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 The two elements that are most favorable in the quality evaluation for 

phosphor-converted LEDs (pcLEDs) these days are the chromatic 

homogeneity and the lumen output. In this study, a thorough research on 

enhancing color uniformity and luminous flux of pcLEDs that have a high 

correlated color temperature (CCT) of 8500K is carried out. The scattering 

enhancement particles (SEPs): CaCO3, CaF2, SiO2, and TiO2 are used to 

accomplish the goal by adding them to a yellow phosphor compounding 

Y3Al5O12:Ce3+, and comparing their characteristics afterwards. LightTools 

program is used to build an optical simulation and Mie-scattering theory helps 

to examine the achieved results. Specifically, the parameters included in SEPs’ 

scattering calculation are the scattering coefficients, the anisotropic scattering, 

the reduced scattering, and the scattering amplitudes at 455 nm and 595 nm. 

The outcomes presented that compared to other SEPs, TiO2 particles can yield 

the highest chromatic homogeneity. However, the lumen output reduces 

considerably as TiO2 concentration greatly increases while it can be bettered 

when using SiO2 particles with any particle size. For CaCO3 particles, the color 

deviation of 620 K CCT can be reduced with 30% concentration, leading to 

the recommendation of using CaCO3 to promote the CCT homogeneity and 

luminescence efficiency. 
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1. INTRODUCTION  

The increase in internal scattering of phosphor-converted LEDs (pcLEDs) is considered as a crucial 

requirement for getting their quality improved. Thus, three optical properties consisting of chromatic 

uniformity, lumen efficiency, and color rendering ability (CRI) must be brought into a sharp focus [1, 2]. 

Generally, a typical pcLED is comprised of blue chips, the yellow Y3Al5O12:Ce3+ phosphor, and the silicone 

substance. The process of simulating the yellow light and Y3Al5O12:Ce3+ absorbing the blue lights produced by 

the blue chips will generate the white light having desired color temperature [3]. Besides, that the  

scattered-blue-light radiant intensity distribution is different from the phosphor-emitting yellow-light one 

results in the non-uniformity of spatial color distribution [4]. This also causes the yellow ring phenomenon to 

happen to the phosphor-converted LEDs, which discomforts the human eyes. Particularly, in the time the 

scattering events occur, the energy of the blue photons is degraded when being absorbed by the phosphor but 
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the converted yellow light power tends to go up after every scattering. However, the phosphor layer has 

completely different wavelength bands and wavelength characteristics, and this helps to modify the spatial 

color uniformity of pcLEDs in a more advantageous way. A phosphor-in-glass comprised of SiO2, B2O3, PbO, 

Y3Al5O12:Ce3+ phosphors, and the silicone is applied to lessen the variance of 6000 K average correlated color 

temperature (CCT) from 761 K to 171 K [5]. Another method introduced to minimize the color deviation is 

the HfO2/SiO2 DBR film whose result was the reduction from 1758 K to 280 K at around 5000 K CCT [6]. 

Besides that, the remote micro-patterned phosphor film could reduce the color deviation by 441 K at an ACCT 

of 5537 K [7]. In general, these phosphor geometries actually resulted in better spatial color homogeneity yet 

they are complicated to fabricate and also have high production cost. Hence, using scattering enhancement 

particles (SEPs), including TiO2 [8], ZrO2 [9], microspheres [10], and SiO2 [11, 12], has been considered as a 

more practical approach. Each SEP was combined with the yellow phosphor grains to make an advanced 

phosphor compounding. Diffusers of pcLEDs created from the application of the titania (TiO2) particles 

showed positive result in color uniformity enhancement, which is that when adding 0.1% TiO2 to the 

encapsulation layer case, the chromatic homogeneity can achieve a higher level [13]. Continuing working on 

the methods to promote the color uniformity, CaCO3 particles were proposed to serve the purpose of improving 

the scattering properties inside pcLEDs; and the outcome demonstrated a sharp increase in the spatial chromatic 

homogeneity when using 10% concentration of CaCO3 [14]. Besides the mentioned SEPs, SiO2 particles are 

also known as a good material in managing the spatial chromatic homogeneity of pcLEDs. Moreover, there are 

some pieces of evidences proving that SiO2 position in the silicone film and the chromatic quality have a 

rational relation. In addition, their particles sizes considerably impact the pcLEDs’ color temperature [15].  

Though previous studies emphasized and confirmed the immense influences of SEPs in advancing the 

chromatic quality of pcLEDs, there is a remaining issue: which one will be the most suitable material for 

pcLEDs to accomplish better brightness and color homogeneity. Moreover, these aforementioned papers 

presented that besides increasing color quality by reducing the difference in CCTs, SEPs also decrease the 

lumen efficacy of the pcLEDs having low CCT and simple single-chip design. Literally, when SEPs are applied 

with appropriate concentrations and particle sizes, they can improve the effectiveness of the lighting output.  

In this article, the common SEPs applied in high-quality pcLEDs production, including CaCO3, CaF2, 

SiO2, and TiO2, are examined to figure out their benefits and drawbacks, from which a suitable selection of 

SEPs can be decided to meet the requirements of manufacturers. Besides that, the explanations of the way SEPs 

can better the two important optical characteristics of pcLEDs are provided with the support from  

Mie-scattering theory, which are demonstrated in the following sections. Section 2 presents the internal scattering 

analysis for pcLEDs. Section 3 details the optical experiments carried out for reaching the study’s objectives and 

also discusses the simulation results. The last section, section 4, shows the conclusion of the article. 

 

 

2. SCATTERING ANALYSIS 

Considering the pcLEDs with conformal phosphor structure and based on Mie-scattering  

theory [16-18], the influence of light scattering occurring when SEPs are added to the structure can be 

computed with calculation tool MATLAB. The scattering computation of SEPs includes the scattering 

coefficient μsca(λ), the anisotropy factor g(λ), the reduced scattering coefficient δsca(λ), and the scattering 

amplitude functions S1(θ) and S2(θ), all of which are expressed as follows: 

 

𝜇𝑠𝑐𝑎(𝜆) = ∫ 𝑁(𝑟)𝐶𝑠𝑐𝑎(𝜆, 𝑟)𝑑𝑟  (1) 

  

𝑔(𝜆) = 2𝜋 ∫ ∫ 𝑝
1

−1
(𝜃, 𝜆, 𝑟)𝑓(𝑟) 𝑐𝑜𝑠 𝜃 𝑑𝑐𝑜𝑠 𝜃 𝑑 𝑟,  (2) 

  

𝛿𝑠𝑐𝑎 = 𝜇𝑠𝑐𝑎(1 − 𝑔)  (3) 

  

𝑆1 =∑
2𝑛+1

𝑛(𝑛+1)

∞

𝑛=1
[𝑎𝑛(𝑥,𝑚)𝜋𝑛(cos𝜃) + 𝑏𝑛(𝑥,𝑚)𝜏𝑛(cos𝜃)]  (4) 

  

𝑆2 =∑
2𝑛+1

𝑛(𝑛+1)

∞

𝑛=1
[𝑎𝑛(𝑥,𝑚)𝜏𝑛(cos𝜃) + 𝑏𝑛(𝑥,𝑚)𝜋𝑛(cos𝜃)]  (5) 

 

in which N(r) indicates the density distribution of diffusional particles (per cubic millimeter). The scattering cross-

section presented by Csca is measured in square millimeters. p(θ,,r) represents the phase function where λ (nm), 

r (μm), and θ (in degrees) are the incident light wavelength, the particle radius, and the scattering angle, 

respectively. The size distribution of SEPs in the phosphor film is f(r). x means the size parameter, and m shows 
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the index of refraction. an demonstrates the expansion coefficient with enven symmetry while bn is odd-symmetry 

expansion coefficient. The other parameters: πn(cosθ) and τn(cosθ) are the angular dependent functions. 

Figure 1 and Figure 2 exhibit the increase of scattering coefficients which is dependent on the 

concentration of used SEPs. Moreover, they also imply that when SEPs are added with high concentration, the 

blue light absorption tends to be higher. As can be seen in two figures, CaCO3 is the one getting the scattering 

coefficient reached the highest point, compared to the other SEPs. Besides that, the dissimilarity of scattering 

coefficients between 455 nm and 595 nm is reduced to the minimum number as CaCO3 appears in the phosphor 

structure, which means CaCO3 can balance the blue and yellow photons’ intensity distributions. Also, in the 

bar charts of Figure 1 and Figure 2, the anisotropy scattering g(λ) values are presented based on the calculated 

results from (2). Unlike the scattering coefficients, the changes of g(λ) are not dependent much on the variance 

of SEPs concentration. Furthermore, the growth in g(λ) following the density of SEPs density is very slight 

which is not significant enough to be considered. 

Besides that, it is easy to see that the reduced scattering coefficients δsca(λ) of SEPs at 455nm have a 

tiny difference from that at 595nm, for example, CaCO3 grains have g (595 nm) = 0.9 while their g  

(455 nm) = 0.88, the gap is just 0.02. In other words, the δsca(λ) between 455nm and 595nm are quite equal. 

Thus, applying the stability of CaCO3 and TiO2 scattering ability will make the enhancing process of the spatial 

chromatic homogeneity become easier and simpler. 

Figure 3 shows SEPs’ angular scattering amplitudes calculated by MATLAB program. Obviously, 

SEPs have tremendous benefits to the scattering of blue rays as they provide a sufficient compensation to the 

blue light, minimize the effect of yellow ring phenomenon, and improve the emitted luminous flux. 

Nonetheless, to achieve the best result, it is crucial to select the SEPs having relatively equal angular scattering 

amplitudes between the blue (455 nm) and yellow (595 nm) lights. Considering the angular scattering 

amplitudes at 455 nm and 595 nm between CaCO3 and SiO2 particles, CaCO3 results in a smaller difference 

than SiO2 does, and this outcome could be observed in Figure 3. 

 

 

 
 

 
 

 
 

Figure 1. Computation of scattering coefficient, anisotropic scattering and  

reduced scattering coefficient of the SEPs at 455 nm 
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Figure 2. Computation of scattering coefficient, anisotropic scattering and  

reduced scattering coefficient of the SEPs at 595 nm 

 

 

  
(a) (b) 

 

Figure. 3. Angular scattering amplitudes of different SEPs at (a) 455 nm and (b) 595 nm 

 

 

3. COMPUTATION AND DISCUSSION 

Presented in this part is the computed results about the optical performances of pcLEDs when SEPs 

are applied which are verified by LightTools 8.1.0 software. Moreover, there are some discussions on the 

impacts of those SEPs on the lighting outcomes of pcLEDs to find out the suitable SEPs for each requirement 

of producers. In Figure 4 is the schematic diagram of pcLEDs. The input parameters of each element of a 

pcLED structure must be determined and constant. The reflector of it has the approximate measurement of  

2.1 mm, 8 mm, and 10 mm for depth, inner diameter, and outer diameter, respectively. The phosphor layer 

placed over nine LED chips has 0.08 mm fixed thickness, approximately. For the SEPs examined in this 

research, including CaCO3, CaF2, SiO2, and TiO2, they are supposed to be spherical particles having 0.5 µm 



TELKOMNIKA Telecommun Comput El Control   

 

Utilizing CaCO3, CaF2, SiO2, and TiO2 phosphors as approaches to…  (Huu Phuc Dang) 

627 

radius. Each of them has different refractive indexes, specifically, 1.66 for CaCO3, 1.44 for CaF2, 1.47 for SiO2, 

and 2.87 for TiO2. Meanwhile, the yellow phosphor’s average radius and index of refraction are set at 7.25 μm 

and 1.83, respectively, in the visible wavelength range; additionally, 1.5 is the refractive index of the silicone 

material. Besides that, the density of the diffusional particle is variable parameter for the optimization of CCT 

homogeneity as well as luminescence efficacy [19, 20]. 

 

𝑊𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟 +𝑊𝑠𝑖𝑙𝑖𝑐𝑜𝑛𝑒 +𝑊𝑆𝐸𝑃 = 100%.      (6) 

 

As can be seen in (6) the weight percentage of each material: yellow phosphor (Wphosphor), silicone (Wsilicone), 

and SEP (WSEP) in the pcLED phosphor film must be modified to maintain the stability of the average CCT 

(ACCT). In particular, the weight percentage of Y3Al5O12:Ce3+ yellow phosphor must be decreased when WSEP 

increases to keep the ACCT at 8500K. Moreover, it is vital to determine the amount of variance among CCT 

values at different angles so as to make it easier to assess the quality of illumination with solid-state lighting 

technology. In fact, when there is a sharp angular deviation in CCT [21, 22], the yellow ring phenomenon 

occurs, leading to the inhomogeneous color of white lights at different angles. The computation of CCT 

deviation dependent on the viewing angles can be expressed as:  

 

D-CCT = CCT(Max) – CCT(Min)       (7) 

 

CCT(Max) and CCT(Min) are the maximum and minimum CCTs the viewing angles of 00 and 900, respectively. 

Clearly, the variation in optical properties of pcLED are caused by the scattered light diversity of each 

particle applied in the structure. The key to the reduction of this CCT deviation is the sufficient amount of 

scattered blue lights. Back to Figure 3, it is obvious that among these SEPs, CaCO3 gives the angular-dependent 

scattering amplitude the smallest deviation between 455 nm and 595 nm. In other words, using CaCO3 can 

minimize the radiant intensity distribution differences of the blue lights scattered and the yellow lights emitted 

by the phosphors to the smallest value. In addition, similar to the other SEPs, CaCO3 grains have higher angular 

scattering amplitude at 455 nm than at 595 nm. The white lights are generated when phosphor-scattered blue 

rays blend with phosphor-converted yellow lights and also the yellow ring, and this process remarkedly lessens 

the effect of the yellow ring phenomenon for pcLEDs. However, a shortage or excess of scattered blue lights 

in pcLEDs will be followed by a larger CCT deviation. Figure 3 also shows that CaCO3 accomplishes a thin 

line of difference between 455 and 595 nm angular scattering amplitudes which is nearly three times smaller 

than that of the other SEPs. Thus, using CaCO3 is more advantageous to keep the uniformity of white light 

color and the luminous performance under control.  

 

 

 

Lead frame: 4.7 mm Jentech Size-S 

LED chip: V45H 

Die attach: Sumitomo 1295SA 

Gold Wire: 1.0 mil 

Phosphor: ITC NYAG4_EL 

(a) (b) 

 

 

(c) (d) 

 

Figure 4. (a) Photograph of WLEDs sample, (b) Manufacturing parameter of WLEDs,  

(c) Illustration of 2D WLEDs model, (d) the simulated WLEDs model 
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All key points in discussions are demonstrated in Figure 5. As can be seen, CaCO3 and TiO2 result in 

the decrease of the CCT deviations. Additionally, the CCT deviation obviously declines from 2670 K to  

2050 K when adding 30% CaCO3, which means a reduction of 620 K CCT deviation can be accomplish with 

30% concentration of CaCO3, compared to that without using any SEP. In contrast, the CCT deviations tend 

to go up when CaF2 and SiO2 are applied. The trends of lumen efficiency in accordance with the concentrations 

and the particle sizes of CaCO3, CaF2, SiO2, and TiO2 are exhibited in Figure 6. The range of concentration for 

these particles in the experiment is 0-50%, while the diameter of those SEPs varies in the range of  

100-1000 nm. In the cases of CaCO3 and SiO2, the luminous fluxes rise as their concentrations and particle 

sizes increase. However, with CaF2, the lumen output increases when the concentration of CaF2 varies from 0 

to 20% at all particle sizes. Then, as CaF2 concentration surpasses 20% the flux starts to fall down regardless 

of the particle sizes. Obviously, the bigger SEP diameter leads to the higher degradation of scattering events in 

the phosphor film, which probably lifts up the luminous flux of pcLEDs. The trend of luminous flux in TiO2 

case is similar to the results of using CaF2, which is going up in the TiO2 concentration range from 0 to 10% 

and after that going down steeply along with higher concentration, at any particle size. The downward trend in 

luminous flux of SEPs is demonstrated by the Lambert-Beer law and the Mie-scattering theory. 

 

 

 
 

Figure 5. Comparison of CCT deviation of pcLEDs using different SEPs 

 

 

 
 

 
 

  
 

Figure 6. Comparison of luminous flux of pcLEDs using different SEPs 
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The downward trend in luminous flux of SEPs is demonstrated by the Beer’s law and the Mie theory 

of scattering. Specifically, the Mie-theory is applied to examine and compute the scattering ability of SEPs and 

the spherical-particle scattering cross section Csca. Meanwhile, the Lambert-Beer law [23-25] is responsible for 

calculating the power of transmitted lights, which is expressed as: 

 

I = I0 exp(-µextL)         (8) 

 

I0 indicates the incident light power, L presents the phosphor layer thickness (mm), and µext is the extinction 

coefficient expressed as: µext = Nr.Cext, with Nr (mm-3) and Cext (mm2) are the number density distribution of 

particles and the extinction cross-section of phosphor particles, respectively. In (8) implies that the 

enhancement in the luminescence output of pcLEDs follows the growth in the concentration of SEPs. This can 

be explained by these two reasons: 1) the excess of the scattering events in the phosphorus film is the cause of 

the decrease in transmitted energy; 2) the scattering improvement relies on the concentration of SEPs. 

 

 

4. CONCLUSION 

This paper has achieved the main purpose of analyzing and demonstrating the influences of SEPs 

(CaCO3, CaF2, SiO2, and TiO2) on the performance of the color uniformity and luminous output of pcLEDs. 

Mie-scattering theory is used to examine the ability of each SEPs, and the results show that the scattered lights 

obtain a considerable improvement as SEPs are in the pcLED’s phosphor structure.  Thus, with this useful 

finding, the work of enhancing the performance of pcLEDs is limited to the focus on figuring out the 

appropriate SEPs concentrations. This study indicated that when the concentrations of TiO2 and CaCO3 

develop, the CCT deviation can be minimized. TiO2 particularly is advantageous in reducing the CCT deviation 

to the minimal value. Yet, the luminous performance tends to decrease steeply as TiO2 concentration continues 

to be higher. In contrast, the lumen output shows an upward trend with the concentrations of CaCO3, CaF2, and 

SiO2, especially SiO2, the one has a tremendous benefit in yielding better lumen values. Besides, CaCO3 is also 

beneficial to reduce the color deviation, by nearly 620 K, with a concentration of 30%. Therefore, it can be 

said that the most effective SEP for the optical improvement of pcLEDs is CaCO3. The outcomes of this article 

give a solid foundation about the use of SEPs and a valuable reference to the work of bettering pcLEDs’ 

performance. Manufacturers can use this for their practical production of pcLED products that fulfill the 

requirements of the lighting market. 
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