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 This paper presents a nonlinear fractional order proportional integral 

derivative (NL-FOPID) for autonomous underwater vehicle (AUV) to solve 

the path tracking problem under the unknown disturbances (model uncertainty 

or external disturbances). The considered controller schemes are tuned by two 

improved swarm intelligence optimization algorithms, the first on is the hybrid 

grey wolf optimization with simulated annealing (HGWO-SA) algorithm and an 

improved whale optimization algorithm (IWOA). The developed algorithms are 

assessed using a set of benchmark function (unimodal, multimodal, and fixed 

dimension multimodal functions) to guarantee the effectiveness of both proposed 

swarm algorithms. The HGWO-SA algorithm is used as a tuning method for the 

AUV system controlled by NL-FOPID scheme, and the IWOA is used as a 

tuning algorithm to obtain the PID controller’s parameters. The evaluation 

results show that the HGWO-SA algorithm improved the minimal point of the 

tested benchmark functions by 1-200 order, while the IWOA improved the 

minimum point by (1-50) order. Finally, the obtained simulation results from the 

system operated with NL-FOPID shows the competence in terms of the path 

tracking by 1-15% as compared to the PID method. 
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1. INTRODUCTION  

Due to the importance of AUV in several fields such as industrial applications in oil and gas companies 

or explore the oceans for creature researches, and on the military applications, many studies have been proposed 

to solve specific technical problems in AUV. One of these inconveniences the unknown disturbances that may 

be caused by external impacts such as strong ocean current or the high pressure on the AUV body and internal 

purposes such as sensor and device’s noise or signal interference that may be caused by communication tools 

and many other causes. 

Numerous controllers are presented for the AUV’s system. In [1], a model-predictive controller  

MPC is proposed to control depth signals using quadratic programming, and in [2] the researcher discusses  

a model-free reinforcement learning algorithm for the AUV. Additionally, in [3] applied a neural network for 

a consensus multiple tracking AUV problems, in [4] a routing protocol is proposed to solve the end-to-end 

delay in AUV System, and finally on [5] discussed the adaptive AUV system design. In this research work,  

https://creativecommons.org/licenses/by-sa/4.0/
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an nonlinear fractional order proportional integral derivative (NL-FOPID) AUV is intended to solve the 

unknown disturbances’ problems that affect system response and compared to the relative PID controller. 

In order to determine the optimum parameters for both considered controllers, a hybrid grey wolf 

optimization algorithm with simulated annealing (HGWO-SA) algorithm and an improved whale optimization 

(IWO) algorithm are proposed. The GWO algorithm is developed by Mirjalili [6], which a wolf structure 

consists of different types of wolfs (alpha, beta, delta, and omega) and a hunting mechanism is discussed and 

mimics the leadership hierarchy, the hunting process deals with three main steps that are searching, encircle, 

and attacking the target. The GWOA has many benefits, such as vast search territory, speed, and accessible to 

apply. The whale optimization algorithm (WOA) is invented by Mirjalili and Lewis [7], which is based on 

bubble-net hunting of whales, this method used to mimic the whale creature in exploring for its necessities. 

The SA algorithm is proposed by Kirkpatrick [8], that is used to enhance the algorithm solution beside  

the recommended objective function and the Boltzman probability to avoid the local optima trapped in a while 

exploring the search space. The GWO, SA, and WO algorithms are metaheuristic optimization methods 

inspired from the behaviour of animals, and other physical phenomena, which are part from other popular 

swarm optimization algorithms such as a particle swarm optimization [9], artificial bee colony [10], genetic 

algorithm [11], ant colony optimization [12], and firefly algorithm [13].  

The Contribution of the proposed HGWO-SA and improved whale optimization algorithm (IWOA) 

algorithms is to solve the trajectory tracking problem by finding the optimum parameters for the proposed 

controller (NL-FOPID) and for the classical PID controller. Additionally, the hybrid and improved swarm 

algorithms are tested using many benchmark functions to show their effectiveness in comparison with other 

classical swarm algorithms. The mean reason behind using a PID controller is to demonstrate the capabilities 

of the introduced controlling scheme through results comparison for underwater vehicle trajectory tracking. 

The remaining sections of this paper are organized as follows; section 2 establishes the autonomous underwater 

vehicle model. In section 3, the theoretical basics for the controlling methods are explained. The details of  

the proposed swarm intelligence algorithms are demonstrated in section 4. Section 5 dedicated for  

the effectiveness of the proposed algorithms’ performance, and the simulation results of the AUV system based 

on both controlling schemes. Section 6 summarizes the conclusions and the key aspects of this research work 

 

 

2. AUTONOMOUS UNDERWATER VEHICLE MODEL 

AUVs model can be described as body-fixed reference (BRF), an inertial reference frame (IRF) or earth 

fixed frame, AUV founded as translational components and rotational components (suge, sway, heave, roll, pitch, 

yaw) as shown in Figure 1 [14, 15]. AUV dynamics presented by vector velocity 𝑣𝑣 = [𝑋1, 𝑋2]
𝑇
 where  

𝑋1 = [u, v, w]
𝑇
 which refer to linear velocities and 𝑋2 = [𝑝, q, r]

𝑇
 which refer to angular velocities of (suge, 

sway, heave, roll, pitch, yaw) respectively, while IRF can express as the vector Ƞ = [Ƞ1, Ƞ2]
𝑇
 where  

Ƞ1 = [𝑋, Y, Z]
𝑇
 and Ƞ2 = [ɸ, θ, ψ]

𝑇
 both Ƞ1 and Ƞ2 represents the position and rotational coordinate of AUV. 

The transformation of translational velocities between the body-fixed frame and earth fixed coordinates, 
 

[
�̇�
�̇�
�̇�

] = 𝐽1(Ƞ2) [𝑢
𝑣
𝑤
] (1) 

 

where, 
 

𝐽1(Ƞ2) = [

cos𝜓 cos 𝜃 − sin𝜓 cosɸ + cos𝜓 sin 𝜃 sinɸ sin𝜓 sinɸ + cos𝜓 sin 𝜃 cosɸ
sin𝜓 cos 𝜃 cos𝜓 cosɸ + sin𝜓 sin 𝜃 sinɸ − cos𝜓 sinɸ + sin𝜓 sin 𝜃 cosɸ

− sin 𝜃 cos 𝜃 sinɸ cos 𝜃 cosɸ
] (2) 

 

where, 𝐽1(Ƞ2) is an orthogonal matrix, hence, (𝐽1(Ƞ2))
−1

= (𝐽1(Ƞ2))
𝑇
. And the other transformation of 

rotational velocities between the body-fixed frame and earth fixed frame is 
 

[
ɸ̇

�̇�
�̇�

] = 𝐽2(Ƞ2) [
𝑝
𝑞
𝑟
] (3) 

 

where, 
 

𝐽2(Ƞ2) = [

1 sinɸ tan 𝜃 cosɸ tan 𝜃
0 cosɸ − sinɸ
0 sin ɸ/ cos 𝜃 cos ɸ/ cos 𝜃

] (4) 
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Figure 1. AUV reference frame 
 

 

Note that when 𝜃 = ±90̊, 𝐽2 will be undefined.  The locations of the vehicle center of gravity and 

buoyancy are defined in terms of the body-fixed coordinate system as follows: 
 

𝑟𝐺 = [
𝑥𝑔
𝑦𝑔
𝑧𝑔

]      𝑟𝐵 = [
𝑥𝑏
𝑦𝑏
𝑧𝑏

]   (5) 

 

Vehicle dynamics described by T. I. Fossen (1994) [16] as follows: 
 

𝑀𝑣�̇� + 𝐶(𝑣𝑣)𝑣𝑣 + 𝐷(𝑣𝑣)𝑣𝑣 + 𝑔(𝜂) = 𝐹 + 𝐷     (6) 
 

where 𝑀 is the inertia matrix that consists of a rigid body mass (𝑀𝑅𝐵) and added mass (𝑀𝐴) respectively,  

M Є ℝ6ˣ6, C (vv) is the Coriolis and Centripetal matrix which also consists of a rigid body (𝐶𝑅𝐵(𝑣𝑣)) and 

added mass (𝐶𝐴(𝑣𝑣)), C(vv) Є ℝ6ˣ6, While D (vv) is the hydrodynamic damping of the AUV and consists of 

linear drag term (𝐷𝑙(𝑣𝑣)) and quadratic term (𝐷𝑞(𝑣𝑣)), D(vv) Є ℝ6ˣ6, F Є ℝ6ˣ6 is the torque force applied on  

the AUV, and D Є ℝ6ˣ6 are the disturbances that imposed on the system. For the dynamic model given in (6), 

the system transformed into earth fixed coordinate as: 
 

𝑀𝜂(𝜂)�̈� + 𝐶𝜂(𝑣𝑣, 𝜂)�̇� + 𝐷𝜂(𝑣𝑣, 𝜂)�̇� + 𝑔𝜂(𝜂)  = 𝐹𝜂(𝜂) + 𝐷𝜂(𝑡)          (7) 
 

𝑀𝜂(𝜂) = 𝐽(𝜂)
−𝑇 𝑀 𝐽(𝜂)

−1   

 

𝐶𝜂(𝜂) = 𝐽(𝜂)
−𝑇[𝐶(𝑣𝑣) − 𝑀 𝐽(𝜂)

−1  𝐽(𝜂)̇ ] 𝐽(𝜂)
−1 

 

𝐷𝜂(𝜂) = 𝐽(𝜂)
−𝑇 𝐷(𝑣𝑣) 𝐽(𝜂)

−1 
 

 𝑔𝜂 = 𝐽(𝜂)
−𝑇 𝑔(𝜂) 

 

 𝐹𝜂(𝜂) = 𝐽(𝜂)
−𝑇 𝐹 

 

 𝐷𝜂(𝑡) = 𝐽(𝜂)
−𝑇 𝐷 

 

 

3.   CONTROLLING SCHEMES 

3.1.  FOPID controller 

Fractional order PID controller mainly formed as five parameters which differ from ordinary PID 

controller, that generally involves three parameters to enlarge the search space and therefore, achieve robust 

performance [17, 18]. The transfer function representation of FOPID controller is given by: 
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𝐶(𝑠) = 𝐾𝑝 +
𝐾𝐼

𝑆𝜆 + 𝐾𝐷𝑆𝜇 (8) 

 

where, 𝐾𝑝 is the proportional gain, 𝐾𝐷 is a derivative gain, and 𝐾𝐼  is integral gain, and (λ, μ) is the FOPID 

parameters. In case of λ=1 & μ=1, FOPID will act as standard PID controller, when λ=0 &μ=1 will provide  

a PD controller, and when λ=1 & μ=0 provides a PI controller. Figure 2 shows the FOPID plane. 
 

3.2.  NL-FOPID controller 

The nonlinear FOPID controlling scheme is introduced to enhance the controller capability towards 

better results, where a nonlinear term is cascaded with the traditional FOPID to improve the nonlinearity 

behaviour that changes with time or by external effects. The NL-FOPID [19], will work as a self-tuning to 

handle system complexity due to the disturbances, such that it will decrease system overshoot and neutralize 

time rising. Therefore, the controller design is given as shown in the following formula, 

Let 𝑒𝑖(𝑡) denoted as the error of the system, where 𝑖 = 1, 2 

Let 𝑦𝑖(𝑡) indicated as the output response of the AUV, and let the nonlinear term called as 𝑁𝑖(𝑡), where 
 

 𝑁𝑖(𝑡) = 𝑒𝑖(𝑡). exp ((𝜏1𝑖𝑒𝑖(𝑡) + 𝜏1𝑖𝑦𝑖(𝑡). (−𝜏2𝑖𝑒𝑖(𝑡) − 𝜏2𝑖𝑦𝑖(𝑡)) (9) 
 

where (𝜏𝑖) is a real number, 𝜏𝑖  Є (0, 𝑅), where 𝑅 < ∞ . The AUV system with NL-FOPID is illustrated in 

Figure 3. 
 

 

  
  

Figure 2. 𝜆 𝜇-Plane of  

FOPID controller 

Figure 3. AUV system with NL-FOPID controlling scheme 

 

 

4. PROPOSED SWARM INTELLIGENCE OPTIMIZATION ALGORITHM 

4.1.  Hybrid GWO-SA algorithm 

The GWOA tends to mimics the leadership hierarchy were the wolves group divided into (alpha,  

beta, delta, and omega), where alpha is the fittest solution, beta is the second-best solution, and delta is  

the third-best solution. In contrast, omega is the remaining wolves that follow the best three individuals [6].  

The first step of GWOA is encircling the prey were represented as following mathematical: 
 

�⃗⃗� = |𝐶  . 𝑋 𝑃(𝑡) − 𝑋 (𝑡)|𝑣 (10) 
 

𝑋 (𝑡 + 1) = 𝑋 𝑃(𝑡) − 𝐴 ⃗⃗  ⃗. �⃗⃗�       (11) 
 

where t represents the current iterations, 𝑋 𝑃(𝑡) is the position of the prey, 𝑋 (𝑡) is the position of the wolf, 

(𝐴 &𝐶 ) is the coefficient vector and found by the following: 
 

𝐴 = 2𝑎  . 𝑟  (12) 
 

𝐶 = 2 . 𝑟       (13) 
 

where, 𝑟 1 and 𝑟 2 random numbers from (0 to 1), 𝑎  is linearly decrease coefficient from (2 to 0) during  

the running iterations. The second step in standard GWO algorithm is hunting were usually the hunting process 

leading by the alpha wolf with the involvement of beta and delta, but due to unknown location of the prey  

the best three individuals obtained so far are saved and update the position of the other search agent (omega) 

by the following:  
 

�⃗⃗� 𝛼 = |𝐶 1 . 𝑋 𝛼 − 𝑋 |   (14) 
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�⃗⃗� 𝛽 = |𝐶 2 . 𝑋 𝛽 − 𝑋 | (15) 
 

�⃗⃗� 𝛿 = |𝐶 3 . 𝑋 𝛿 − 𝑋 | (16) 
 

𝑋 1 = |𝑋 𝛼 − 𝐴 1 . (�⃗⃗� 𝛼)| (17) 

 

𝑋 2 = |𝑋 𝛽 − 𝐴 2 . (�⃗⃗� 𝛽)| (18) 
 

𝑋 3 = |𝑋 𝛿 − 𝐴 3 . (�⃗⃗� 𝛿)| (19) 
 

𝑋 (𝑡 + 1) =
�⃗� 1+�⃗� 2+�⃗� 3

3
   (20) 

 

where, 𝐶 1, 𝐶 2, 𝐶 3, 𝐴 1, 𝐴 2, and 𝐴 3 are randomly generated vectors, 𝑋 𝛼, 𝑋 𝛽, and 𝑋 𝛿  are the positions of alpha, 

beta, and delta.  The GWOA is improved by inserting three modifications, first one focus on enhancing  

the main wolves (alpha, beta, and delta) locations, such that it is assumed that alpha is the near point to  

the target, so is supposed to have a wight of (1) and decrease to (1/3) as the number of iteration increase.  

In contrast (beta, and delta) assumed to be far from alpha and have weight equal to (0) and rise to (1/3) as  

the number of iteration increase. The improvements are formulated as show in (21-23). 
 

𝛼 = 1 − (
1

3
) ∗

𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (21) 

 

𝛽 =
1

3
−

𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (22) 

 

𝛿 = 1 − 𝛼 − 𝛽 (23) 
 

where (21-23) are applied in (20) and yields. 
 

𝑋 (𝑡 + 1) = 𝛼 ∗ 𝑋 1 + 𝛽 ∗ 𝑋 2 + 𝛿 ∗ 𝑋 3     (24) 
 

The second modification assumed to neglect 10% of the incapable wolves (ill’s or relatively old) that 

have a higher objective function value from the search space to increase the exploitation ability. For that 

purpose, the SA algorithm is introduced to avoid the GWOA from stacking in the same search arena, where  

a new solution obtained, which is a neighbour to the best solution obtained so far at every iteration, and  

the worse solution is developed through the following, 
 

 𝑝 = 𝑒
−ɣ

𝑇           (25) 
 

where, ɣ is the change between the objective function for the best solution and the trial solution, while T is  

the temperature factor and equal to 
 

𝑇 = (𝑇0 ∗ 𝑎𝑙𝑝ℎ𝑎)         (26) 
 

where, 𝑇0 is the initial temperature, and 𝑎𝑙𝑝ℎ𝑎 is the reduction factor used to reduce T after each iteration. 

The new solution obtained (neighbour number) use a DE mechanism to collect the unique number 

which corresponding to the second modification as shown in, 
 

𝑍 (𝑡 + 1) = 𝑋 1 + 𝐾 ∗ (𝑋 2 − 𝑋 3)       (27) 
 

where,  
 

𝐾 = 𝑟𝑎𝑛𝑑( max
𝑛𝑢𝑚𝑏𝑒𝑟

, min
𝑛𝑢𝑚𝑏𝑒𝑟

, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑖𝑧𝑒)      (28) 

 

𝐾 is a random number value that in-between ( max
𝑛𝑢𝑚𝑏𝑒𝑟

 & min
𝑛𝑢𝑚𝑏𝑒𝑟

) and have size equal to dimension size. After 

that, a crossover operation introduced to make sure that the new value of  𝑍 (𝑡 + 1) effective in comparison 

with the standard value 𝑋 (𝑡 + 1) a new variable called �⃗⃗� (𝑡 + 1) represent the final choice between either case 

and equal to, 
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�⃗⃗� (𝑡 + 1) = {
𝑍 (𝑡 + 1)                   𝑖𝑓 (𝑟𝑎𝑛𝑑(𝑗) == 𝑟𝑎𝑛𝑑𝑖 (𝑠𝑖𝑧𝑒 (𝑟𝑜𝑤 (𝑋 (𝑡 + 1)))))𝑜𝑟 𝑟𝑎𝑛𝑑 ≤ 𝑃𝑐𝑟

 𝑋 (𝑡 + 1)                                               𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                                              

  (29) 

where, (𝑟𝑎𝑛𝑑) is a random number between (0,1), 𝑗 = 1, 2, 3, … , ( 𝑠𝑖𝑧𝑒 (𝑟𝑜𝑤 (𝑋 (𝑡 + 1)))), (𝑟𝑎𝑛𝑑𝑖) is  

a random integer number, and 𝑃𝑐𝑟 is the mutation rate. 

Finally, the last improvement is achieved by using the SA algorithm to enhance the best solution 

obtained so far (𝑎𝑙𝑝ℎ𝑎𝑝𝑜𝑠, 𝑏𝑒𝑡𝑎𝑝𝑜𝑠, 𝑎𝑛𝑑 𝑑𝑒𝑙𝑡𝑎𝑝𝑜𝑠) of each wolf after each iteration to maximize  

the exploration and exploitation capabilities. The detailed steps of HGWO-SA algorithm are demonstrated  

as follows, 

Input: The HGWO-SA algorithm external parameters. 

Step 1: Specify the LB, UB and Dim of the selected fitness function and the initial a, A, and C; 

Step 2: Evaluate the fitness of each search agent, where Xα, Xβ and Xδ are the first, second, third best 

individuals in search agent in series; 

Step 3: Begin the main loop and for each search agent calculate  α, β and δ by (21 − 23) then 

Update position of each solution by (24); 

Step 4: Find the worst wolves locations; 

Step 5: select 10% of position size then Update position using SA ; 

Step 6: enhance Xα⃪ using SA , enhance Xβ⃪ using SA , enhance Xδ⃪ using SA;   

Step 7: Repeat Step 3 until it reaches the maximum number of iterations; 

Output: The optimum solution. 
 

4.2.  Improved whale optimization algorithm 

The WOA algorithm is used to mimic whale organism in Nature, where the whales hunt in a shrinking 

circle and on a spiral path as shown in [7],  
 

𝑋 (𝑡 + 1) = {
𝑋 ∗(𝑡) − 𝐴  . �⃗⃗�                                          𝑖𝑓 𝑝 < 0.5                           (a)

𝐷′⃗⃗⃗⃗  . 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗(𝑡)                  𝑖𝑓 𝑝 ≥ 0.5                           (b)
  (30) 

 

where, 
 

𝐴 = 2 𝑎  . 𝑟 − 𝑎          (31) 
 

�⃗⃗� = |𝐶  . 𝑋 𝑟𝑎𝑛𝑑 − 𝑋 |        (32) 
 

where (30 a) represent the shrinking circle and (30 b) represent the spiral path, where 𝑋∗⃗⃗ ⃗⃗   is the best solution in 

position vector, (𝐴 ⃗⃗  ⃗, 𝐶 ) are coefficient numbers,  �⃗⃗�  is a global search, 𝑎  is a specific number that decreased in 

the period of (2,0), 𝑟  a random number between (1,0), b is a constant number for defining  

the shape of a logarithmic spiral, l is a random number in the range (-1,1), p is a random number between [0,1], 

and 𝐷′⃗⃗⃗⃗  is the distance between the whale and the target (prey) and given in the following,  
 

𝐷′⃗⃗⃗⃗ = |𝑋 ∗(𝑡) − 𝑋 (𝑡)|        (33) 
 

The humpback whale locates their prey and encircle them, and represented in (34), 
 

�⃗⃗� = |𝐶 . 𝑋 ∗(𝑡) − 𝑋 (𝑡)|        (34) 
 

The main problems in WOA are its trail to departure from a large number of local solutions in 

nonlinear search spaces and the stabilizing issue between the exploration and exploitation. The procedure of 

the update is that when the algorithm updates the position in each iteration, the values of these updated values 

can reach a higher value. Such that it may give value that beyond the upper or lower bound of the required 

functions. Therefore, a random matrix-vector (random whale) is suggested to be initiated from each vector at 

every loop, as explained below in the following statement, 
 

𝑋𝑟𝑎𝑛𝑑 = 𝐴𝑟𝑟𝑎𝑦(𝐼𝑛𝑡𝑒𝑔𝑒𝑟[𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟])      (35) 
 

where the 𝑋𝑟𝑎𝑛𝑑 represent a random hunter (whale) vector that has only one value to be selected at each  

(𝐴 ≥ 1) and neglect the remaining values. And this value might be a not optimal value that makes the search 
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domain converge to the prey for the shrinking circle in the exploration phase. In order to solve this problem,  

a search domain is updated to obtain the best value as in (36),  
 

𝐷𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |𝐶  . 𝑋 𝑏𝑒𝑠𝑡 − 𝑋 |        (36) 
 

Let the developed position of the shrinking encircling step is h,  
 

h = 𝑋𝑏𝑒𝑠𝑡 − 𝐴*𝐷𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗          (37) 

 

A comparison between the value of h and the position of each search agent should be achieved; 

therefore, if new values of h are smaller than the old position of search agent, it will be updated as a new 

position. To guarantees that the values of the position will be within the upper and lower bounds for the positive 

and negative values except when the value of position is positive, and the new value acquired from h is negative 

so that the recently updated position will update the absolute h.  The following algorithm represents the running 

procedure o the IWOA: 

Input: The IWO algorithm external parameters. 

Step 1: Define the LB, UB and the dimension of the chosen fitness function; 

Step 2: calculate the fitness of each search agent and chose the best one; 

Step 3: start the main loop at that point for each search agent update the interval range (a), (A, C), (L), and (p); 

Step 4: If p below (0.5) and (A) below (1) then update the current position as show in (34); 

Step 5: If A exceeding (1), find the value of (36), and the value of (h) using (37) according to the selection 

process of each search agent using (35); 

Step 6: test the current position if it’s over the UB or LB define in Step 1, then replace it by another value (h) 

such that the new value should be between the range of (UB, and LB) otherwise return to Step 5 and choose  

a new value;  

Step 7: If p ≥ (0.5) then update the current position using (30 b); 

Step 8: Repeat Step 3 until it reaches the maximum number of iterations; 

Output: The optimum solution. 
 

 

5. RESULTS AND DISCUSSION 
5.1.  Performance analysis for the proposed algorithm 

In this section, a concise performance comparison is presented, where the proposed algorithm is 

implemented using Matlab R2018b such that it runs for 30 times within 500 iterations to calculate the average 

(AVG) and standard deviation (STD) for a set of benchmark functions. The chosen benchmark problems are 

unimodal, multimodal and fixed dimension’s multimodal functions [20-23]. The collected numerical results 

for proposed algorithms are compared with other basic optimization algorithms that are particle swarm 

optimization (PSO), differential evolution (DE) [24] and gravitational search algorithm (GSA) [25].  

The statistical results for evaluating the proposed HGWO-SA algorithm based on selected benchmark 

functions are tabulated in Table 1. In Table 1, the functions (F1, F2, F3, and F4) has a dimension size equal to 

(30), while function (F5) has a dimension size of (4). Figure 4 depicts the best objective function registered for 

F3 function based on HGWO-SA algorithm and other basic optimization algorithms. 

From the result obtained in Table 1 and elucidated in Figure 4, it can be seen that, for example, the average 

for (F3) using HGWO-SA algorithm is decreased to (16) order compared to standard GWO algorithm that has a (14) 

order that means the HGWO-SA is improved by (2) order with a minimum number of iteration (around 65 iterations). 

Therefore, the HGWO-SA algorithm is the nearest one compared to other algorithms towards (𝐹3𝑚𝑖𝑛 = 0). 

Furthermore, the functions (F1, F2, F4, and F5) from Table 1, also demonstrated that the proposed algorithm has  

the nearest points towards the minimum function points and for different orders. 
 

 

Table 1. Comparison of HGWO-SA with GWOA, PSO, DE and GSA algorithms 
Function Metric HGOWA GWOA PSO DE GSA 

F1 

Rosenbrock 

avg 4.6586e-13 26.9358 82.3811 165.4646 0.4106 

std 1.0983e-12 0.7633 99.3448 52.3370 0.3802 
F2 

Noise 

avg 4.1614e-04 0.0013 0.1571 0.0529 0.1658 

std 2.7607e-04 7.8060e-04 0.0509 0.0115 0.4588 

F3 

Ackley 

avg 8.8818e-16 6.0929e-14 0.0868 0.0061 7.0640e-09 

std 0 9.3462e-15 0.3163 0.0015 1.2032e-09 

F4 

Happy Cat 

avg 2.4633e-06 0.3216 0.3723 0.2991 0.2730 

std 1.8171e-06 0.0547 0.0833 0.0328 0.0964 
F5 

Shekel 5 

avg -10.1532 -9.3135 -8.1434 -9.7884 -6.3921 

std 6.9708e-05 2.2189 2.9738 1.2199 3.6236 
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Figure 4. The results of Ackley (F3) function based on HGWO-SA algorithm and other standard algorithms 

 

 

In Table 2, the numerical results of the proposed second algorithm, which is IWOA, is illustrated 

based on selected various test functions. The test functions (F1, F2, F3, and F4) used in Table 2, has  

a dimension size equal to (30), while function (F5) has a dimension size of (4). Figure 5 as shows  

the best objective function registered for F1 function based on IWO algorithm and other selected standard 

optimization algorithms. From the result obtained in Table 2 and Figure 5, it can be seen that the average value 

of the function (F1)  using the second proposed algorithm is decreased to (123) order compared to the standard 

WOA that has (80) order; that’s mean the IWOA is improved by (43) order. Therefore, the IWO algorithm is 

the optimum algorithm compared to other algorithms towards (𝐹1𝑚𝑖𝑛 = 0). Moreover, the results of  

the functions (F2, F3, F4, and F5) also indicated that the improved algorithm had achieved global best values. 

 

 

 
 

Figure 5. The results of the sphere (F1) function based on IWOA and other standard algorithms 
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Table 2. Comparison of IWOA with WOA, PSO and GSA algorithms 
Function Metric IWOA WOA PSO GSA 

F1 
Sphere 

avg 3.5275E-123 2.6260e-80 1.446595e-18 8.341100e-41 
std 4.963833e-117 7.328033e-79 8.766226e-19 2.218018e-40 

F2 

Noise 

avg 1.1230E-25 46.2694 1.0902 8.0052 

std 3.0857E-25 31.2569 0.2153 2.5682 
F3 

Ackley 

avg 0 3.7896E-15 53.1311 29.3181 

std 0 1.4422E-14 11.0473 7.3381 

F4 
Schwefel 

avg 0 0.0040 0.0067 25.9758 
std 0 0.0217 0.0086 6.4710 

F5 

Shekel 7 

avg -8.2746 -6.5921 -6.8053 -6.4268 

std 2.4917 2.8524 3.3115 3.6015 

 

 

5.2.  Results and discussions for the designed system 

For obtaining the results for the designed system, it’s assumed that the AUV is operating at low speed 

and move at (YAW(ψ)=0.785 deg) so that the Coriolis matrix showed in (7) will not designate to vehicle dynamics 

as a result 𝐶𝜂(𝑣𝑣, 𝜂) = 0, while the desired trajectory equal to 𝑟𝑑 = [sin𝑤𝑡 0 0 0 0 cos𝑤𝑡],  

the disturbances assumed to equal 𝐷 = [−180.3 sin(𝑤𝑡 + 89) 0 0 0 0 − 9.85 sin(𝑤𝑡 + 86.5)], and 

finally, from [26] applied the following AUV parameters which are shown in Table 3.  

 

 

Table 3. The Parameters values for the underwater vehicle 
Values Parameters Values Parameters 

90 Zw|w| 159 m 

10 Kp|p| 14 Ixx 

9 Kq|q| 14 Iyy 

14 Nr|r| 14 Izz 

0 W 58 Xu 

0 B 58 Yv 

0 Xg 70 Zw 

0 Yg 12 Kp 

0 Zg 13 Kq 

0 Xb 14 Nr 

0 Yb 88 Xu|u| 

50 Zb 86 Yv|v| 

 

 

After Applying both of the proposed swarm intelligence algorithms to obtain the optimum parameters 

for the NL-FOPID, and PID controlling schemes, where the objective functions that used to evaluate  

the performance index (PI) are integrated time absolute error (ITAE), integrated absolute error (IAE), and 

integrated squared error (ISE) [27-29]. The tuned NL-FOPID and PID controllers’ parameters based on 

HGWO-SA algorithm are listed in Table 4, and Table 5 represents the PID parameters that optimized using  

the IWO algorithm.  

In accordance with the values in Tables 3, 4, and 5, the AUV model with controlling schemes is 

implemented using MATLAB R2018b. Consequently, the simulation results of the designed system are 

obtained, where Figure 6 discusses the difference between the input for the desired signal (𝑟𝑑6) and the output 

signal for the NL-FOPID and PID controllers which shows that the AUV with NL-FOPID is more stable and 

close to the reference signal. As an example, for that, the third (+ve) peak for the NL-FOPID has a delay of 

(0.006) of the reference signal in comparison to the PID that has a delay of (0.012). In contrast, the (-ve)  

peak has a (0.01) for the NL-FOPID controller and a (0.02) for the PID controller in comparison with  

the reference signal. 

 

 

Table 4. NL-FOPID parameter 
NL-FOPID parameters 

𝐾𝑝1 53.6345 𝐾𝑝6 -5 

𝐾𝑖1 -65.8899 𝐾𝑖6 0 

𝑘𝑑1 -90.5585 𝑘𝑑6 -40 

λ1 1.1927 λ6 0.9 

μ1 0.0642 μ6 1 

𝜏11 0.6420 𝜏16 0.001 

𝜏21 -0.4239 𝜏26 -2.5 

Number of iterations 26 
 

Table 5. PID parameters 
PID parameters 

𝐾𝑝1 -19.4850 𝐾𝑝6 -19.4850 

𝐾𝑖1 -19.4850 Ki6 -163.2955 

𝑘𝑑1 -53.2347 𝑘𝑑6 -53.2347 

Number of iterations 28 
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Figure 7 discusses the difference between the input for the desired signal (𝑟𝑑1) and the output signal such 

that the second (+ve) peak for the designed system with NL-FOPID has a delay of (0.005) of the reference signal in 

comparison to the PID that has a backlog of (0.03). However, the (-ve) peak for the NL-FOPID very close and stable 

to the reference signal compared with PID controller that has a delay of (0.02). Figure 8 combines both output signal 

of (𝑟𝑑1, 𝑟𝑑6) with the running time t, which lead to achieving  a helical trajectory, as shown in Figure 8 (a). Moreover, 

Figure 8 (b) illustrated the circular path it shows that the considered system with NL-FOPID is more stable than  

the PID controller in spite of some fluctuating at starting due to the disturbance effect. 
 
 

  
 

Figure 6. AUV system trajectory of 𝑟𝑑6 
 

Figure 7. AUV system trajectory of 𝑟𝑑1 

 

 

  
(a) (b) 

 

Figure 8. Three-dimensional graph; (a) helical trajectory, (b) circular trajectory 

 

 

4. CONCLUSION  

This paper introduced the NL-FOPID controller for the underwater vehicle to solve the path trajectory 

tracking problem. The proposed controller is compared with the PID controller to show differences betweesn 

both controllers, such that the proposed controller shows a steady performance that closes to the reference path 

than the PID controller. An HGWO-SA algorithm presented with three modifications that are modified the 

wolves positions, neglect 10% of the ineffective wolves in the search space, and enhances the best solution 

obtained after each iteration for the leading wolves. Moreover, an IWO algorithm is developed with a modified 

search space to achieve the best individuals in the search domain. Both of the swarm intelligence optimization 

algorithms are tested using various sets of benchmark functions, where the results show that the HGWO-SA 

algorithm is improved the minimum point by 20-130% compared to the GWO scheme, while the IWOA 

improved by 2-50% compared to the WOA. Finally, the results obtained from simulating the system with  

NL-FOPID controller show that it enhances the system trajectory by 1-15% as compared to the PID controller 

that not match well with the reference path. 
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