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 Cuneiform language is an old language that was invented by the people of 

Sumerian nation. It is an essential language for many archeologists. Especially 

who are interested in studying and investigating the old nations of Iraq. 

Dealing with this type of language usually requires specialist to translate its 

symbols, which are basically forms of nail shapes. This study presents a new 

approach to translate the cuneiform writing by employing artificial neural 

network (ANN) technique. Effectively, multi-layer perceptron (MLP) neural 

network has been adapted for translating the Sumerian cuneiform symbol 

images to their corresponding English letters. This work has been successfully 

established and it attained 100%. 
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1. INTRODUCTION  

Cuneiform language is one of the oldest languages in the world. It was stared in 3000 B. C., where it 

was invented by an old civilization in Iraq. This civilization was known as Sumer. Cuneiform symbols were 

the Sumerian writing style. They were effectively used to report events, actions and other information that were 

previously happened [1]. In its first pictographic stages, it was largely consisted of rebus writing of nouns. By 

2500 B. C., the scribes placed the cuneiform signs into correct orders. Then, the earliest texts were being more 

structured [2].  

Cuneiform writing system is subjected to many stages of development to facilitate its characteristics 

about the shape of symbols and numbers that represent the development state of old Sumerian scrip language 

to Babylonian and Assyrian cuneiform languages. At the beginning of the 19th century, thousands of cuneiform 

tablets were discovered in Iraq. They represent various Assyrian and Babylonian writings. Today many 

cuneiform tablets exist in many museums. Noticeably, the process of translating the cuneiform symbols 

requires experience and time. However, the need of information technology is required to address these 

problems [3]. The aim of this study is translating the cuneiform symbols of Sumerian writing into English 

letters. The ANN is employed to provide intelligent translating between the two languages. After the 

introduction, the remaining sections will be organized as follows: section 2 reviews prior work, section 3 

illustrates the methodology of this work, section 4 discusses the practical results and section 5 concludes  

the paper. 
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2. LITERATURE REVIEW 

 In the literature, very few works were considered translating cuneiform symbols using modern 

analysis methods such as artificial intelligence (AI) techniques. In 2000, Sulaiman explained the Sumerian and 

Acadian writing style according to the obtained expertise [1]. It seems that manual style was used for translating 

the Sumerian and Acadian writings to Arabic language. In 2007, Postgate edited a group of information 

regarding Iraqi languages. Sumer language was one of this information. Useful illustrations were presented for 

Sumerian writing such as syntax, phonology, lexical categories, nominals, adjectives, pronouns and verbs [3]. 

Again, the language was manually analysed based on the obtained expertise. 

In 2010, Yushu highlighted how the invention of writing was considered by Sumerian [4]. It appears 

that manual translating was also utilized in this study. In 2017, Aktas and Asuroglu proposed a study for reading 

cuneiform signs by exploiting computer techniques. Basically, the cuneiform signs of Hittite writing were used. 

Furthermore, data mining of clustering and classification algorithms were employed [5]. Obviously, Sumerian 

writing style did not consider in this work. In 2019, Saeid et al., employed the support vector machine (SVM) 

for recognizing the cuneiform letters. Image processing steps were implemented before the SVM [2]. This 

study concentrated on recognizing (not translating) the cuneiform letters. 

In the same year, Born et al., illustrated an attempt of utilizing methods from calculational linguistics 

to analyse scripts of undeciphered proto-Elamite. Hierarchical clustering, n-gram frequencies and latent 

dirichlet allocation (LDA) topic models were employed. Results were achieved by revealing  

previously-unobserved relationships of signs and manual deciphering [6]. Here, clustering different sign letters 

were provided. It can be investigated that there was no consideration on translating the Sumerian writing 

symbols to English letters by using the ANN technique in prior work. This paper will address this gap and 

provide an important contribution in this matter.  

 

 

3. THE PROPOSED METHOD 

In this study, an artificial intelligence (AI) technique of multi-layer perceptron (MLP) neural network 

has been adapted for translating the images of Sumerian cuneiform symbols into English letters. The key idea 

of our proposed approach is to collect any cuneiform symbol as image and produce an indicator for its 

corresponding English letter. Accordingly, English letters can intelligently be generated from cuneiform symbol 

images. ANN of multiple outputs, as in [7-16], has been found to be useful in our case. Figure 1 illustrates the 

general form of our suggested intelligent approach. 

 

 

 
 

Figure 1. The general form of our suggested intelligent approach 

 

 

Principally, the MLP is consisted of input layer I, hidden layer H and output layer O. Furthermore, it 

involves different connections of weights. 𝑊1  represents the first connection weights to H layer and 𝑊2  

represents the second connection weights to O layer. To utilize the MLP, two stages are required: training stage 

and testing stage. The values of 𝑊1  and 𝑊2  will start as small initial randoms at the beginning of the training 

stage. On the other hand, their final values at the end of the training stage will be stored. The final weight 

values will be exploited in the testing stage. The MLP training stage contains three main steps: feedforwarding 

inputs to outputs (1-4), backpropagating errors (5-11) and updating weights and biases (12-15). The following 

equations describe the essential MLP operations: 

 

𝐻𝑖𝑛𝑌 = 𝑊0𝑌
1 + ∑ 𝐼𝑋𝑊𝑋𝑌

1𝑄
𝑌=1     (1) 
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where: 𝐻𝑖𝑛𝑌 is an input value to the hidden layer, Y is the index of hidden nodes, 𝑊0𝑌
1  is a connection weight 

between the first bias node B1 and hidden layer, Q is the number of hidden nodes, 𝐼𝑋 is an input value of the 

input layer, X is the index of input nodes, and 𝑊𝑋𝑌
1  is a connection weight between the input and hidden layers. 

 

𝐻𝑌 = 𝑓(𝐻𝑖𝑛𝑌) (2) 
 

where: 𝐻𝑌 is an output value from the hidden layer. 
 

𝑂𝑖𝑛𝑍 = 𝑊0𝑍
2 + ∑ 𝐻𝑌𝑊𝑌𝑍

2𝑅
𝑍=1  (3) 

 

where: 𝑂𝑖𝑛𝑍 is an input value to the output layer, Z is the index of output nodes, 𝑊0𝑍
2  is a connection weight 

between the second bias node B2 and output layer, R is the number of output nodes, and 𝑊𝑌𝑍
2  is a connection 

weight between the hidden and output layers. 
 

𝑂𝑍 = 𝑓(𝑂𝑖𝑛𝑍)   (4) 
 

where: 𝑂𝑍 is an output value from the output layer. 
 

𝛾𝑍 = (𝑇𝑍 − 𝑂𝑍)𝑓′(𝑂𝑖𝑛𝑍) (5) 
 

where: 𝛾𝑍 is an output error value and 𝑇𝑍 is a determined target value. 
 

𝛥𝑊𝑌𝑍
2 = 𝜃 𝛾𝑍𝑂𝑍 (6) 

 

where: 𝜃 is a learning rate value. 
 

𝛥𝑊0𝑍
2 = 𝜃 𝛾𝑍 (7) 

 

𝛾𝑖𝑛𝑌 = 𝑊0𝑍
2 + ∑ 𝛾𝑍𝑊𝑌𝑍

2𝑅
𝑍=1  (8) 

 

where: 𝛾𝑖𝑛𝑌 is an input error value to the hidden layer. 
 

𝛾𝑌 = 𝛾𝑖𝑛𝑌𝑓′(𝐻𝑖𝑛𝑌) (9) 
 

where: 𝛾𝑌 is an output error value from the hidden layer. 
 

𝛥𝑊𝑋𝑌
1 = 𝜃 𝛾𝑌𝐼𝑋 (10) 

 

𝛥𝑊0𝑌
1 = 𝜃 𝛾𝑌 (11) 

 

𝑊𝑌𝑍
2 (𝑛𝑒𝑤) = 𝑊𝑌𝑍

2 (𝑜𝑙𝑑) + 𝛥𝑊𝑌𝑍
2  (12) 

 

𝑊𝑋𝑌
1 (𝑛𝑒𝑤) = 𝑊𝑋𝑌

1 (𝑜𝑙𝑑) + 𝛥𝑊𝑋𝑌
1  (13) 

 

𝑊0𝑍
2 (𝑛𝑒𝑤) = 𝑊0𝑍

2 (𝑜𝑙𝑑) + 𝛥𝑊0𝑍
2  (14) 

 

𝑊0𝑌
1 (𝑛𝑒𝑤) = 𝑊0𝑌

1 (𝑜𝑙𝑑) + 𝛥𝑊0𝑌
1  (15) 

 

Consequently, the MLP testing stage can be carried out. It has only one main step (1-4). As mentioned, 

the final weight values that are obtained from the training stage will be exploited in this stage [17]. In this 

paper, the number of input nodes in the I layer is used as P=2500, so, this layer can accept all the pixel values 

of a cuneiform symbol image. The number of hidden nodes is used as Q=255, this number has been achieved 

according to a suggested method in [18]. The number of output nodes is utilized as R=26, where this number 

is equal to the number of English alphabets. By this case, it is feasible to translat Sumerian cuneiform symbols 

to their corresponding English letters. 

 

 

4. PRACTICAL IMPLEMENTATIONS AND DISCUSSIONS 

For practical implementations, Sumerian cuneiform dataset was firstly required. After investigations, 

a useful dataset from [19] has been found and employed. It includes the meanings of Sumerian symbols in 

English, see Figure 2. Hence, cuniform symbol images are carefully extracted. Then, each symbol has been 

resized to 5050 pixels. The reason of using a fixed resize is to establish feasible adaptation between any 
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applied symbol image and the input nodes of the proposed MLP. Now, because of the limitations of available 

data, image augmentations are exploited to provide a big number of training information. As mentioned  

in [20-22], augmentation strategies of rotations and translations can be utilized. Various training images have 

been established by applying different rotation and translation processes. 

Table 1 shows examples of the applied operations to Sumerian cuneiform symbol images. That is, 

images of cuneiform symbols have been analysed by employing multiple operations of resizing, rotations and 

translations. Different rotations and translations have been applied to each cuneiform symbol image. Total of 

780 symbol images have been established for different rotation angles, 390 symbol images rotated to the right 

direction and 390 symbol images rotated to the left direction. Likewise, 338 symbol images have been 

established for different translation directions (translations to the top, bottom, right and left). These 

augmentation images have been used in the training stage. 
 

 

 
 

Figure 2. The meanings of Sumerian cuneiform symbols in English as shown in [19] 
 

 

Table 1. Examples of the applied operations to Sumerian cuneiform symbol images 
Operation Symbol 1 Symbol 2 Symbol 3 Symbol 4 Syymbol 5 

Orgins 

     
Resizing 

     
Rotation 

     
Translations 

  
   

 

 

MLP network training parameters have been set as follows: minimum training error=0.001, transfer 

function in H layer = tan sigmoid, transfer function in O layer = pure linear  and training type = scaled conjugate 

gradient (SCG). The training curve during the training stage is given in Figure 3. It can be observed from this 

figure that the training curve is smoothly declined toward a minimum error value of 0.0009999. This can be 

considered as an indicator to the successfulness of the training stage. For the testing stage, series of unaugmented 

Sumerian cuneiform symbols can intelligently be translated from images to English letters. Table 2 shows 

various English texts that can successfully be translated from cuneiform symbols by using our suggested  

MLP approach. 

This table demonstrates examples of English texts that can be acquired from Sumerian symbols if the 

proposed MLP method is used. It is a pleasure to yield that our proposed approach has benchmarked a successful 

accuracy of 100%. This can provide essential advantages of quickly translating the Sumerian cuneiform writing, 

reducing the efforts of interpreting such interesting style and presenting this writing to public where any person 

can understand its symbols. The proposed neural network approach can be signified with other information 

technology and AI models as in [23-33]. 
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Figure 3. The training curve during the training stage 
 
 

Table 2. Various English texts that can successfully be translated from Sumerian cuneiform symbols 

by using our suggested MLP approach 
Sumerian Cuneiform Symbols English Letters 

 
 

SUMERIAN 
CUNEIFORM 

WRITING 

SYMBOLS 

 
 

MOSOPOTAMIA 

CIVILIZATION 

 
 

NORTHERN 

TECHNICAL 
UNIVERSITY 

 
 

TECHNICAL 

ENGINEERING 

COLLEGE 

 

MODERN 

SCIENTIFIC 

RESEARCHES 

 

 

5. CONCLUSION 

Information technology and AI are recently occupying significant positions in different tasks. This is 

not only the matter of modern sciences and applications. In fact, they can be applied to solve ancient issues 

during the basis civilizations of humanity. Writing by Sumerian cuneiform symbols is one of the ancient styles 

that is worth to be considered. In this study, cuneiform symbol images of Sumerian writing were translated to 

English letters. To reach this goal, an AI technique of MLP network was efficiently employed. It is delighted to 

yield that our suggested approach has benchmarked a very high accuracy of 100%. This may make Sumerian 

cuneiform symbols to easily and accurately be understood by explorers and researchers. 
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