 

of similar hand signs [19]. Hoque et al proposed a detection system namely Real Time Bangla Sign Language 

Detection. Faster R-CNN has been used in this proposed system for detecting hand sign and different 

background of ROI where R-CNN stands for Region-Convolutional Neural Network. This model is designed 

to detect BSL from images with different background and lighting in real time. It can detect 10 letters [21].  

 

 

3. BACKROUND 

An overview of fine-tunning and MobileNet V1 is given in this section. 

 

3.1.  Fine-tunning 

Fine-tunning is linked with transfer learning. When we use knowledge that was gained from one task 

and apply it to a new task, that’s transfer learning. Fine-tunnig is a process where it takes an already trained model 

and then tunes or tweaks that model to perform a second task. It allows to take the advantage of the gained 

knowledge without having to develop it from scratch as building a model from scratch is quite difficult. By 

replacing the top layer with a classifer, a pre-trained model can be easily fine-tuned. The pre-trained weights can be 

used to speed up convergence rather than using random weights [1]. 

 

3.2.  MobileNet V1 architecture 

MobileNets are a class oflow latency, low power model that can be used in classification, detection 

and other tasks CNN are good for. As they are small in size, these are considered to be great deep learning 
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models to be used in computer and mobile devices. It is built on filters that can be separated in depth.  

This gives the models an opportunity to decrease the number of parameters needed for convolutional 

operations, thus reducing the model’s size. They are pre-trained on ImageNet [22] dataset [23]. 

The architecture followed a pattern which was easy to replicate. 

- The filter size of each convolutional layer that isn’t Pointwise convolution-3x3 

- Stride 2 is used for downsampling in intermediate convolution. 

- The output is flattened by a Global Pooling layer [23]. 

A substitute of the standard convolutional filters in MobileNetis depth-wise separable filter which 

consists of two layers. Those are depth-wise and point-wise convolution. Figure 3 illustrates the comparison 

between standard and depth-wise (dw) separable filter. MobileNet has 13 convolution blocks. Figure 4 describes 

the MobileNet architecture. A batch normalization and Relu layer is after each convolution layer. Lastly there is a 

global average pooling layer and a fully connected layer which feeds into Softmax function for classification [23]. 

 

 

 
 

Figure 3. Standard and Depth-wise (dw) separable convolution  

 

 

 
 

Figure 4. MobileNet architecture [23] 

 

 

4. PROPOSED SYSTEM DESCRIPTION 

The research work is described in the following sub-sections. 
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4.1.  Dataset preparation 

We used BSL’s first complete isolated charactersdataset, Ishara-Lipi dataset [2]. The dataset 

contains 30 consonants and 6 vowels of BSL characters. Table 1 shows the properties of the dataset.  

The dataset holds 36x50=1800 images in total. All images are cropped and resized by 128x128 pixels.  

The images were taken with same background and in same lighting conditions. The images are in .JPEG 

format and they are converted into binary image before feeding it into the model. Figure 5 shows some 

samples of the dataset. The 36 BSL alphabets (অ, আ, ই, উ, এ, ও, ক, খ, গ, ঘ, চ, ছ, জ, ঝ, ট, ঠ, ড, ঢ, ত, থ, 

দ, ধ, ণ, প, ফ, ব, ভ, ম, য়, র, ল, স, হ, ড়,ং , ং ) are assigned as the class labels of (0,1,2……, 36)  

in the dataset. 10% data were separated from the dataset for final testing of our system. 

 

 

Table 1. Dataset properties 
Data  Number of class Sets per class Total number of data  

Vowels 6 50 300 

Consonants  30 50 1500 

 

 

 
 

Figure 5. BSL Characters Dataet Samples [10] 

 

 

Using stratified K fold cross validation, the entire dataset was divided into train and test set.  

For the purpose of training, the value of K was set to 5. The data was split into 5 subsets and the model  

was trained on 5-1=4 subsets. So the last subset was hold for testing and it was done for each of the subsets. 

In this case, all the samples had a chance to be in the test set in each iteration, thus building a more  

reliable system.  

 

4.2.  Methodology 

The proposed method uses Google’s pretrained model MobileNet version 1 which has a good 

accuracy on ImageNet dataset [23]. The transfer learning [24] approach was taken to fine tune the model  

to our specific classification problem. We trained MobileNet for 50 epochs with prior weights of  

ImageNet [22] dataset on our training set. All pre-trained weights can be used to initialize entire network 

weights in order to reduce training time [25]. The images were preprocessed for the model. The last 6 layers 

were not trained from the model which had the fully connected or dense layer. We introduced a dense layer 

with 36 class labels which is the number of our classes and ‘softmax’ as activation function instead of these  

6 layers. The proposed model used ADAM optimizer where learning rate was 0.001 and cost function was 

categorical cross entropy.  
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The convolutional layers extract the features of the images. From the last convolution layer 

“conv_pw_13_relu” 50176 features were extracted for each image. During the training process, the extracted 

features from trainset are used to train the dense layer. Dense layer acts as a classifier which classifies  

the images into the corresponding class labels. After training, the model was evaluated by test set. The model 

predicted the class labels of the images belonging to test set. Figure 6 illustrates the block diagram of our 

proposed approach.  

The proposed model is trained using stratified k fold cross validation scheme. The dataset  

of 1800 images is shuffled and split uniformly into 5 folds. For testing, one-fold is set aside and the other 

four folders are used for training. This is repeated five times in order to use each fold as test data.  

The measures for evaluation were Precision, Recall, F1-score and support. Precision is the ratio of positive 

observations that were predicted accurately to total predicted observations that were positive. F1-score is  

the average of precision and recall. Recall is the ratio of positive events that were accurately predicted to all  

the observations in the class. Support shows the number of samples in the classes. 

 

 

 
 

Figure 6. Our proposed model 

 

 

5. RESULT AND DISCUSSION 

The testing set was 20% of the whole dataset. The model has been trained for 50 epochs.  

The average accuracy for 36 alphabets of the proposed model is 95.71%. The evaluation of the model for each 

iteration is given in Table 2. A more detailed report is shown in Table 3. In each iteration, the report shows the 

following measures: precision, recall and F1-score. Average precision and recall the model returned was 96%. The 

classes with highest precision were ‘ক’ and ‘দ’. The classes with the lowest precision were ‘স’ and ‘ড’. As some 

images were blur and complex in shape the model couldn’t recognize them correctly. The model got confused 

between some hand signs such as ‘স’ and ‘গ’ as they are similar in shape, so these classes had a low accurate 

prediction rate.  

Table 4 presents a comparison among existing models and our proposed model. Our proposed 

architecture gave better performance than most of these existing models. Using conventional CNN,  

Islam et al. used Ishara-Lipi dataset [1] which is the same dataset that we used. They built their own CNN 

model which gave an average accuracy of 92.00%. Our proposed model MobileNet gave a better accuracy 

rate than that.  
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Table 2. Model evaluation result 
Iterations (For 5-fold) Accuracy (%) 

1st 95.71 

2nd 96.39 

3rd 92.00 

4th 96.94 

5th 97.54 

Average 95.71 

 

 

Table 3. Average result for each iteration 
Iterations 

(For 5 fold) 
Precision Recall F1-score Support 

1st 0.96 0.96 0.96 840 

2nd 0.97 0.96 0.96 831 

3rd 0.93 0.92 0.92 825 

4th 0.97 0.97 0.97 817 

5th 0.98 0.98 0.98 812 

Average 0.96 0.96 0.96 4125 

 

 

Table 4. Comparison among existing and our proposed model 
Models Methodology Dataset Class Average accuracy 

Rahman et al. [5] 
Muli-Layer Neural Network 

with image Processing 
23x36=828 samples 36 alphabets 80.90% 

Uddin et al. [6] 
YCbCr algorithm and SVM 

Classifier 
800 samples 15 consonants 86% 

Rony et al [7] CNN 1900 samples 
38 alphabets, 

3 special character 
92.85% 

Islam et al. [11] CNN 
1800 samples 

(Ishara-Lipi dataset [1]) 
36 alphabets 92% 

Proposed model MobileNet 
1800 samples 

(Ishara-Lipi dataset [1]) 
36 alphabets 95.71% 

 

 

6. DEVLOPING THE DESKTOP APPLICATION 

The proposed architecture MobileNet was integrated in a computer vision based application.  

A user interface was created with the help of Python Tkinter. The homescreen and transition from 

homescreen of the application is shown in Figure 7. The application takes a hand sign image as input and  

the image is fed into the trained model. It classifies the image and returns the corresponding Bangla letter  

in real time. The Bangla letter is displayed in the screen in text format. It also shows the top 5 probabilsitc 

class of the input image. Here, the class having the highest probability is selected as the class of that 

particular hand sign.  

 

 

 
 

Figure 7. User interface of BSL desktop translation system for alphabets 

 

 

7. CONCLUSION AND FUTURE WORK 

Without the creation of sign language hearing and speech impaired people would forever be unable 

to communicate with other people and even each other. Whilst sign language can enable them to express 

themselves, lack of knowledge of sign language among the general people creates a gap of communication. 

The paper presents a quick and compact mehod for translation of BSL alphabets into Bangla Language.  
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The model could recognize 36 alphabets with an average accuracy of 95.71%. It also takes less 

computational time, resulting in less power consumption which is necessary nowadays. It was used to build 

an automated translation system for computer. This research is the first step towards making a system that 

can be used in day-to-day situations to communication as a system needs to recognize the alphabets first 

before it can be trained to start recognizing words. 

By using images of higher resolution, the model could be enhanced. This model cannot detect BSL 

characters in different backgrounds and lighting conditions. This approach can be improved using a more 

versatile dataset. In future, it can be used to recognize all the BSL characters (51 alphabets). This approach  

is the basic step in building a more accurate BSL recognition system in real time. We have built a desktop 

translation system and due to low storage it can be extended to mobile devices.  
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