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 Though combining blue LED chips with yellow phosphor has been the most 

common method in white light-emitting diode (WLED) production, the 

attained angular correlated color temperature (CCT) uniformity is still poor. 

Thus, this article proposes to add ZnO nanostructures to WLED packages to 

promote the color uniformity of the WLEDs. The outcomes of the research 

demonstrate that utilizing ZnO at different amount can affect the scattering 

energy and the CCT deviations in WLEDs packages in different extents. 

Particularly, adding the node-like (N-ZnO), sheet-like (S-ZnO), and rod-like 

(R-ZnO) leads to the corresponding decreases of CCT deviations from 3455.49 

K to 96.30 K, 40.03 K, and 60.09 K, respectively. Meanwhile, with 0.25%  

N-ZnO, 0.75% S-ZnO, and 0.25% R-ZnO, WLED devices can achieve both 

better CCT homogeneity and lower reduction in luminous flux. The results of 

this article can be a valuable document for the manufacturer to use as reference 

in improving their WLED products. 
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1. INTRODUCTION 

In illumination market, WLED devices which use the diodes to create white light have been proved 

to be the potential generation solid-state lighting source which can probably be an alternate to the conventional 

fluorescent and incandescent ones, as they perform impressive features including longevity, high efficiency, 

cost saving, and being eco-friendly [1-4]. One of the most popular methods to create WLED devices is freely 

dispensing the yellow phosphor yttrium aluminum garnet (YAG:Ce) onto a blue LED chip [5, 6]. Nevertheless, 

the angular correlated color temperature achieved from this method is in poor quality and the “yellow ring” 

phenomenon that is disadvantageous to the light performance of WLED also occurs [7-9]. Researchers 

proposed various methods as solutions to these problems, for example, conformal-phosphor structure [10], 

adjusting the surface phosphor layer [11], lens design [12], and optimizing the structure of a WLED  

package [13, 14]. Though the enhancement in CCT homogeneity of these approaches was confirmed, their 

production confronts many difficulties, and they are also expensive to use in mass production. Thus, figuring 

out a method that is simpler and cheaper in fabrication but still yields high CCT uniformity is essential to 

WLED manufacturers. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:ngochv@tdmu.edu.vn
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In the present, diffuser-loaded encapsulation is a promising method in enhancing the color quality of 

WLEDs because it can fulfill the requirements of cost-saving and simple fabrication. Adopting this concept, 

WLED packages with diffuser base that contains metal oxide diffuser materials (TiO2, ZrO2 and SiO2) have 

been developed [15-18]. In the research of Chen’s group [15], ZrO2 grains whose particle size is 300 nm were 

integrated to the remote phosphor structure and resulted in the decrease of CCT deviation, from 1000 K to  

420 K in the angles from −70° to 70°. TiO2 diffusers (320 nm) on the phosphor or encapsulation layer were 

used by Lee and his partners [18]. They reported that the growth of TiO2 concentration caused the CCT 

deviations to reduce. The effectiveness of these diffusers on WLED CCT uniformity is undeniable, but the 

focuses of aforementioned researches are the effects of a single diffuser material or different concentrations of 

corresponding particles. Analyses have not dug deeper into the impacts of different structures of these diffuser 

materials on the WLED performance [5, 19, 20]. Moreover, as there are not enough studies that provide 

thorough contents and specific guidance on this aspect, the process of identifying the appropriate nanoparticles 

to effectively enhance the color quality of WLED is very time-consuming.  

These days, the scattering effects of ZnO nanostructures have been recognized, and this material is 

also beneficial to WLED production as it is a low-price material, and easy to control their morphologies and 

synthesize [21-24]. Moreover, it is possible to get many structures of ZnO by modification and control of the 

reaction conditions, for instances, time, temperature, and precursor concentration. The index of refraction of 

ZnO is 2.0 that is in between the 2.5 index of GaN and 1 of air, leading to the fact that WLEDs with ZnO has 

better gradient efficiency. Besides that, various researchers have been pointed out the benefit of doping ZnO 

into the GaN-based WLEDs, particularly with special nanostructures of ZnO, which is the enhancement of 

light extraction [25]. A hybrid ZnO nanostructure with microscopic cylinders and nanorods installed on  

light-emitting chip that can enhance the light-emitting ability of GaN-based LEDs was demonstrated by Yin’s 

team [26]. The result from the GaN blue LEDs with ZnO nanoparticles implanted to planar indium tin oxide 

(ITO) film shows a growth in light emission [18]. The ZnO nanorods were used to tune the pattern of light 

projected from the GaN-LEDs. The improvement of light extraction efficiency was proved in these articles but 

the fact is that there are not many works on enhancing WLED optical performance with diffusers of ZnO 

morphologies which directly impact the homogeneity of both CCT and light intensity of WLED devices. Thus, 

this paper purpose is to study the influences of ZnO particles consisting of the node-like ZnO (N-ZnO),  

sheet-like (S-ZnO), and rod-like ZnO (R-ZnO). The scattering influences of ZnO nanoparticle are analyzed 

with Mie-scattering theory and the calculation tool MATLAB, which is presented in section 2. From the 

outcomes, the scattering power in WLEDs was shown to be benefited from the scattering properties of ZnO 

particles. Besides that, the enhancement of color uniformity responds accordingly to the fluctuation of ZnO 

concentration.  
 

 

2. SCATTERING ANALYSIS 

This section demonstrates the scattering coefficient μsca(λ), the scattering phase functions S1(θ) and 

S2(θ), the reduced scattering coefficient δsca(λ), and the scattering cross-section Csca of ZnO particles. As 

mentioned above, the Mie-scattering theory [16-18] and MATLAB tool are utilized to calculate the light 

scattering effect when ZnO nanoparticles are added. The computation of ZnO scattering is expressed as: 
 

𝜇𝑠𝑐𝑎(𝜆) = ∫ 𝑁(𝑟)𝐶𝑠𝑐𝑎(𝜆, 𝑟)𝑑𝑟  (1) 

  

𝑔(𝜆) = 2𝜋 ∫ ∫ 𝑝
1

−1
(𝜃, 𝜆, 𝑟)𝑓(𝑟) 𝑐𝑜𝑠 𝜃 𝑑𝑐𝑜𝑠 𝜃 𝑑 𝑟,  (2) 

  

𝛿𝑠𝑐𝑎 = 𝜇𝑠𝑐𝑎(1 − 𝑔)  (3) 

  

𝑆1 =∑
2𝑛+1

𝑛(𝑛+1)

∞

𝑛=1
[𝑎𝑛(𝑥,𝑚)𝜋𝑛(cos𝜃) + 𝑏𝑛(𝑥,𝑚)𝜏𝑛(cos𝜃)]  (4) 

  

𝑆2 =∑
2𝑛+1

𝑛(𝑛+1)

∞

𝑛=1
[𝑎𝑛(𝑥,𝑚)𝜏𝑛(cos𝜃) + 𝑏𝑛(𝑥,𝑚)𝜋𝑛(cos𝜃)]  (5) 

 

− N(r) is the number of diffusional particles (per cubic millimeter), or diffusional density distribution 

−  Csca is the scattering cross-section (in square millimeters) 

− λ is the wavelength of the incident light (in nanometers) 

− r is the radius of each particle (in micrometers) 

− θ is the scattering angle (degrees) 

− p(θ,,r) is the phase function 
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−  f(r) is the size distribution function of ZnO in the phosphor layer 

− g(λ) is the anisotropy factor 

− x is the size parameter 

− m is the refractive index 

− an and bn are the expansion coefficients with even and odd symmetries, in turn 

− πn(cosθ) and τn(cosθ) are the angular dependent functions. 

Figure 1 and Figure 2 show that when ZnO concentrations are in the range of 0-0.25%, the scattering 

power distributions of the three ZnO morphology-doped films are almost unchanged, yet still different from 

that of the one not using ZnO. The reason is that at a low concentration, the quantity of ZnO particles are not 

sufficient enough to have effects on the light rays, so it is hard to see the difference among the impacts of their 

morphologies. Based on the general theory of scattering, as the scattering particle concentration is lower than 

a certain value, the scattering will be in connection with the particle cloud definitions, then the total scattered 

power per unit volume of space is in proportion to the scattering energy of the single particles. However, the 

scattering energy distribution becomes more uniform along with the amount of ZnO particles increasing in the 

structure. 

According to the reflection method, the scattering power is greatly affected by the three ZnO 

morphologies.  As can be seen, the S-ZnO exhibits the most powerful scattering effect in the ZnO concentration 

range of 0.75-2.5%, which is similar to the results of transmission measurements. From this, it is clear that 

using ZnO at high concentrations can homogenize the distribution of scattering power, yet the back-scattering 

effects are also much stronger as a result. The back-scattering energy is already high (around 0.5) even though 

the concentration of ZnO in the phosphor film is low at 0.25%. In Figure 3 and Figure 4, this phenomenon is 

demonstrated, and the higher level of backscattering energy indicates the light extraction. 
 

 

  
 

Figure 1. Scattering coefficient of ZnO particles 

with different diameters 

 

Figure 2. Phase function of ZnO particles with 

different diameters 
 

 

  
 

Figure 3. Reduced scattering coefficient of ZnO 

particles with different diameters 

 

Figure 4. Scattering cross-section of ZnO particles 

with different diameters 
 
 

3. COMPUTATION AND DISCUSSION 

The LightTools 8.1.0 is the program used for the simulation of WLEDs to study the effects of  

ZnO-doping films on the optical properties. Each morphology of ZnO is compared and discussed to give the 

most thorough analysis that can help manufacturers to choose an appropriate ZnO nanostructure to enhance 

their WLED products. Figure 5 illustrates the diagrams of WLEDs used in this research. Each element of a 

WLED package is measured carefully to make sure that the experimented model is identical to the real WLED. 
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The specifications of LED reflector are 2.1 mm depth, 8 mm inner diameter, and 10 mm outer diameter. For 

the ZnO-doped phosphor film coating the nine embedded LED chips, its thickness is set at 0.08 mm. 
 
 

 

Lead frame: 4.7 mm Jentech  

Size-S 

  

LED chip: V45H 

Die attach: Sumitomo 1295SA 

Gold Wire: 1.0 mil 

Phosphor: ITC NYAG4_EL 

(a) (b) (c) (d) 
 

Figure 5. (a) Photograph of WLEDs sample, (b) Manufacturing parameter of WLEDs,  

(c) Illustration of 2D WLEDs model, and (d) the simulated WLEDs model 
 
 

As discussed above, the concentrations and the morphologies of ZnO nanoparticles greatly impact the 

internal scattering. This section will focus on the changes of optical performances of WLEDs using ZnO as a 

diffuser layer. The experiments are carried out on ZnO-based WLED packages at a 350 mA driving current to 

investigate the scattering influences of ZnO diffuser encapsulation on the spatial distribution of CCT and light 

intensity, as well as the lumen efficiency. The ZnO concentration doped in the encapsulation layer is similar to 

that of the yellow phosphor in the traditional WLED package. Based on the results from previous analyses, it 

is possible to describe the angle-dependent CCT uniformity and lumious intensity as the maximum value minus 

the minimum one. Besides that, the spatial angles utilized to appraise the angular CCT homogeneity and 

luminous intensity are from −70° to 70°, as shown in Figure 6. If the light intensity is out of this range, it is 

weak and even cannot be used due to the “halo effect” caused by the lens or the structure of the LED packages. 

Figure 7 demonstrates the luminous flux in WLEDs with various values of ZnO sizes and amounts. 

Though the luminous intensity of the traditional WLED package without using ZnO was relatively high 

(approximately 6.32 mcd), it presented poor quality. However, with ZnO-doped layers, the luminous flux can 

be enhanced. When N-ZnO nanoparticles are used, the WLEDs can yield higher light intensity than the other 

morphologies of ZnO because its transmissivity is better than the others. Meanwhile, the S-ZnO and R-ZnO-

based WLEDs result in better homogeneity of light intensity, especially the S-ZnO particles, as its scattering 

ability is stronger than that of the other two morphologies. However, when the concentrations of ZnO increase, 

the luminous flux tends to decrease as the transmission becomes lower, and this phenomenon is more obvious 

in the case of S-ZnO nanoparticles. 
 
 

  
 

Figure 6. CCT deviations of ZnO particles with 

different diameters 

 

Figure 7. Luminous fluxes of ZnO particles with 

different diameters 
 
 

4. CONCLUSION 

The influences of ZnO concentrations and morphologies on the optical performances of WLEDs, 

including the angular CCT uniformity and lumen output, are analyzed and demonstrated. The results of the 

research confirm that ZnO has great effects on the WLEDs’ quality due to its scattering effect. Specifically, 

ZnO can dramatically increase the scattering energy distribution, while the increase in its concentration results 

in the decline of transmission, which leads to the drop of luminous efficiency. Moreover, the decrease of 

luminous intensity is more considerable with the S-ZnO, compared to that of the other packages with other 
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ZnO morphologies. After considering the enhancement in the CCT homogeneity and the reduction of the flux, 

the appropriate concentrations for each morphology of ZnO nanoparticles are proposed are 0.25% for N-ZnO, 

0.75% for S-ZnO, and 0.25% for R-ZnO. This article provides a detailed and practical reference for better 

application of ZnO in improving the light scattering effect of the diffuser layer, contributing to further 

developments of WLED devices. 
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