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 The exponential growth of information on the internet makes it troublesome 

for users to get valuable information. Text summarization is the process to 

overcome such a problem. An adequate summary must have wide coverage, 

high diversity, and high readability. In this article, a new method for multi-

document summarization has been supposed based on a harmony search 

algorithm that optimizes the coverage, diversity, and readability. Concerning 

the benchmark dataset Text Analysis Conference (TAC-2011), the ROUGE 

package used to measure the effectiveness of the proposed model. The 

calculated results support the effectiveness of the proposed approach. 
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1. INTRODUCTION  

Information overload is one of the most common problems because of the fast evolution of information 

in the World Wide Web [1]. Text summarization (TS) is the dismissal of such a problem. Also, TS, the process 

of producing a document summary from a series of documents or one document without losing its main ideas, 

aims to extract useful information from the sources to the users [2]. The summary offers a helpful guide to 

generate attention on information, to make decisions on whether a document is useful or not and to assist as a 

time saver for users [3]. Based on the quantity of the document to be summarized, TS can be classified as a 

single document summarization (SDS) or multi-document summarization (MDS). For instance, in SDS just a 

single document can be summarized into shorter ones, while in MDS a set of related documents with the same 

topic is summarized into one summary [4]. MDS is more complicated than SDS although some similar 

techniques can be used for both MSD and SDS due to information overload and a high degree of redundancy. 

The redundancy occurs because summarized documents deal with similar topics and share the same ideas. As 

a result, reducing redundancy can lead to a high-quality summary [5].  

The way of a summary creating is either extraction or an abstraction according to the function to be 

performed [6]. Extractive summarization is a mechanism for a professional extraction of the literary 

components like sentences, passages, and so on from the original meaning. Whereas, abstractive summarization 

will depend on the natural language processing (NLP) techniques, which need a complicated understanding of 

NLP strategies to analyze the sentences of documents and paragraphs where several changes have to be made 

https://creativecommons.org/licenses/by-sa/4.0/
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on the selected sentences. While in the extractive summarization, no need for modification will be applied to 

the sentences that are included in the resulted summary. Therefore, abstractive summarization is  

time-consuming and much difficult than extractive summarization [7]. Moreover, summarization can be 

classified as either generic summarization or query summarization. The Generic summarization generates a 

summary, which always includes the essential content of the documents. However, the restriction of generic 

summarization is never a topic or query is available for the summarization procedure. While in query-based 

summarization, a summary is created depending on the query of the user, where the documents are searched to 

be matched with such query [8]. This paper approach supposes a new model for extractive generic MDS based 

on harmony search algorithm (HSA) that improves coverage, diversity, and readability. The experimental 

results utilized to the TAC-2011 dataset and ROUGE package applied to measure the performance of  

the model. 

 

 

2. RELATED WORKS 

Even though text summarization has drawn consideration basically after the information expansion 

on the Internet, the primary work has been done in 1958 [9]. From that year a variety of summarization 

techniques have been proposed and assessed. For example, some researchers [10, 11] applied sentence 

clustering in text summarization successfully. The basic idea behind the cluster-based approach for MDS is 

based on sentences with high degrees of similarities that are grouped into one cluster, then one sentence is 

selected from each cluster to be included in the generated summary. Sentence selection depends on selecting 

sentences that are closest to the centroid of the cluster [12]. Graph-based approaches, which are based on an 

assumption that the sentence importance will increase if it has more similarity to other sentences in the 

document, are also used widely in MDS by the researcher. The process begins by representing each sentence 

as a node in the graph and the cosine similarity can be used as an edge between nodes [13].  

The page rank [14] or text rank [15] is then applied to score the sentences, sentences with high scores 

are included in the final summary. Some researchers focus on machine learning approaches which have been 

commonly used in the field of TS. This approach depends on categorizing the sentences into two classes; 

summary sentences or non-summary sentences. Such an approach requires dividing the dataset into training, 

testing that data for labeling, and categorizing it accordingly. Some of the machine learning approaches are 

Naïve Bayes [16], neural network [17], decision trees [18] and support vector machine [19]. Many researchers 

have also investigated optimization approaches. Many optimization techniques such as differential evolution 

(DE) [20], particle swarm optimization (PSO) [21] and genetic algorithm (GA) [22] are used for TS. 

Optimization techniques are based on multiple agents in the population that search for candidate solutions 

which are considered as points in the search space. In [23] authors applied a bee colony for MDS. Here, the 

bees were considered as agents that search for nectar in flowers where the food is considered as a candidate 

solution, there is a single bee for every food source. As a result, the objective function is for the bees to collect 

a portion of food. When the food is abandoned, the bee then turns into a scout and looks for another food 

source. They search for neighboring areas and select the best candidate. When moving to a neighbor, a sentence 

is deleted randomly from the present summary and another sentence is included so the length limitation is  

not violated. 

 

 

3. PROPOSED FRAMEWORK 

In this paper, a new approach for MDS is proposed. It is decomposed of four main steps. First the 

preprocessing is done. Secondly, word similarity measure and summary quality factors are applied, and finally, 

harmony search is performed. These four steps are described as follows; 

 

3.1.   Preprocessing 

There are four steps for preparing the data, these steps include: 

- Sentence segmentation: each document is divided individually into several sentences based on the dot 

between them. 

- Tokenization: the process of separating sentences into terms. 

- Stop word removal: involves removing redundant and repeated terms in the document that do not offer the 

required information for recognizing an important sense of the document. 

- Stemming: the process of generating the root of the word. 
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3.2.   Similarity measure 

Similarity measure plays a significant role in the field of text mining [20]. To compute the similarity 

between each term, they must be represented as a vector. The well-known representation scheme for terms 

units is the vector space model (VSM). Let T= {t1, t2,..,tp} represent the distinct terms that exist in the document 

collection D, where p is the number of terms in D. Through VSM every sentence (si) is represented using these 

terms as a vector in n-dimensional space, si= {wi,1, wi,2,…,wi,p}, for i=1 to p. Each element in the vector 

represent a term within a given sentence. The value of each element in the vector assigns a weight using term 

frequency-inverse-sentence-frequency as explained shown in (1) [24]. 

 

𝑊𝑖,𝑘 = 𝑇𝐹𝑖,𝑘 ∗ log (
𝑛

𝑛𝑘
) (1) 

 

where: 

TFi, k is the term frequency, represents how many term k appears in the sentence (Si). 

n. the number of sentences in D. 

nk. the number of sentences in which term 𝑡𝑘 appears. 

The weight 𝑊𝑖,𝑘 of the term 𝑡𝑘 should be zero if it does not exist in the sentence Si. 

The VSM requires high dimensionality of feature space that affects the performance of TS. Depending 

on the number of terms in each sentence the specified vector dimension p is very large and has numerous null 

elements, which can be a major disadvantage of VSM. The center of the document collection (o) can be 

calculated as the average of weights 𝑊𝑖,𝑘 of term tk for all Si in the document collection as shown in (2) [25]. 

 

𝑂𝑘 =
1

𝑛
∑ 𝑊𝑖,𝑘  𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑝𝑛

𝑖=1  (2) 

 

3.3.   Summary of quality factors 

In this section, the important factors for summary quality are demonstrated. That consists of coverage, 

diversity and readability. Each factor plays important role in the summarization process. These factors are 

described as below: 

 

3.3.1. Coverage 

The goal of TS is to cover the main content of the summarized documents by choosing subset S  D 

that covers as many conceptual sentences as possible. Summary coverage can be calculated by measuring the 

cosine similarity between the center of document collection (O) and each sentence (Si) as shown in (3). 

 

𝑠𝑖𝑚(𝑜, 𝑠𝑗) =
∑ 𝑜𝑖𝑠𝑖

𝑝
𝑖=1

√∑ (𝑜𝑖)2 
𝑝
𝑖=1

∗√∑ (𝑠𝑖)2 
𝑝
𝑖=1

 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 (3) 

 

The similarity between the center of document collection and each sentence decides the importance of the 

sentence and whether it is included in the generated summary [26]. 

 

3.3.2. Diversity 

A summary that has a high diversity between its sentences can be considered as a good summary 

because its sentences solve the problem of information redundancy that occurs in most summarization models, 

especially in MDS. Thus, to achieve an adequate summary, the sentences should have a high diversity among 

them. Summary diversity is computed by considering the total value of sentence similarity. A good summary 

is associated with lower diversity values that ensure minimum information redundancy. As shows in (4) the 

formulation to compute sentences diversity [27]. 

 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑆𝑖) = ∑ ∑ 𝑠𝑖𝑚(𝑆𝑖
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 , 𝑆𝑗) (4) 

 

3.3.3. Readability 

Readability is an important factor for document summary that indicates the sentences in the summary 

are highly related to the next sentence in the document summary. The readability (Rs) of summary (s) with 

length (S) can be formulated as shown in (5) and (6) respectively [28]. 

 

𝑅𝑠 = ∑ 𝑠𝑖𝑚(0≤𝑖≤𝑠 𝑆𝑖 , 𝑆𝑖+1 (5) 

 
 



               ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021:  89 - 95 

92 

𝑅𝐹𝑠 =
𝑅𝑠

𝑀𝑎𝑥∀𝑖× 𝑅𝑖
  (6) 

 

The objective function is to maximize the three factors coverage, diversity and readability as shown in (7). 

 

𝐹(𝑠) = 𝑓𝑐𝑜𝑣(𝑠) + 𝑓𝑑𝑖𝑣(𝑠) + 𝑓𝑟𝑒𝑑(𝑠) (7) 

 

3.4.   Harmony search based MDS 

Harmony search algorithm (HSA) is a meta-heuristic algorithm that was developed by  

Z. W. Green, et al. in 2001 [29]. HSA requires less mathematical operations and can be easily used in many 

optimization problems compared to other meta-heuristic algorithms. HSA algorithm tries to search for a global 

solution specified by the objective function. The decision variables assign values to determine the objective 

function, is similar to tones of musical instruments that decide the aesthetic quality. Thus, the HSA algorithm 

works similarly to a musician who is looking for the best harmony [30]. 

The harmony vector values are stored in the harmony memory (HM) matrix as follows; 

 

𝐻𝑀 = [
𝑋1

1 𝑋2
1 𝑋𝑛

1

⋮ ⋮ ⋮
𝑋1

𝐻𝑀𝑆 𝑋2
𝐻𝑀𝑆 𝑋𝑛

𝐻𝑀𝑆
] 

 

where [x1
i, x2

i ,.., xn
i] is a candidate solution. The HM is initialized by random variables. Also, two important 

parameters that should be initialized are Harmony memory considering rate (HMCR) and pitch adjusting rate 

(PAR). These two parameters are updated by harmony memory consideration (HMC) and pitch adjusting (PA) 

respectively. The HMCR plays an important role in selecting a value from memory while the PA is important 

for both exploitation and exploration. The exploitation is used to find optimal solutions, whereas exploration 

is used to avoid local minima [31]. The following algorithm shows how HSA is used for text summarization. 

- Step1: collect a set of multiple documents D= {D1, D2,..,DN} where each Di represent individual document 

- Step2: apply preprocessing steps to each Di 

- Step3: for each Di calculate the coverage as shown in (3) 

- Step4: for each Di calculate the diversity as shown in (4) 

- Step5: for each Di calculate the readability as shown in (6) 

- Step6: initialize the HM with random solutions and also initialize HMCR, PAR 

- Step7: sort the entire solution of HM and rank them according to shown in (7)  

- Step8: improves a new solution from HM as follows; 

a. if rand (0.1) < HMCR then choose new solution from HM 

else choose a solution randomly. 

b. if rand (0.1) < PAR then choosing an adjacent value of the selected value to depend on bandwidth. 

- Step9: if the new solution is better than worst stored {based shown in (7)} one then update the HM by the 

new solution  

Else eliminate the new solution 

- Step10: check stop condition if the result be in a stable state then end 

Else go to step 7 

 

 

4. DATASET AND EVALUATION METRICS 

TAC-2011 dataset was used to test the system performance. The dataset consists of seven languages 

(English, Arabic, Greek, Czech, French, Hindi, Hebrew). There are10 topics, each of 10 documents for each 

language [32]. The proposed model deals with the English language only. Recall-oriented understudy for 

gisting evaluation (ROUGE) [33] was used to evaluate the proposed system the outputs of a rouge package are 

three numbers which represent Precision, Recall, and F−score. They are formulated as follows. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 ∩𝑖𝑑𝑒𝑎𝑙𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠𝑖𝑛𝑡ℎ𝑒𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑢𝑚𝑚𝑎𝑟𝑦
  (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 ∩𝑖𝑑𝑒𝑎𝑙𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠𝑖𝑛𝑡ℎ𝑒𝑠𝑖𝑑𝑒𝑎𝑙𝑢𝑚𝑚𝑎𝑟𝑦
  (9) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (10) 
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5. RESULTS AND DISCUSSION 

ROUGE-1 and ROUGE-2 matrices have been used to measure the performance of the summary. 

These matrices are very similar to human judgment. The summary performance is measured by computing the 

overlap between system summaries with human summaries. ROUGE-1is concerned with computing unigrams 

overlaps while ROUGE-2 is concerned with computing bigrams overlaps. The results are compared with the 

results of [12] that included peer summaries in the TAC-2011 data set. Tables from 1 to 4 show the results of 

the proposed model [12] using ROUGE-1 and ROUGE-2 respectively.  

As seen from Tables 1 and 2, compared to the result of [12], using ROUGE-1. The tables show the 

recall and F-score of the proposed model are higher. However, the precision is lower. The Judgment between 

the recall and the precision is the F-score that consider them both. As known, the precision is computed by 

dividing the number of sentences overlap between system summary and ideal summary by the number of 

sentences in the system summary. Whereas the recall is computed by dividing the number of sentences overlap 

between system summary and ideal summary by the number of sentences in the ideal summary. Thus, by 

increasing the number of words in the system summary leads to decreasing precision. While decreasing the 

number of words in the system summary leads to decreasing the recall. The length of each ideal summary 

between 240-250 words, while the length of each individual generated summary is more than 250, the reason 

behind the length of the generated summary is the mechanism of creation that is based on adding sentences to 

the summary without any change to the length of the sentence. Which causes the summary length of more than 

250 words, especially when the last sentence is too long.  
 

 

Table 1. Comparison between the proposed model and [12] results using ROUGE-1 

Model Topic 
Proposed model Results [12] Results 

Precision Recall F-Score Precision Recall F-Score 

ID1 0.37200 0.48818 0.42224 0.41253 0.40524 0.40776 

ID2 0.39220 0.52223 0.44797 0.45655 0.46481 0.46062 

ID3 0.41266 0.56887 0.47833 0.47909 0.43169 0.45404 
ID4 0.40216 0.56634 0.47033 0.44966 0.44423 0.44691 

ID5 0.41213 0.61686 0.49412 0.43513 0.41092 0.42243 

ID6 0.37625 0.46825 0.41723 0.45122 0.3547 0.39617 
ID7 0.35321 0.55367 0.43128 0.3953 0.39586 0.39547 

ID8 0.42142 0.69583 0.52492 0.39265 0.38714 0.38985 

ID9 0.37251 0.55123 0.44458 0.37726 0.38105 0.37912 
ID10 0.43711 0.60251 0.50665 0.51806 0.52488 0.52141 

 

 

Table 2. Average precision, recall and F-score using ROUGE-1 
Model Precision Recall F-Score 

Proposed model 0.395165 0.563396 0.46376 
[12] 0.436745 0.420052 0.427376 

 

 

Tables 3 and 4 show the results of the proposed model using ROUGE-2. The efficiency of the 

proposed model was evident when it was used ROUGE-2 because ROUGE-2 is closer to human summary than 

ROUGE-1. The Average of the three metrics recall, precision and F-score are better than [12]. This is because 

of the good definitions of coverage, diversity, and readability and due to the good performance of HSA in 

regards to choosing the most suitable sentences to be included in the final summary.  

 

 

Table 3. Comparison between proposed model and [12] results using ROUGE-2 

Model Topic 
Proposed model Results [12] Results 

Precision Recall F-Score Precision Recall F-Score 

ID1 0.24557 0.17591 0.20498 0.12448 0.12125 0.12247 

ID2 0.14211 0.17829 0.15815 0.16779 0.17052 0.16914 

ID3 0.19230 0.26710 0.22361 0.19256 0.1733 0.18237 
ID4 0.14393 0.26182 0.18574 0.15369 0.1517 0.15269 

ID5 0.17256 0.32551 0.22555 0.14404 0.13605 0.13985 

ID6 0.09323 0.13967 0.11181 0.1367 0.10655 0.11937 
ID7 0.13855 0.20151 0.16420 0.09612 0.09662 0.09635 

ID8 0.22213 0.36548 0.27631 0.12298 0.12144 0.12219 

ID9 0.20374 0.14912 0.17220 0.10841 0.10962 0.109 
ID10 0.19303 0.27252 0.22598 0.2483 0.25177 0.25 
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Table 4. Average precision, recall and F-score using ROUGE-2 
Model Precision Recall F-Score 

Proposed model 0.193524 0.290582 0.231984 
[12] 0.149507 0.143882 0.146342 

 

 

6. CONCLUSION  

The need for influential MDS approaches to extract significant information from a document 

collection becomes of necessity. This paper used HSA based MDS to create a generic extractive summary. The 

Summarizer used a benchmark dataset called TAC-2011, and ROUGE package was applied to evaluate the 

performance of the summarizer. The proposed model is based on three important issues in MDS that include 

coverage, diversity, and readability. Good results were obtained from the proposed model. The limitation of 

this method is controlling the parameters of HMCR and PAR that require special treatment. 
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