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 The most popular method used in the production of phosphor-converted LEDs 

(pc-LEDs) is dispensing phosphor freely. However, this method is inferior in 

generating good angular correlated color temperature (CCT) homogeneity. 

Thus, in this article, a diffuser-loaded encapsulation is proposed as a potential 

solution for better CCT uniformity. The paper provides a detailed investigation 

on how melamine formaldehyde (MF) resin and CaCO3 loaded encapsulations 

impact the uniformity of CCT, as well as the lumen efficacy of pc-LEDs. The 

results demonstrate that between MF resin and CaCO3 loaded encapsulations, 

the MF resin yields a higher light diffusion efficiency while the CaCO3 

maintains greater lumen efficacy. The photon scattering development is the 

key force behind the enhancement of the angular CCT uniformity in pc-LEDs’ 

output when using the loaded encapsulations of MF resin and CaCO3 particles. 

Since this package utilized mineral, it has reasonable cost and is quite easy to 

control while still being effective in enhancing the angular CCT homogeneity 

of pc-LEDs. Diffusers with 1% concentration of MF resin or 10% 

concentration of CaCO3 are determined as an optimal solution for reducing the 

variance of angular CCT and increasing the lumen output. 
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1. INTRODUCTION  

Encapsulation is one of the most favorable techniques used in pc-LED packaging as it helps to enhance 

the stability of LEDs in various working environments and improve the light extraction from the chip. An 

encapsulant consisting of mineral diffuser can result in the extraction efficacy with a high refractive index. 

Moreover, as the mineral diffuser greatly contributes to the increases of reflection, refraction, scattering of 

lights, and the uniformity of angular color temperature. Yet, when the refractive index of a mineral diffuser is 

too high, it is not advantageous to the high-quality pc-LED production due to the emitted lights cannot transmit 

through the contacted surface between the encapsulation layer and the air. In the process of producing LEDs, 

the extraction efficacy of light and the refractive index of the materials are two factors that needed to be focused 

with the latter being the more crucial one. In fact, the higher the index of refraction of the semiconductor 

material the more light emitted from the active zones of the LED chips are trapped. Moreover, when the 

disparity of the refractive index at the semiconductor-air interface is large, the total internal reflection occurs 

https://creativecommons.org/licenses/by-sa/4.0/
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and the performance of light extraction is notably degraded as a result. However, the encapsulation with a high 

index of refraction can enhance the light extraction efficacy from the high-refractive-index LED semiconductor 

chip. According to Snell’s law, the light escape cone has a very small angle as the difference of refractive index 

at the semiconductor-air interface is high. GaN material for instance has the escape cone of only 23.50° and 

4% photon escape probability [1]. For the unencapsulated AlGaInP, the escape cone is only 17° and as a result, 

the performance of light extraction is very low. Besides that, the light outside the escape cone will be absorbed 

if these light cannot escape from the semiconductor. Researchers put many efforts into increasing the amount 

of light transmitted from the semiconductors such as LED die geometric optimization [2] and surface 

roughening [3-6] but they have not successfully addressed the high contrast in refractive indices at the 

semiconductor-air interface yet. Lee and his team introduced an encapsulation structure consisting of several 

layers that are arranged in order of their refractive indices [7]. Particularly, the layer with the highest index of 

refraction is directly placed over the semiconductor chip while the low-refractive-index layers are considered 

as the outer ones. The result showed that this graded-refractive-index encapsulation can enhance the light 

extraction efficiency with a constant refractive index. As the encapsulation including mineral diffusers can get 

the lights reflected, refracted, and scattered, it can randomize the direction of propagation and make the far-

field distribution isotropic. In addition, the mineral diffuser greatly contributes to the uniformity of the color 

distribution of multicolor devices. The mineral diffusers are designed with optically transparent or opaque 

materials, for example, TiO2, CaF2, SiO2, CaCO3, and BaSO4; and their refractive indices and the 

encapsulation’s are disparate [8]. The encapsulation of microparticles with high index of refraction (Titania, 

Magnesia, Yttria, Zirconia, Alumina, GaN, AlN, ZnO, ZnSe) that are embedded in a host matrix such as 

polymer does not cause the light to scatter if the distribution of the particles is uniform and their sizes are 

smaller than the wavelength [9]. According to the report of Gu’s team, the light extraction performance is 1.85 

times higher when the deposition of 520 nm diameter TiO2 microsphere arrays is carried out onto the InGaN 

quantum wells (QWs) LED via the dipping method [10, 11]. Though TiO2 has the refractive index of 2.5 in the 

visible band that agrees with that of GaN, it causes a large difference of the refractive index between the 

encapsulation film and the air, and thus, the encapsulation with high index of refraction is not the optimal 

solution. Meanwhile, the organic silicone powder results in weak effect of diffusion as its refractive index is 

similar to that of the encapsulated polymethylmethacrylate whose performance is inferior at high temperatures.  

Besides the luminous flux, the other issue that needs focus is the color quality of the pc-LEDs. The 

phosphor particles are distributed randomly around the LED chip regardless of the LED chip emission is the 

main cause of the low color quality of pc-LEDs. The result of that random distribution is the inconsistency of 

the ratio in between the yellow light emitted from the phosphors and the blue lights from the LED chip, which 

occurs in all directions [12]. In the effort of enhancing the color quality, many methods were proposed 

consisting of conformal phosphor coating [13], electrophoretic deposition [14], evaporating solvent from a 

suspension of phosphor [15], and using luminescent ceramic plate [16]. These techniques aimed to simplify 

the process of producing phosphor encapsulation, reduce the differences of both correlated color temperature 

(CCT) and angular CCT distribution. However, they cannot solve the problem of color inhomogeneity as the 

distribution of phosphor grains does not take the stability of the yellow-blue light ratio into consideration [17]. 

To get the balance between the blue and yellow lights, the only factor that studies have focused on is the portion 

the yellow phosphor following the blue light direction [18]. In fact, the direction of blue lights is various and 

not only straight through the phosphor grains, as they are also absorbed, transmitted, and reflected by the 

phosphor particles in the LED package. Moreover, the light power that is absorbed by the phosphor includes 

the energy of heat which determined by the Stoke’s shift, the nonradiated and radiated power (radiated power 

represents the emission spectrum). Thus, the layer containing phosphors can be used as a diffuser based on its 

influence on scattering. As the scale of phosphorus particle size changes from sub-micrometer to micrometer, 

the photon emission is enhanced owing to the effect of Mie scattering. However, being utilized as diffuser is 

just a side effect of phosphor particles and the main objective is to improve the angular color uniformity [19]. 

The silicone-encapsulated epoxy microspheres which is fabricated by blending heterogeneous liquid silicone 

were introduced by Kim’s group to promote the LED color homogeneity [20]. Chen, together with his partners, 

reported the reduction of CCT variance from 1000 to 420 K with the angles ranging from −70° to 70° when 

ZrO2 nanoparticles is added into silicone mixture that was dispersed on the phosphor film [21]. 

Acknowledging the problems above, our study proposes the diffuser-loaded encapsulation approach 

using melamine formaldehyde (MF) resin and CaCO3, which has quite high refractive index, as the materials 

of loaded diffusers for heightening the CCT homogeneity and the efficiency of light output. The effects of 

these diffusers are investigated in accordance with their concentrations. The obtained results show that this 

method can greatly reduce the CCT variation, resulting in better color uniformity, and is beneficial to the 

control of high lumen efficiency. 
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2. SIMULATION AND COMPUTATION 

2.1.  MC-WLEDs simulation 

There are two common methods to improve the refractive index of the materials. The first method is 

producing the polymer having the functional group with high index of refraction such as benzene ring or 

halogen through organic synthesis approach, and the second one is compounding high-refractive-index 

particles with encapsulation. For the second approach, the particles get their surfaces treated first, and are 

diffused homogeneously in the encapsulant afterwards. The agglomeration of microparticles occurs as the force 

of attraction between the microparticles is strengthened due to the high ratio of the surface to volume at a 

micrometer scale, which causes the optical scattering to be excessive. Thus, in the effort of achieving a high 

index of fraction for particle loaded encapsulation while minimizing the scattering and absorption loss, it is 

essential to attain the uniformity of dispersion process as well as the stabilization of microparticles. Our 

research applied the second method to experiments and used a procedure similar to Mont’s group [21]. Initially, 

in order to prevent the particles from being reabsorbed by H2O and affected by other contaminants, right after 

being dried, they are blended with toluene and stirred magnetically. Afterwards, surfactants with suitable 

amounts are added to the compound, and all of them are thrown into a mixture. In 2 hours, a reflux system is 

utilized to get the microparticles effectively coated with the surfactants. The point of using this refluxing 

method is to completely blend the microparticles and the surfactants together to avoid the agglomeration of 

these microparticles in the solution. The surface of microparticles are covered with a thin layer of surfactants 

that contributes to the interparticle forces modification, which results in better particle dispersibility. Dow 

Corning 6550 silicone gel is well mixed with the resultant surface-modified MF resin and CaCO3 particles 

within 5 minutes by ultrasound bath. Finally, this gel mixture is applied in constructing pc-LED packages. 

The physical model of a pc-LED used in our research experiments is illustrated in Figure 1 (a). In 

Figure 1 (b) is the list of technical parameters of this model. The last one, Figure 1 (c), is the diagram 

demonstrating the pc-LED simulation that is carried out with the application of a program named LightTools 

8.1.0, and the Monte Carlo method. The pc-LED is constructed with a reflector, phosphor layers, and 9 LED 

chips. For the reflector, it has a bottom length of 8 mm, a surface length of 9.85 mm and a height of 2.07 mm. 

Each phosphor film of the LED has a thickness fixed at 0.08 mm with the size of phosphor particles of 14.5 

μm average diameter. The LED chips are covered by the phosphor layers and embedded into the reflector.  

Each of them has the height of 0.15 mm, 1.14 mm2 square base, and 1.16 W emission power at 453 nm peak 

wavelength. 

 

 

 

Lead frame: 4.7 mm Jentech 

Size-S 

 

LED chip: V45H 

Die attach: Sumitomo 1295SA 

Gold Wire: 1.0 mil 

Phosphor: ITC NYAG4_EL 

(a) (b) (c) 

 

Figure 1. Illustration of phosphor-converted MCW-LEDs as doping CaCO3: (a) the actual MCW-LEDs, 

(b) its parameters, (c) simulation of MCW-LEDs 

 

 

2.2.  Scattering computation 

In this section, the results attained from using Mie theory [22, 23] and ray-tracing method [24, 25] are 

investigated and discussed in depth. The purpose is to utilize the Mie theory for more accurate optical 

characteristics’ description of phosphor materials. The reason is that a large number of commercial optical 

software work based on Mie-scattering theory, for example Lighttools, Tracepro, and ASAP, and they normally 

process the phosphor scattering as Mie scattering to generate the optical simulation for pc-LED design. 

Moreover, as the Mie computation of the optical constants is modified, the optical simulation can be supported 

significantly and the performance of the software used for LED packaging simulation would be better. Based 

on Mie-scattering theorical demonstration, the expressions for computing the scattering coefficient μsca(λ), 

anisotropy factor g(λ), and reduced scattering coefficient δsca(λ) might be demonstrated as: 

 

 
(1) ( ) ( ) ( , )sca scaN r C r dr  = 
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(2) 

  

 
(3) 

 

In (1), N(r) is the diffusional particles’ distribution density (mm3) and Csca indicates the scattering 

cross sections (mm2). In (2), p(θ,λ,r) means the phase function, θ exhibits the scattering angle (°C), and f(r) 

indicates the size distribution function of the diffusor that the phosphorus film contains, and this parameter can 

be computed by expressions (4) and (5). Besides that, λ presents the light wavelength (nm), and r is known as 

radius of diffusional particles (µm). 

 

 
(4) 

  

 

(5) 

 

Ndif(r) and Nphos(r) included in N(r) are the diffusive and phosphor particles’ densities, respectively. 

Meanwhile, fdif(r) indicates the size distribution function data of the diffusor and fphos(r) represents that of 

phosphor particles. Here, KN indicates the diffusor unit quantity for one diffusor concentration. The 

computation of KN can be carried out as: 
 

 
(6) 

 

M(r) here means the mass distribution of the diffusive unit, which is reckoned by the following expression: 
 

 
(7) 

 

with ρdiff(r) symbolizes the diffusor density, and ρphos(r) indicates the density of the phosphor crystal. The 

scattering cross sections Csca in Mie-scattering theory could be: 
 

 
(8) 

 

in which k = 2π/λ, an and bn are expressed as follows: 

 

 

(9) 

  

 

(10) 

 

with x = k.r, m presents the refractive index,  and  represent the Riccati - Bessel function. Thus, the 

diffusor’s relative refractive index (mdif) can be: , and that of the phosphor (mphos) in the silicone 

is ; after that, the phase function p(θ,λ,r) are calculated by: 

 

 
(11) 

in which , S1(θ) and S2(θ) indicate the angular scattering amplitudes whose computations can be 

expressed as: 
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(13) 

  

 

(14) 

 

The optical characteristics of YAG:Ce have been analyzed in many researches, but the fact that the 

factor α can change values at different Ce doping concentrations, crystal growth methods, and measurement 

equipment means YAG:Ce also needed to be studied in consideration of these situation . α usually varies in the 

range of 3–8mm−1 for the blue light. However, in terms of YAG:Ce optical ceramics comprised of small grains 

of crystal, the total light absorption is greater owing to the increase in internal reflections in the crystal grains, 

leading to the considerable improvement in light absorption; as a result, the range of α can be larger than 15 

mm−1. Assuming that the phosphor used in experiments is crystalline powder with high α, in this paper, the 

selection of the range for α variation is from 8 to 20mm−1 to study the changes of Csca (453) for the blue light, 

and the reckoned results is presented in Figure 2. Figure 3 demonstrates the μsca which is computed by applying 

in (1). As Figure 2 illustrated, the scattering cross section is larger than the absorption cross section. This means 

the scattering impact of the phosphor material is very strong, which probably leads to higher blue-light 

absorption. Meanwhile, the absorption coefficient and scattering coefficient tend to increase along with the rise 

in the concentration of the phosphor particles. Thus, the color quality of WLEDs enhancement can be achieved 

with an appropriate amount of phosphor particles. 

 

 

 
 

Figure 2. The scattering cross sections of CaCO3 particles 

 

 

 
 

Figure 3. Scattering coefficients of CaCO3 particles 

 

 

As expressed in (3), the reduced scattering coefficient δsca is used to demonstrate the phosphorus 

scattering property, which helps to provide more thorough comparisons between the results from Mie theory 

and ray-tracing method, as illustrated in Figure 4. The final result of the optical constants for the phosphor 

particles can be accurately achieved by carrying out simulation with the ray-tracing method. Moreover, this 
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ray-tracing simulation gives the optical constants of YAG:Ce phosphor an evaluative estimation approach. 

Based on Figure 2 and Figure 4, obviously, the ray-tracing results in general present better μsca and δsca than 

the results from Mie theory do. Between the ray-tracing and Mie theoretical results, the ratios of μabs (453 nm) 

are usually around 1.47, while the ratios of μabs (555 nm) are approximately 1.63, for the blue lights. 

The optic module of the optical measurement platform demonstrates that a pattern of Lambertian 

radiation is included in the blue or yellow lights emitted from the chips’ surfaces, and the material used to 

fabricate the lenses and the support glass of for the phosphor slide is Schott BK7 glass. Besides that, the two 

integrating spheres have their inner surfaces covered by a diffuse white material whose absorption and 

scattering characteristics are 11.1% and 89.9%, respectively. Additionally, their inner surfaces play a role as 

receivers for collecting the lights that are transmitted and reflected. To produce the ray-tracing optical model, 

the Monte Carlo method is utilized, while the phosphor is used as a material for Mie-scattering theory. The 

Henyey–Greenstein phase function is utilized to measure the angular-scattering generation as the light 

scattering directions cannot be calculated directly by the ray tracing, and the results are demonstrated in  

Figure 5. At first, the original Mie theorical results are applied to the optical design, yet the ray-tracing results 

exhibits much better transmittance and lower blue light absorption, compared to that of the measurements 

results. The causes of these disparities are that in comparison with the real values, μabs and μsca are lower and 

g(λ) is higher. Hence, to achieved more accurate optic constants, three mentioned methods were applied in the 

simulations. In this manner, they could stabilize one optical constant while simultaneously modify the other 

two constants to be closer to measurement results. 
 

 

 
 

Figure 4. The reduced scattering coefficient of CaCO3 particles 
 
 

 
 

Figure 5. The phase function of CaCO3 particles 
 

 

3. RESULTS AND ANALYSIS  

In Figure 6 is the angular CCT of pc-LED packaging with diffuser-loaded encapsulation of MF resin 

and CaCO3. The experimented concentration of MF resin is from 1% to 10% while CaCO3 concentration ranges 

from 0% to 50%. The angular CCT distribution of the light emitted from the phosphor layer is quite similar to 

the light emitted from the uncoated LED chip, and this phenomenon can be seen as Lambertian type. 

Specifically, the phosphor-emitted light has blue color at the center and becomes more yellowish when it comes 

near the edges. About the angle of CCT, the vertical direction at the central spot of the LED-chip surface is  

0 degree, and the horizontal direction of the side of the LED chip is -90 or 90 degrees. Around 0 degree, the 

CCT is high but when it comes to -90 or 90 degrees, the CCT is low due to the difference between the angular 
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distributions of the blue light and the thickness of phosphor film. In general, as the distribution of angular CCT 

becomes greater, it leads to a large disparity between the max and min CCT. However, this CCT difference 

can be considerably degraded by using diffusers in LED packaging. At the same concentration, MF resin 

diffuser gives smaller spatial difference of CCT than CaCO3 diffuser owing to the irregular characteristic of 

CaCO3 diffuser. This is due to the scattering property of phosphor particles in CaCO3 diffuser are not identical, 

and as a result, the spatial variance of CCT becomes larger. Figure 7 presents the change of luminous flux in 

pc-LED with MF resin and CaCO3 diffusers. As can be seen from Figures 6 and 7, the spatial CCT difference 

and lumen output are inversely proportional to the concentration of the diffuser. In other words, the increase in 

diffuser content results in the decline of CCT variance and the luminous flux. However, the MF resin still has 

better value of angular CCT disparity reduction than CaCO3 at all concentrations. Meanwhile, CaCO3 diffuser 

shows greater effect in keeping the decrease of lumen efficacy stable, compared to that of the MF resin diffuser. 

At the similar concentration of 1%, the MF resin reduces angular CCT difference by 150% while CaCO3 is 

approximately 70%. This is the result of unequal scattering effect of diffusers included in the encapsulation 

layer. In contrast, the decrease of lumen output is caused by the fact that the layer of phosphor and the chip in 

the encapsulation loaded with diffuser absorb the light from the LED chip. When taking scattering and light 

absorption properties into consideration, the diffuser is not beneficial to the lumen efficacy. Therefore, MF 

resin diffuser with 1% concentration is suitable to accomplish higher rate of reduced spatial CCT variance 

(more than 150%) and lower drop rate of luminous flux (below 15%). Nevertheless, when CaCO3 diffuser with 

10% concentration is added in the encapsulation layer, the decline in lumen output is smaller than that of 

diffuser with 1% MF resin due to the discrepancy in the loss of light scattering resulted from the diffuser 

integrated into the layer of encapsulation. Given that the MF resin and CaCO3 have the same weight, the density 

and the particle sizes of MF resin are smaller than that of CaCO3 (particle sizes of MF is 3 μm and of CaCO3 

is 15 μm). Moreover, the MF resin has much larger number of particles and stronger scattering than CaCO3 

particles. The increase in scattering is the cause of the reduction in the transmission of lights. In fact, it is 

necessary for these two factors to be balanced. Though the scattering improvement can enhance the CCT 

uniformity, the degradation of lumen efficacy will occur when the scattering events are excessive.  

 

 

 
 

 

Figure 6. The ΔCCT of LED packaging with MF 

resin and CaCO3 particles 

 

Figure 7. The luminous flux of LED packaging with 

MF resin and CaCO3 particles 

 

 

4. CONCLUSION 

In summary, the investigation about the influences of diffusers, specifically the MF resin and CaCO3 

diffusers, on the pc-LED angular-dependent CCT homogeneity and luminous performance is demonstrated in 

this study. To construct the diffuser-loaded encapsulation for pc-LED packages, we also apply the method of 

dispersion in which the phosphor particle is freely dispersed. The reason to use this common method in 

packaging pc-LEDs with diffuser encapsulation is advantage and effectiveness in analyzing the impacts of this 

type of encapsulation on the reduction of spatial CCT difference and the decrease of lumen efficacy. The article 

presents that the diffusers have great effects on reducing the CCT variation, especially in package with MF 

resin diffuser. In other words, the diffusers can enhance the uniformity of CCT, which could be attributed to 

the increase of the photon scattering. Besides that, the increase of the diffuser concentration causes the decrease 

in both CCT difference and the lumen output. In addition, the results point out that the decrease of lumen output 

when using 1% MF resin diffuser is relatively similar to 10% CaCO3 diffuser. The cause for these phenomena 

is the variation of the light scattering loss that occurs when mixing different diffuser in the encapsulation layer. 

The appropriate concentrations for diffusers to be used in encapsulation layer to achieve better CCT uniformity 
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and lumen efficiency are 1% of MF resin or 10% of CaCO3. As the advantages of this diffuser packaging 

approach are cost efficiency and easy control, it is proven to be a more practical method for manufacturers to 

improve the color uniformity of pc-LEDs. 
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