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 The proliferation of wireless services emerging from use cases of fifth-generation 

(5G) technology is posing many challenges on cellular communication 

infrastructure. They demand to connect a massive number of devices with 

enhanced data rates. The massive multiple-input multiple-output (MIMO) 

technology at millimeter-wave (mmWave) in combination with hybrid precoding 

emerges as a concrete tool to address the requirements of 5G network 

developments. But Massive MIMO systems consume significant power for 

network operations. Hence the prior role is to improve the energy efficiency by 

reducing the power consumption. This paper presents the power optimization 

models for massive MIMO systems considering perfect channel state information 

(CSI) and imperfect CSI. Further, this work proposes an optimal hybrid precoding 

solution named extended simultaneous orthogonal matching pursuit (ESOMP). 

Simulation results reveal that a constant sum-rate can be achieved in massive 

MIMO systems while significantly reducing the power consumption. The 

proposed extended SOMP hybrid precoder performs close to the conventional 

digital beamforming method. Further, modulation schemes compatible with 

massive MIMO systems are outlined and their bit error rate (BER) performance is 

investigated. 
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1. INTRODUCTION 

The enormous growth in smartphone usage in recent years has led to an exponential increase in  

the transmission of multimedia content over mobile networks. This has, in turn, led to significant growth in 

global mobile traffic [1]. New wireless applications are leading to a rapid increase in desire data rates and 

envisaged to support dense connectivity in the order of tens of thousands of connected devices in a single cell 

[2]. These demands have surpassed the technical capabilities of present fourth-generation long term evolution 

(4G LTE) cellular systems. The 5G technology promising to be so much better than the legacy 4G networks. 

Fifth-generation (5G) systems aim to achieve orders of magnitude increase in wireless data rates (10 Gbps in 

cellular networks), spectral bandwidths (1000x per unit area), coverage area (close to 100% anytime anywhere 

with vanishingly small probability of outage), massive device connectivity, a large reduction in round trip delay 

(latency as low as 1 ms) and also energy consumption (up to 10-year battery life for low power IoT devices) 

[3]. So, 5G puts challenges on the standardization bodies like third generation partnership project (3GPP) to 

https://creativecommons.org/licenses/by-sa/4.0/
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release the standards which provide dynamic, universal, user-centric, and data-rich wireless services to fulfill 

the aforementioned promises and importantly to meet the expectation of users [4]. 

The use cases of 5G are mainly, enhanced mobile broadband (eMBB), ultra-reliable low latency 

communications (URLLC), and massive machine type communications (mMTC). To realize these use cases and to 

address the challenges raised by the new services under these use cases, many researchers are devoted to proposing 

new technologies for 5G networks, especially in the physical layer.  The physical layer technologies are, mmWave, 

massive multiple-input multiple-output (MIMO) [5], non-orthogonal multiple access (NOMA) [6], filter bank 

multicarrier (FBMC) [7] and full-duplex radio technology, beamforming, and hybrid precoding to name a few [8]. 

Millimeter-wave communication is a key candidate for addressing the challenge of bandwidth shortage for 5G 

systems [9-12]. Signals at mmWave bands (30 to 300 GHz) undergo severe path loss and are highly sensitive to 

blockage as compared to legendary frequency bands [13]. Thanks to smaller wavelengths of mmWave allowing 

more antennas to pack withing the same physical area, this drives to use a large number of antennas at the 

transceivers, thereby forming a massive MIMO system. Massive MIMO systems enhance cellular spectral efficiency 

[14, 15] and provide sufficient spatial degrees of liberty for multiplexing several data streams rendering to serve 

multiple users simultaneously [16, 17]. They can also substantially reduce intercell interference with simple signal 

processing operations [18] like beamforming. Furthermore, using large-scale antenna arrays, a base station (BS) can 

obtain highly selective beams to focus on the desired users [19, 20]. Therefore, beamforming with large antenna 

arrays is key for recognizing the gains in mmWave MIMO [21, 22]. Naturally, optimal beamforming, 

precoder/combiner design strategies will play a critical role in the implementation of mmWave systems [23]. 

The analysis of massive MIMO mainly focused on the digital systems in which all the signal processing is 

performed at baseband and every antenna element needs individual radio frequency chain (RF chain). Fully-digital 

massive MIMO systems can serve multiple users simultaneously. The digital precoder creates multiple beams to 

multiplex several data streams, choosing the transmitting directions. Each RF chain is a cascade of amplifier, filter, 

mixers, attenuator, and detector. The huge number of RF chains in digital precoding systems consume a large amount 

of power become a bottleneck that limits the advancements of massive MIMO systems.  Hence a mechanism that 

would reduce the power consumption in massive MIMO systems is essentially the need of the art. When operating 

at mmWave frequencies, these RF chains tend to be very costly and naturally the hardware complexity of digital 

massive MIMO systems is significantly large. These drawbacks of digital systems have paved a way for  

the development of novel architectures named hybrid mmWave massive MIMO systems. In hybrid architectures, 

signal processing is accomplished by a mixture of analog and digital domains, this is termed hybrid precoding.  

The hybrid architectures use fewer RF chains and hence hybrid precoding can potentially achieve high spectral 

efficiencies while requiring less cost and power consumption than fully-digital solutions. 

Hybrid precoding architecture uses a small number of transceivers having 𝑁𝑡
𝑅𝐹 RF chains at the transmitter 

and 𝑁𝑟
𝑅𝐹 RF chains at the receiver such that 𝑁𝑠 <  𝑁𝑡

𝑅𝐹 < 𝑁𝑡 and 𝑁𝑠 <  𝑁𝑟
𝑅𝐹 < 𝑁𝑟 respectively. Here 𝑁𝑠 denotes 

the number of streams, 𝑁𝑡 and 𝑁𝑟 represents the number of antennas at transmitter and receiver respectively. Hybrid 

precoding enables a millimeter wave (mmWave) system to take advantage of both spatial multiplexing and 

beamforming gain. A major challenge with hybrid precoding is its configuration. Figure 1 illustrates fully-connected 

hybrid architecture where all the antennas connected to each RF chain. Partially connected hybrid architecture is 

depicted in Figure 2, where the antenna array gets divided into subarrays, each subarray connected to its 

corresponding RF chain. Partially connected architecture of hybrid beamforming further reduces the hardware 

complexity at a cost of less flexibility. Figure 3 shows a partially connected hybrid architectures using switches to 

select subsets of antennas. The model in Figure 3 avoids the power consuming phase-shifters contributing for further 

reduction in power. 
 

 

  
 

Figure 1. Fully connected 

 

Figure 2. Partially connected 
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Figure 3. Partially connected using switches 

 

 

Authors in [24, 25] presented, low-cost hybrid precoding schemes where a reduced number of RF chains 

can be used can be us to achieve the relatively same performance as that of full-digital precoding. A hybrid precoding 

method addressing the issues in recovering sparse signal under constant modulus constraints inflict by analog phase 

shifters and an orthogonal matching pursuit (OMP) an algorithmic solution is provided in [26, 27]. To reduce  

the computational complexity of the OMP method, [28] proposed a parallel-index-selection matrix-inversion-bypass 

simultaneous OMP scheme by avoiding matrix inversion operation. These methods assume perfect channel 

conditions and become inefficient for uncertain channel situations. 

Contribution of this work can be summarized as: 

− This work presents power-saving models for massive MIMO systems under perfect and imperfect channel 

conditions. These power scaling models cater to energy-efficient transmission.  

− An extended SOMP algorithm is proposed as an optimal hybrid precoding solution for mmWave massive 

MIMO systems.  
− The compatible modulation schemes for mmWave massive MIMO are outlined and their performance 

analysis is presented. 

The novelty of this paper can be summarized as: 

− The extended SOMP algorithm is developed by considering the transmit array vectors form a basis for  

the column space for the mmWave channel matrix. 

− The baseband precoder is formulated as a block sparse matrix containing non zero rows equal to  

the number of RF chains at the transmitter. The OMP scheme is applied to solve the non-convex 

optimization problem in the block sparse matrix. Hence the complex operation like singular value 

decomposition and matrix inversions are avoided. 

− The RF precoder is formed from the columns of the dictionary matrix. A large size dictionary matrix is created 

with many angular grids greater than the number of antennas at the transmitter. 
 

 

2. RESEARCH METHOD 

In this section, the power-saving models for massive MIMO systems are presented and an optimal 

hybrid precoding algorithm is proposed. We consider a massive MIMO system on the uplink under perfect and 

imperfect channel conditions. The system includes one BS quipped with an antenna array of 𝑀 elements and 

the cell has 𝐾 single-antenna users. 

 

2.1.  Power optimization model under perfect channel state information (CSI) 

All 𝐾 users send individual pilot symbols with average power 𝑝𝑢, the received vector at the BS can 

be represented as; 

 

𝑌 = √𝑝𝑢𝐺𝑋 + 𝑛         (1) 

 

Here, 𝐺 represents 𝑀 × 𝐾 matrix of the channel encompassing fast fading, geometric attenuation and log 

normal shadowing between BS and 𝐾 users. The vector 𝑋 contains the pilot symbols transmitted 

simultaneously by all users, and 𝒏 additive white, zero-mean Gaussian noise vector. The noise variance is set 

to 1, without loss of generality, the noise samples are identically independently distributed as 𝑛𝑚 𝐶𝛮(0,1). 

Considering user 𝑘 as the desired user, the matched filter receiver of maximal ratio combiner expressed in 

terms of desired signal and interference components as in (2). 
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𝑟𝑘 = √𝑝𝑢‖𝑔𝑘‖𝑥𝑘 + √𝑝𝑢 ∑
𝑔𝑘

𝐻

‖𝑔𝑘‖

𝐾
𝑖=1
𝑖≠𝑘

𝑔𝑖𝑥𝑖 +
𝑔𝑘

𝐻

‖𝑔𝑘‖
𝒏     (2) 

 

where 𝑔𝑘 denotes the 𝑀 × 1 channel vector corresponds to user 𝑘, and its elements are distributed as𝑔𝑚𝑘𝐶𝑁(0, 𝛽𝑘), 

𝛽𝑘 models the geometric attenuation and shadow fading. Therefore, the signal-to-interference-plus-noise ratio 

(SINR) can be derived as in (3). 
 

𝑆𝐼𝑁𝑅 =
𝑝𝑢‖𝑔𝑘‖2

𝑝𝑢 ∑ 𝛽𝑖+1𝐾
𝑖=1
𝑖≠𝑘

        (3) 

 

The power of each user is scaling inversely with respect to number of antennas at the BS, 𝑝𝑢 =
𝐸𝑢

𝑀
, further 

SINR can be represented as in (4). 
 

𝑆𝐼𝑁𝑅 =
𝐸𝑢

|𝑔𝑘|
2

𝑀

𝐸𝑢(
1

𝑀
∑ 𝛽𝑖

𝐾
𝑖=1
𝑖≠𝑘

)+1

= 𝐸𝑢𝛽𝑘       (4) 

 

Furthermore, the sum-rate scales aslog2(1 + 𝑆𝐼𝑁𝑅), thus constant data rate can also be achieved even with 

power scaling. Power of the desired signal grows 𝑀 times the multi-user interference added with noise power, 

the channel vectors of the users become pairwise orthogonal and this suppresses the multi-user interference 

(MUI) as the number of antennas 𝑀 becomes very large using very low complexity maximum ratio combining 

(MRC). 
 

2.2. Power optimization model under imperfect CSI 

In imperfect channel conditions, the channel matrix gets uncertainty (channel estimation error) added 

as given in (5). 
 

�̂� = 𝐺 +
1

√𝑝𝑝
𝑵𝑿𝐻         (5) 

 

Here 𝑁 is a noise vector. The noise coefficients are are distributed such that 𝑛𝑘
𝐻𝑥𝑖  𝐶𝑁(0,1) and therefore  

the elements of error of channel estimation error vector are i.i.d. Gaussian with variance 
1

𝐾𝑝𝑢
. It follows that  

the channel estimate of user 𝑘 i.e 𝑔�̂� = 𝑔𝑘 + 𝑒𝑘 comprises of i.i.d Gaussian elements of power 𝛽𝑘 =
1

𝐾𝑝𝑢
.  

The matched filter receiver for user 𝑘 with imperfect CSI is given in (6). 
 

𝑟𝑘 = √𝑝𝑢‖𝑔𝑘‖2𝑥𝑘 + √𝑝𝑢𝑒𝑘
𝐻𝑔𝑘𝑥𝑘 + √𝑝𝑢 ∑ 𝑔�̂�𝑥𝑖

𝐾
𝑖=1
𝑖≠𝑘

+ 𝑔�̂�
𝐻𝒏    (6) 

 

It follows that 𝑒𝑘
𝐻 𝑔𝑘

‖𝑔𝑘‖
 ~ 𝐶𝑁(0,

1

𝐾𝑝𝑢
), and also 

‖𝑔𝑘‖2

𝑀
= (𝛽𝑘 +

1

𝐾𝑝𝑢
). The SINR of matched filter output with 

uncertain CSI can be simplified as in (7). 
 

𝑆𝐼𝑁𝑅 =
𝑝𝑢‖𝑔𝑘‖2

𝑝𝑢×
1

𝐾𝑝𝑢
+𝑝𝑢 ∑

(𝑿)𝛽𝑖
𝛽𝑘

+
(𝑿)

𝛽𝑘

𝐾
𝑖=1
𝑖≠𝑘

       (7) 

 

Here, 𝑋 = 𝛽𝑘 +
1

𝐾𝑝𝑢
 , it is observed that, unlike in perfect CSI, we cannot scale the power as 

1

𝑀
 with uncertain 

CSI. This is because as transmit power decreases as 
𝐸𝑢

𝑀
 CSI estimation error increases as

𝑀

𝐾𝐸𝑢
. Further it is also 

noted that by scaling the transmit power as 𝑝𝑢 =
𝐸𝑢

√𝑀
 the SINR can be maintained constant and is simplified as 

given in (8). 
 

𝑆𝐼𝑁𝑅 =

𝐸𝑢

√𝑀
‖𝑔𝑘‖2

1

𝐾
+∑

1

𝐾

𝛽𝑖
𝛽𝑘

+1+
√𝑀

𝐾𝛽𝑘𝐸𝑢

𝐾
𝑖=1
𝑖≠𝑘

= 𝐾𝛽𝑘
2𝐸𝑢

2      (8) 

 

2.3.  Millimeter wave massive MIMO channel 

In comparison to sub 6 GHz models, mmWave offers lower diffraction due to the reduced Fresnel 

zone, higher penetration losses, this leads to fewer multipath components. As mmWave inherently adopt 

massive MIMO leading to more sparsity in the channel. The mmWave channel model is described as in (9). 
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𝐻 = ∑ 𝛼𝑙𝑎𝑅(𝜃𝑙
𝑟)𝑎𝑇

𝐻𝐿
𝑙=1 (𝜃𝑙

𝑡) = 𝐴𝑅𝐻𝑏𝐴𝑇
𝐻      (9) 

 

where 𝐿 is number of multipath components or scatters, 𝑎𝑇 and 𝑎𝑅 is the array steering vectors at the transmitter 

and receiver respectively. The term, 𝛼𝑙  refers to the complex gain of 𝑙𝑡ℎ path. The angles, 𝜃𝑙
𝑟 and 𝜃𝑙

𝑡 are angle 

arrival (AoA) and angle of departure (AoD) respectively. Let 𝐺 is the number of basis directional cosine 

vectors, 𝐴𝑇 and 𝐴𝑅 are transmit and receive array response dictionary matrices. Also, 𝜃𝑖…𝐺 ∈  𝜑, where 

𝜑 denotes the angular grid. The sparse combination of the basis directional vectors at the transmitter and 

receiver is represented by 𝐻 the mmWave channel matrix. The beam space channel matrix 𝐻𝑏  formed by stacks 

of coefficients which are zeros in majority forming ℎ𝑏 sparse vector. The channel estimation problem can be 

formulated as min
0

‖ℎ𝑏‖ which is termed as compressive sensing which is non-convex and difficult to solve 

using direct methods. Orthogonal matching pursuit (OMP) is one promising candidate for sparse signal 

estimation and solves optimization problem. 
 

2.4.  Proposed hybrid precoding scheme 

Hybrid precoding is a vital task to reduce the cost and hardware complexity while delivering sufficient 

sum-rate [28]. To achieve better system capacity, an extended SOMP algorithm is proposed for hybrid precoding in 

mmWave MIMO system shown in Figure 4. A fully connected hybrid architecture is considered for multiuser 

communication in a downlink scenario. The optimal hybrid precoder ideally desired to design RF precoder (𝐹𝑅𝐹) 

and the baseband precoder (𝐹𝐵𝐵) in such a fashion that arg min
𝐹

‖�̅� − 𝐹𝑅𝐹𝐹𝐵𝐵‖2, where �̅� is the ideal precoder. 

From the mmWave channel given in (9), it is can be analyzed that the transmit array response vectors in 𝐴𝑇
̅̅̅̅  form  

a basis for the column space of 𝐻𝐻 , therefore �̅� can be expressed as a linear combination of columns of 𝐴𝑇
̅̅̅̅  in  

the mmWave MIMO channel as given below; 
 

�̅�  = 𝐴𝑇
̅̅̅̅ �̅�         (10) 

 

Furthermore, it is interesting to notice that the RF precoder can be formed from columns of 𝐴𝑇
̅̅̅̅  and  

the coefficients of linear combination of �̅� can be used as the baseband precoder. However, there are two 

constraints to be addressed to implement this solution. Firstly, 𝐴𝑇
̅̅̅̅  is not known in general and secondly,  

the above solution will only be satisfied if the number of multi-path components is less than 𝑁𝑅𝐹 . To address 

the first constraint, a large dictionary matrix with an angular grid 𝜑𝑇 of size 𝐺 with 𝜃𝑖 ∈ 𝜑𝑇 , 1 ≤ 𝑖 ≤ 𝐺, 𝐺 ≥
𝑁𝑇. The dictionary matrix 𝐴𝑇 is constructed as in (11). 

 

𝐴𝑇 = [𝑎𝑇(𝜃1) 𝑎𝑇(𝜃2) … … 𝑎𝑇(𝜃𝐺)]       (11) 
 

The second constraint can be addressed by minimizing the least square error as arg min
𝐹

‖�̅� − 𝐴𝑇�̂�𝐵𝐵‖
2
 since 

�̂�𝐵𝐵 is a block sparse matrix which contains only 𝑁𝑅𝐹 non zero rows, hence the optimization problem for  

the optimal precoder approximation can be derived as in (12). 
 

‖diag(�̂�𝐵𝐵�̂�𝐵𝐵
𝐻 )‖ = 𝑁𝑡

𝑅𝐹        (12) 
 

Thus the baseband precoder can be designed by extracting non-zero rows from �̂�𝐵𝐵 and corresponding columns 

from matrix 𝐴𝑇 form the RF precoder 𝐹𝑅𝐹 one promising method for estimating �̂�𝐵𝐵 is extended simultaneous 

orthogonal matching pursuit (ESOMP), as defined in algorithm 1. 
 

Algorithm 1. ESOMP precoder optimization 

𝑅𝑒𝑠𝑢𝑙𝑡: 𝐹𝑟𝑒𝑠
(𝑘)
 

𝐹𝑅𝐹
(0)

= [ ],𝐹𝑟𝑒𝑠
(0)

= �̅� 
𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑁𝑡

𝑅𝐹 𝑑𝑜 
 𝜓 = 𝐴𝑇

𝐻𝐹𝑟𝑒𝑠
(𝑘−1)

 

𝑖(𝑘) = agr max [ψ𝜓𝐻]𝑙,𝑙 

𝐹𝑅𝐹
(𝑘)

= {𝐹𝑅𝐹
(𝑘−1)

|𝑎𝑇(𝜃𝑖(𝑘))} 

𝐹𝐵𝐵
(𝑘)

= ((𝐹𝑅𝐹
(𝑘)

)
𝐻

𝐹𝑅𝐹
(𝑘)

)
−1

(𝐹𝑅𝐹
(𝑘)

)
𝐻

�̅� 

𝐹𝑟𝑒𝑠
(𝑘)

=
�̅� − 𝐹𝑅𝐹

(𝑘)𝐹𝐵𝐵
(𝑘)

‖�̅� − 𝐹𝑅𝐹
(𝑘)𝐹𝐵𝐵

(𝑘)‖
𝐹

 

𝑒𝑛𝑑 
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Figure 4. Millimeter wave massive MIMO hybrid precoder/combiner 
 

 

3. MODULATION SCHEMES FOR MASSIVE MIMO 

Millimeter-wave massive MIMO systems use hybrid beamforming architectures which include fewer 

transmit RF chains as compared to the number of transmit antennas. Antenna elements are connected to these RF 

chains. Massive MIMO hybrid beamforming systems rely on space index modulation techniques that play a 

significant role in achieving the desired throughput and reliable communication in 5G developments [29]. The 

modulation schemes use indices of antennas which represent spatial constellation points that are sending extra 

information bits and hence significantly improve the achievable rates. 

Each type of space modulation scheme adopt their own conceptual procedure in utilizing the MIMO 

antennas for transmission and reception. In spatial modulation (SM) technique, the selection of antennas is made 

based on a group on 𝑚 data bits, where 𝑚 = log2 𝑁𝑡   [30]. On the chosen antennas M-ary modulation alphabet is 

sent, and the remaining 𝑁𝑡 − 1 antennas remain silent [31]. Therefore the number of bits communicated per channel 

in SM is 𝑚 + log2 𝑀, and its constellation ℎ𝑁𝑡,𝑀 = {𝑋𝑗,𝑙|𝑗 = 0, … , 𝑁𝑡 − 1, 𝑙 = 1, … , 𝑀}. At the receiver, signal 

coding with SM involves determining the index of the transmitting antenna and also the M-ary symbol transmitted 

on it. The maximum likelihood (ML) detection method [32] can be used with the decision rule 𝑥 ̂ =
arg min ‖𝑦 − 𝐻𝑥‖2 where 𝑦 the received is signal vector and 𝐻 is the channel matrix. 

Space shift keying (SSK) scheme is a spacial case of SM in which a fixed symbol 1 is sent to the chosen 

antenna and the remaining 𝑁𝑡 − 1 transmit antennas remains silent, the achievable rate of SSK is 𝑚 [33]. Signal 

detection at the receiver reduces to just decoding the index of the active transmitting antenna, hence SSK has lower 

detection complexity than SM. The SSK constellation is expressed as ℎ𝑁𝑡
= {𝑋𝑗,𝑙|𝑗 = 0, … , 𝑁𝑡 − 1}. The ML 

decision rule for finding the antenna index isrepresented as 𝑗 ̂ = arg min ‖𝑦 − 𝐻𝑥‖2. 

In SM, the number of transmitting RF chains is restricted to 1 because of which only one antenna can be 

active at a time, this is relaxed in generalized spatial modulation (GSM) allowing multiple transmit antennas to be 

active simultaneously leading to higher spectral efficiency compared to SM and SSK. Out of 𝑁𝑡 transmit antennas, 

𝑁𝑡
𝑅𝐹 elements are used to send M-ary information symbols, while remaining 𝑁𝑡 − 𝑁𝑡

𝑅𝐹 antennas remain inactive 

[34]. The transmit vector for each channel will have the antenna activation pattern selection bits log2 𝑁𝑡𝐶𝑁𝑡
𝑅𝐹 and 

M-ary modulation bits 𝑁𝑡
𝑅𝐹 log2 𝑀. Hence the achievable rate in GSM is determined as in (13). 

 

𝑅 = [log2 (𝑁𝑡𝐶𝑁𝑡
𝑅𝐹) + 𝑁𝑡

𝑅𝐹 log2 𝑀]      (13) 

 

 

4. RESULTS AND DISCUSSION 

This section presents the sum-rate achieved through power-saving models described in this paper. 

Performance of OMP method in reducing the mean square error (MSE) while estimating the mmWave channel 

characteristics is evaluated in comparison with the reference ORACLE model and finally, the investigations on 

extended SOMP method are carried out to measure mmWave hybrid precoding system capacity in comparison with 

conventional MIMO model. Figure 5 describes the sum-rate performance of the massive MIMO system with perfect 

CSI when 10 users being served simultaneously in the uplink with pilots transmit power 10 dB each. It is hinted that 

massive MIMO technology significantly improves the sum-rate with simple signal processing techniques. Figure 6 

illustrates the energy-efficient property of massive MIMO systems; a constant rate can be maintained even when  

the transmit power is scaled as 
1

𝑀
 where 𝑀 is the number of antennas at the BS. Hence, the power of each user can 

decrease inversely proportional to the number of antennas, this is another benefit of massive MIMO technology. 

Furthermore, the power of the desired signal rises 𝑀 times the multi-user interference added with noise, as 𝑀 
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becomes very large the channel vectors of the users become pairwise orthogonal and this completely defeats  

the multi-user interference using simple low complexity matched filter. Figure 7 shows the achievable sum-rate with 

CSI uncertainty is less as compared to the perfect CSI scenario; this is because of the existence of channel estimation 

error. It is noticed that the power scaling in imperfect CSI cannot be 
1

𝑀
 because, the transmit power decreases and 

CSI estimation error increases as 
1

𝐾𝐸𝑢
, thus it is further examined and observed that the consistency in sum-rate can 

be achieved if the power scaling is done as 
1

√𝑀
  as depicted in Figure 8.  

 

 

  
 

Figure 5. Sum-rate for massive MIMO  

perfect channel 

 

Figure 6. Sum-rate for massive MIMO perfect 

channel with power scaling 

 

 

  
 

Figure 7. Sum-rate for massive MIMO  

imperfect channel 

 

Figure 8. Sum-rate for massive MIMO imperfect 

channel with power scaling 

 

 

In Figure 9 we present the performance of mmWave MIMO channel estimation using the OMP method. 

The model assumed with 32 antennas each at the transmitter and receiver, with 8 RF chains at the BS. The angles  

of departure in the rage 0 to 180 are computed by creating a dictionary matrics with grid size 32. OMP is  

initialized with the threshold value of 1. The channel is considered to be sparse with sparsity level 5. In Figure 10, 

the investigation on capacity versus SNR is presented for mmWave system model equipped with 32 Tx/Rx  

and 8 RF chains, a mmWave sparse channel having the sparsity level of 8 and with 6 data streams being 

simultaneously transmitted. 

The extended SOMP hybrid precoding algorithm is presented as an optimal solution for capacity analysis. 

It is noticed that the performance of the proposed scheme is very close to the conventional digital precoder which 

has RF chains equal to the number of antennas. It is also noticed that the system performance is maximum when 

number of data streams less than or equal to the sparsity level of the channel. Figure 11 and Figure 12 depict BER 
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analysis of SM and SSK modulation schemes on which massive MIMO technology relies. It is observed that the SM 

technique offers a higher data rate at the cost of complex decoder design and higher BER, on the other hand,  

the SSK scheme works with simple decoder and less BER as compared to SM but offers low data rate. 

 

 

  
 

Figure 9. Millimeter Wave channel estimation error 

for N_t=N_r=32, 〖 N〗_t^RF=8 , G=32 

 

Figure 10. Capacity analysis of proposed scheme 

for N_t=N_r=32,〖 N〗_t^RF=8,G=32, N_s=6 
 

 

  
 

Figure 11. Error probability in spatial modulation 

 

Figure 12. Error probability in space shift keying 

 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, we evaluate the achievable sum-rate and highlight the energy efficiency properties of 

mmWave massive MIMO systems. The performance concerning sum-rate (system capacity) and power 

reduction (energy efficiency) characteristics are compared with the conventional digital precoding methods 

which assume separate RF chain per antenna (conventional MIMO) and simplified beamforming algorithms 

(ZF, MRC). The extended SOMP algorithm is proposed as an effective method for hybrid precoding 

optimization problem and it is proved that the proposed precoding scheme provides near-optimal system 

capacity as compared with conventional MIMO. It is noticed that massive MIMO technology enhances  

the system throughput significantly with simple signal processing approaches. The BER performance of SM 

and SSK schemes is described and noted that SM method offers high data rate but requires complex decoder 

and is more prone to error, on the other hand SSK scheme require simple decoder and has less BER but offers 

low data rate. In the future, this work can be extended for multi-cell, multi-user scenarios and consequently  

the challenges in mitigating the multi-cell interference can be addressed. 
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