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 In this study, design and simulation of microtrip bandpass filter is presented 

using RT/Duroid 6010.2 lm substrate. This filter has fan-shaped topology with 

small dimensions of 12x12 mm2, designed for dual band frequencies at 3.41 

and 6.14 GHz. The insertion loss and return loss of initial band at 3.41 GHz 

are -0.7 and -38.224 dB respectively and its bandwidth ranged from 3.3561 to 

3.48 GHz. On the other hand, for 2nd band at 6.14 GHz, the insertion loss and 

return loss have been -1.377 and -14 dB respectively with bandwidth ranged 

from 6.0951 to 6.1782 GHz. Keywords: 
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1. INTRODUCTION 

Microstrip technology has been widely adopted in many RF and microwave devices in numerous 

wireless applications due to its cost effectiveness, smallness and desired frequency responses. Microstrip 

devices may include microstrip filters [1-7], microstrip diplexers [8, 9] and microstrip antennas [10-15]. In 

recent years, specifically, bandpass filters (BPFs) have a significant role in modern wireless mobile 

communication systems. The demand for new designs and approaches of this filter is increasing and intensively 

investigated. There are many applications used the filters in approximately all aspects and operate in a  

single-frequency band. The development of the filter technologies approach new method and demand a higher 

level of applications which can support dual band in a single device. For example, the global system for mobile 

communications (GSM) and code-division multiple-access (CDMA) mobile phones operate at 900 MHz and 

1.8 Hz as well as WiMAX cover dual frequency band which are 2.5 GHz and 3.5 GHz. Therefore, dual-band 

filter are significant elements at microwave frequency for wireless communication [16]. 

Miniature microstrip narrow BPFs have been favored progressively in newly wireless communication 

systems owing to their flexibility in design and extraordinary selectivity. Dual-mode resonators possess extremely 

desired properties for BPF design, such as size smallness, small radiation loss and design easiness for the reason 

that transmission-line concept and design tools are straightforwardly realized. Their diminishment techniques are 

due to existing double circuit in distinct structure as compared with single mode BPF designs as dual degenerate 

modes have coupled to each other through appropriate perturbation induction [17].  

In [18] a small dual-band BPF was simulated and manufactured using loop resonator loaded by dual 

reformed T-shaped resonators, open bended stubs and double T-shaped resonators. The measurements 

indicated insertion losses of 0.64 dB and 0.76 dB in the 1st and 2nd pass-bands. Adaptable 2nd center frequency, 
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miniature size, small insertion loss, noble suppression level as well as a symmetrical topology have been the 

noticeable characteristics of a projected BPF. Lastly, a worthy covenant among measured and simulated results 

has perceived . 

In [19], a microstrip filter with small insertion losses and two band response has designed to generate 

dual passbands at 2.35 and 5.68 GHz for Multimode Wireless LANs application. Some step impedance cells 

have employed in loops and tapped line feed configurations for obtaining a new dualband BPF with a miniature 

size. In [20], a new filter is constructed by inserting two slots in the form of rectangular open loop resonator 

with folded ends. The insertion of these slots has successfully led to the miniaturized size and the dual 

bandwidth behavior. The total filter surface area has been 16×12 mm2 that stand for 0.61λg×0.4λg employing 

a substrate with Rogers Ro 4003 with a relative permittivity of 3.38 and thickness of 1.0 mm. The resulting 

structure shows a dual-band performance. The 1st passband has a center frequency of 6.2 GHz. In the 2nd 

passband, the center frequency is 9.6 GHz. 

In [21] small dualband microstrip BPF was designed at 1.8 and 3.4 GHz application using asymmetric 

stepped impedance resonators (SIRs). The designed BPF has highly small insertion loss (S21) and huge 

selectivity level for the desired band. The insertion losses have been -0.24 and -0.14 dB while the return losses 

have been -14.71 and -25.01 dB in each frequency band respectively. In [22], a dual-mode dualband microstrip 

BPF based on SIR for wireless systems has presented. Through selecting an appropriate impedance ratio, a 

BPF functioning in 2.4/5.2 GHz was investigated. Dual transmission zeros are located on each side of the 1st 

passband. A fractional bandwidth (FBW) of dual passbands have been 8% and 6%, individually. A highest 

insertion loss has been superior than 0.9 dB and the return loss is superior than -20 dB. 

In [23], uncomplicated, small topology of dualband BPF has presented. The projected BPF is designed 

by Rogers TMM10 substrate and stub loaded resonator at 2.4 and 4.3 GHz. The size of BPF has been about 

0.3λ g×0.32λ g. Simulated consequences are agreed with the measured ones they indicate that the projected BPF 

has noble S11 and S21 responses in addition to high rejection band levels. Parametric studies were done to 

investigate dual band resonant performance with the ratio of resonant bands for feasible wireless 

communication applications. 

In [24], a new dualband BPF based on stub-loaded quad-mode resonator has been reported. Owing to 

the structural topology, even-odd-mode investigation was applied two times for explaining the BPF features. 

Every four modes equivalent circuits have been based on the quarter-wavelength resonator. Consequently,  

a quad-mode resonator has small dimensions. The measured and simulated fallouts are in noble agreement.  

In [25], a novel varactor-tuned microstrip dualband BPF using tri-mode stub-loaded stepped-impedance 

resonators (SL-SIRs) was simulated and fabricated. By using the dual coupling paths, the dual passbands are 

feasibly completely organized and designed individually. Noble conformity has been realized among simulated 

and measured consequences. In this research article, new dualband filter was designed based on ceiling  

fan-shaped resonator. This projected filter has compact surface area and useful bands for contemporary wireless 

applications. It has different and simpler topology, different and simpler design and frequency responses as 

compared with fan-shaped filters in [26, 27]. 

 

 

2. FILTER TOPOLOGY 

The structure of microstrip is based on fan-shaped topology using single layer substrate (RT/Duriod 

6010.2 lm) with dielectric constant of 10.2, thickness of 1.27 mm and loss tangent of 0.0023. A topology and 

detailed dimensions of suggested dualband filter are depicted in Figure 1 and Table 1 respectively. The first 

band, in general, is based on the structure and dimensions of proposed filter acquired by trial and error 

procedure of dimensions scaling, the filter size is inversely proportional to the fundamental frequency. The 

orthogonal I/O feeders in the left side and bottom side of designed filter as illustrated by Figure 1, has 

electromagnetic perturbation to shift the second harmonic and produce the second band. The filter is designed 

for dual band frequencies at 3.41 and 6.14 GHz. 

A significant issue from the compactness of microstrip filters comes in the practicality that resonating 

BPFs need including the absolute dimensions based on the guided wavelength and calculated resonant 

frequency (f). Hence, a guided wavelength is calculated as: 

 

𝜆𝑔 =
𝑐

𝑓√𝜀𝑒
         (1) 

 

The effective relative dielectric constant εe, designed for BPF is computed based on (2) [28]: 
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Even so, 
e
  in this research work has was determined via an approximated equation as [1, 2]: 

 

𝜀𝑒 =
𝜀𝑟+1

2
         (3) 

 

 

 
 

Figure 1 Topology of proposed dual-band filter 

 

 

Table 1. Dual band fan microstrip bandpass filter 
Parameter Value(mm) 

Wg 12 

Lg 12 

P1 4.7 
P2 3 

P3 1 

P4 0.6 
P5 9 

S 1 

g 0.2 

 

 

3. SIMULATION RESULTS 

Figure 2 presents the frequency response of fan-shaped microstrip bandpass filter for both S11 and 

S21 parameters. The insertion loss and return loss of first band at 3.41 GHz are -0.7 and -38.224 dB respectively 

and its bandwidth ranged from 3.3561 to 3.48 GHz. On the other hand, for 2nd band at 6.14 GHz, the insertion 

loss and return loss are -1.377 and -14 dB respectively with bandwidth ranged from 6.0951 to 6.1782 GHz. 

The fan-shaped resonator has dynamic perturbation outcome to the electromagnetic steadiness of the resonator 

formation and may stand for the reasons for dualband frequency response at 3.41 and 6.14 GHz respectively. 

This filter has very small bandwidth responses that are typically a huge objective in wireless systems to cause 

the filter capable of avoiding the interfering signals working in the neighboring bands. Besides, it has an 

acceptable return loss and insertion loss magnitudes to be applied in C band wireless systems. 

Figure 3 explains the phase response of fan-shaped microstrip bandpass filter for both S11 and S21 

parameters. The dualband filter has an appropriate level of linearity for S11 and S21 angle responses within 

sweeping frequency from 3 to 7 GHz. Figure 4 shows the group delay response of fan-shaped microstrip 

bandpass filter. As a result of the transmission line of the fan-shaped resonator, resonance modes with negative 

group speed (akin to group delay) are possible in floating solid plates. Their interpretation comes from the 

broader analysis of the resonances in the structure. In the plate, a mode with negative group speed always has 

a companion resonance with a positive group speed. You cannot physically excite one of the pairs without 

exciting the other. The phenomenon is therefore not an isolated resonance with negative group speed but of 

resonance +/- pairs that together constitute standing waves. 
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Figure 2. The frequency response of fan-shaped microstrip bandpass filter 
 

 

 
 

Figure 3. The phase response of fan-shaped microstrip bandpass filter 
 

 

 
 

Figure 4. The group delay response of fan-shaped microstrip bandpass filter 
 

 

To further analyze the designed bandpass filter, the simulated magnetic current distribution is depicted 

in Figures 5 and 6 band frequencies of 3.41 and 6.14 GHz. All these results are performed using Sonnet 

simulator under minimum memory storage. The utmost coupling effect is indicated by red color, whereas a 

slightest one has been ostensible by blue color. From Figures 5 and 6, the current intensity patterns for both 

designed filters are symmetrically distributed. The physically powerful current values are concentrated within 

2nd band frequency case especially in I/O coupling feeders with magnetic intensities of 11 amp/meter as 

compared with first band case with current intensity of 5.7 amp/meter.  
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Figure 5. Magnetic intensity distribution of proposed filter at first band frequency 
 
 

 
 

Figure 6. Magnetic intensity distribution of proposed filter at first band frequency 
 

 

4. CONCLUSION 

New microstrip BPF is presented in this paper using RT/Duroid 6010.2 lm substrate using fan-shaped 

resonator topology for dual band frequencies at 3.41 and 6.14 GHz. The insertion loss and return loss of first 

band at 3.41 GHz are -0.7 and -38.224 dB respectively and its bandwidth is 123.9 MHz. On the other hand, for 

2nd band at 6.14 GHz, the insertion loss and return loss have been -1.377 and -14 dB respectively with bandwidth 

83.1 MHz. This filter has very small size that can be integrated within many portable wireless systems. 
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