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 The implementation of non-orthogonal multiple access (NOMA) and transmit 

antenna selection (TAS) technique has considered in this paper since TAS-

aware base station (BS) provides the low cost, low complexity, and high 

diversity gains. In this paper, we investigate performance of two users by 

deriving outage probability. The system performance benefits from design of 

TAS and full-duplex (FD) scheme applied at NOMA users, and bandwidth 

efficiency will be enhanced although self-interference exists due to FD. The 

main contribution lies in the exact expressions of outage probability which are 

derived to exhibit system performance. Different from the simulated 

parameters, the analytical results show that increasing number of transmit 

antennas at the BS is way to improve system performance. 
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1. INTRODUCTION  

Non-orthogonal multiple access (NOMA) is known as a promising candidate providing ability of 

multiple access to massive users in next generation communications [1-4]. The higher the spectral efficiency 

and user fairness are beneficial from employing NOMA in emerging wireless communication networks. 

NOMA technique has been indicated that it is capable of combining with many wireless communication 

techniques due to its superior spectral efficiency, and enhancing the system performance. For example, the 

technique of cooperative transmission applied together with NOMA is suitable with a multi-user  

environment [5-10]. Therefore, the cooperative transmission for NOMA can improve the communication 

reliability for the users who are in poor channels [11-17]. 

Besides NOMA, multiple-input multiple-output (MIMO) technology benefits network reliability and 

capacity [18, 19]. However, the computational complexity and power consumption are disadvantage of such 

MIMO NOMA scheme since multiple antennas result in the increased cost [20]. The transmit antenna selection 

(TAS) has been applied as a practical solution to avoid the undesirable effects the simultaneous use of multiple 

antennas [21]. The authors in [22] indicated that TAS techniques possessing full diversity gain. TAS and 

NOMA are introduced in recent papers [23-25]. For example, NOMA was studied in [23] by employing 

transmit antenna selection (TAS) at the base Station to show the outage performance for downlink. 

https://creativecommons.org/licenses/by-sa/4.0/
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Notation:  

The cumulative distribution function of a real-valued random variable 𝑋 is denoted by 𝐹𝑋(. ) and 𝑓𝑋(. ) stands 

for probability density functions. 𝑃𝑟(. ) is probability function. 
 

 

2. SYSTEM MODE 

Consider a downlink of network as shown in Figure 1. The base station (BS) equipped many antennas 

to improve performance of far users, i.e. two NOMA users. In this case, main object of this paper is full-duplex 

(FD) mode is enabled at two NOMA users (𝐷𝑖 , 𝑖 = {1,2}) which operate in device-to-device (D2D), two 

NOMA users can communicate directly without helping of the BS which has K  antennas. The complex 

channel coefficients for the links 𝐵𝑆 → 𝐷1, 𝐵𝑆 → 𝐷2, 1 1D D→ , 𝐷2 → 𝐷2, 𝐷2 → 𝐷1,𝐷1 → 𝐷2 are represented 

by |ℎ𝑘,1|
2

∼ 𝐶𝑁(0, 𝜆1), |ℎ𝑘,2|
2

∼ 𝐶𝑁(0, 𝜆2), |𝑙1|2 ∼ 𝐶𝑁(0, 𝜆3), |𝑙2|2 ∼ 𝐶𝑁(0, 𝜆4), |𝑔1|2 ∼ 𝐶𝑁(0, 𝜆5), 

|𝑔2|2 ∼ 𝐶𝑁(0, 𝜆6), respectively. Further, in this scenario NOMA users are double-antenna devices and operate 

in a FD mode, except for the BS equipped multiple antenna. The direct links between the source node and the 

users are assumed available which is common in the scenarios where two NOMA users acquire device to device 

transmission. We assume that all users are clustered very close such that a homogeneous network topology is 

considered in our paper. The channels associated with each link exhibit Rayleigh fading and additive white 

Gaussian noise (AWGN). 
 

 

 
 

Figure 1. System model of NOMA downlink 
 
 

In first phase, the BS communicates with two users with signal 𝑥𝑖 = √𝑎1𝑃𝑆𝑥1 + √𝑎2𝑃𝑆𝑥2 to 1D  and 

2D  according to direct transmissions. Where 𝑃𝑆 is the transmitted power of the BS, ix  is the signal of iD , and 

1a , 2a  is the power allocation coefficient with 𝑎1 + 𝑎2 = 1, 𝑎1 > 𝑎2. In FD mode, user iD  receives the 

superposed signal and loop interference signal simultaneously, the received signal at iD  is 

 

𝑦𝐷𝑖 = ℎ𝑘,𝑖𝑥𝑖 + 𝑙𝑖√𝜛𝑃𝐷𝑖𝑥𝐼 + 𝑤𝑖 ; 𝑖 ∈ (1,2) (1) 

 

where   denotes user 1 working in FD. iw  is the additive white Gaussian noise with zero mean and variance 

0N . The LI is modeled as a Rayleigh fading channel with coefficient il . We call Ix  as signal related to self-

interference at iD . DiP  are the normalized transmission powers at iD . 

Then, the received signal-to-interference-plus-noise ratio (SINR) at user 1 become 

 

𝛾𝑆𝐷1,𝑘 =
𝑎1𝜌|ℎ𝑘,1|

2

𝑎2𝜌|ℎ𝑘,1|
2

+𝜛𝜌|𝑙1|2+1
 (2) 

 

where 0SP N =  is the transmit signal-to-noise ratio (SNR) which was measured at the BS. In this scenario, 

𝐷2 is so-called as the successive interference cancellation (SIC) user, i.e. SIC is required to eliminate 

interference from signal of 𝐷1. Firtly, the received SINR at user 2 to detect user1’s message 𝑥1 is given by 



TELKOMNIKA Telecommun Comput El Control   

 

Performance of downlink NOMA with multiple antenna base station...(Minh-Sang Van) 

21 

𝛾𝑆𝐷1←2,𝑘 =
𝑎1𝜌|ℎ𝑘,2|

2

𝑎2𝜌|ℎ𝑘,2|
2

+𝜛𝜌|𝑙2|2+1
 (3) 

 

Then SIC activated to eliminate interference from 1D , the received SINRs at the 2D  is calculated to decode 

its own signal as 

 

𝛾𝑆𝐷2,𝑘 =
𝑎2𝜌|ℎ𝑘,2|

2

𝜛𝜌|𝑙2|2+1
 (4) 

 

In this phase, the cooperation signal is transmitted from the user with a stronger channel gain to the user with 

a weaker gain. The cooperation signal can help 𝐷1 to decode its data, or 2D  to perform SIC better. The 

cooperation siganl received by 𝐷1 is given by 

 

Di i S i Di I if g P s l P x w= + +  (5) 

 

Generally, the received SINR at user i is given by 

 

𝛾𝐷𝑖 =
𝜌|𝑔𝑖|2

𝜛𝜌|𝑙𝑖|2+1
 (6) 

 

The antenna index can be selected to strengthen the BS to serve user i link as follows 

 

𝑘 ∗= 𝑎𝑟𝑔 𝑚𝑎𝑥⏟

𝑘=1,…,𝐾︸(|ℎ𝑘,𝑖|
2

)

 (7) 

 

In this case, CDF and PDF related selected channel are given by [26, 27] 
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3. OUTAGE PROBABILITY 

When the targeted data rates, 𝑅1 and 𝑅2, are determined by the users’ QoS requirements for user i. In 

fact, the outage probability is an important performance criterion which need be investigated. If the outage 

event occurs at the non-SIC user, the SIC user does not use the cooperation signal, and the outage of the SIC 

user does not allow the cooperation from the SIC user to the non-SIC user. 

 

3.1.  Outage probability of user 

Outage Probability of 𝐷1: According to NOMA protocol, the complementary events of outage at 𝐷1 

can be explained as: 𝐷1 can detect 𝑥2 as well as its own message 𝑥1. From the above description, the outage 

probability of 1D  is expressed as 
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where 𝛾𝑖 = 2𝑅𝑖 − 1, (𝑖 = 1,2), iR  is target rate for signal 𝑥𝑖, with the help of (2) and (3), then it can be 

calculated the terms 1  and 2  as 
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From (8) and (9), it can be computed 2  as 
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Plugging (11), (13), into (10), the final result can be obtained as  
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3.2.  Outage probability of user 2 

The outage events of 2D  can be explained as below. The first is that 𝐷1 cannot detect 𝑥2. The 

second is that 𝐷2 cannot detect its own message 𝑥2 on the conditions that 𝐷1 can detect 𝑥2 successfully. 

Based on these, the outage probability of 𝐷2 is expressed as 
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From (14), 1  is given by 
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where 𝜃 = 𝑚𝑎𝑥 (
𝛾2

(𝑎1−𝛾𝑡ℎ2𝑎2)𝜌
,

𝛾2

𝑎2𝜌
). From (8), 1  can be expressed 
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From (14), 2  is given by 
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Plugging (16), (17), into (14), the final result can be obtained as  
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4. THE IMPERFECT SIC AT USER 2 

Conversely, by considering imperfect SIC, the received SINRs at both 2D  become: 

 

𝛾𝑆𝐷2,𝑘
𝑖𝑝

=
𝑎2𝜌|ℎ𝑘,2|

2

𝑎1𝜌|ℎ̃𝑘,1|
2

+𝜛𝜌|𝑙2|2+1
 (19) 

 

where ℎ̃𝑘,1 ∼ 𝐶𝑁(0, 𝜗𝜆7), and the parameter 𝜗(0 ≤ 𝜗 ≤ 1) denotes the level of residual interference because 

of SIC imperfection at user 2. As a particular case, 𝜗 = 0 and 𝜗 = 1 represent perfect SIC and without SIC, 

respectively. The outage probability the user 2 is given by  
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From (22), 1  is given by 
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From (8), 1  can be expressed 
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𝛷2 is calculated as 2 . From (17) and (22), 𝑂𝑃𝐷2
𝑖𝑝

 is given by  
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5. NUMERICAL RESULTS 

In this section, numerical examples are performed to verify the outage performance of the downlink 

multiple-input-single-output (MISO) NOMA network under Rayleigh fading channels with FD scheme. 

Moreover, Monte-Carlo simulation is run in 106 times to compare with analytical results as proved formula 

presented in previous section. In Table 1 as shown in simulation parameters. In Figure 2, the outage probability 

versus transmit SNR at the BS 𝜌 is presented in different power allocation parameters. We distance between 

BS and 𝐷𝑖 , (𝑖 = 1,2) is 
id , channel gain 𝜆𝑖 = 𝑑𝑖

−𝛼, 𝑅1 = 0.5, 2 2R = , the number of antenna at BS is 𝐾 = 2. 

As clear observation, the exact analytical results and simulation results are in excellent agreement, and such 

outage probability will be constant at high-SNR regimes. Moreover, as the transmit SNR increases, the outage 

probability decreases Another important observation is that the outage probability for 𝐷2 outperforms User 1. 

Figure 3 shows outage performance for user 1. The parameters for this case 𝑎1 = 0.7 ,𝑅2 = 2, 𝐾 = 2. It can 

be seen that lower target rate 1R  results in better outage performance. 

In Figure 4, the outage probabilities are shown as a function of the transmit SNR. Reported from the 

impact of target rate 𝑅2, there is a decrease in outage probability for such user as change to lower level of 

𝑅2This Figure requires several parameters as 𝑎1 = 0.7 ,𝑅1 = 0.5, 𝐾 = 2. Figure 5 plots the outage probability 

versus SNR with the different number of transmit antenna at the BS (other parameters as declarations in  

Figure 5 as 𝑎1 = 0.7 , 𝑅1 = 0.5, 𝑅2 = 2. More antenna at the BS indicates better outage probability in such 

NOMA. 𝐾 = 5 case is best performance as important observation in this study 
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Table 1. Simulation parameters [28] 
Parameter Value 

Node distances 𝑑1, 𝑑2, respectively 0.4, 0.2 

Path loss exponent 𝛼 2 

Power allocation factors 𝑎1  0.6, 0.7, 0.8 

𝜆3 = 𝜆4 = 𝜆7,𝜆5 = 𝜆6 0.01, 1 

Outage threshold 𝑅1; 𝑅2 (0.2, 0.5); (1, 2) 

Number of antenna 𝐾 2, 5 

Transmit SNR 𝜌 0 to 40 dB 

 

 

  
 

Figure 2. Outage performance of 𝐷𝑖 , (𝑖 = 1,2) and 

OMA versus 𝜌 as varying 𝑎1. 

 

Figure 3. Outage performance of 1D   

as varying 1R . 

 

 

  
 

Figure 4. Outage performance of 𝐷2 versus 𝜌 

as varying 𝑅2. 

 

Figure 5. Outage performance of 𝐷1 and 𝐷2  

as varying K . 

 

 

6. CONCLUSION 

This paper investigated analytically the impact of residual interference due to full-duplex scheme on 

users in downlink of NOMA. Closed-form analytical expressions for the outage probability were obtained. Our 

theoretical analysis indicated that the outage performance is only sightly degraded by residual interference 

related to FD mode but otherwise the outage performance loss can be very substantial as changing the number 

of transmit antennas at the BS. Furthermore, we observed that target rates have small impact on such outage 

performance. 
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