
TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 19, No. 6, December 2021, pp. 1820~1829

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v19i6. 16758 1820

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

Solving software project scheduling problem using grey wolf

optimization

Marrwa Abd-AlKareem Alabajee, Dena Rafaa Ahmed, Taghreed Riyadh Alreffaee
Department of Software, College of Computer Science & Mathematics, University of Mosul, Mosul, Iraq

Article Info ABSTRACT

Article history:

Received May 20, 2020

Revised Oct 2, 2021

Accepted Oct 14, 2021

 In this paper, we will explore the application of grey wolf optimization

(GWO) methodology in order to solve the software project scheduling

problem (SPSP) to seek an optimum solution via applying different instances

from two datasets. We will focus on the effects of the quantity of employees

as well as the number of tasks which will be accomplished. We concluded

that increasing employee number will decrease the project’s duration, but we

could not find any explanation for the cost values for all instances that

studied. Also, we concluded that, when increasing the number of the tasks,

both the cost and duration will be increased. The results will compare with a

max-min ant system hyper cube framework (MMAS-HC), intelligent water

drops algorithm (IWD), firefly algorithm (FA), ant colony optimization

(ACO), intelligent water drop algorithm standard version (IWDSTD), and

intelligent water drop autonomous search (IWDAS). According to these

study and comparisons, we would like to say that GWO algorithm is a better

optimizing tool for all instances, except one instance that FA is outperform

the GWO.

Keywords:

Grey wolf optimization

Resource-constrained project

scheduling

Software project management

Software project scheduling

problem

This is an open access article under the CC BY-SA license.

Corresponding Author:

Marrwa Abd-AlKareem Alabajee

Department of Software

Mosul University

Al Majmoaa Street, Mosul, Iraq

Email: marrwa_zedan@uomosul.edu.iq

1. INTRODUCTION

All of us know that software engineering is a discipline of engineering which is interested in all

aspects of software production. It is also the systematic approach which is utilized in the software

engineering. Sometimes, the applications of business are not necessary in this manner. There is a new

software of business which is often developed via expanding as well as changing current systems or via

integrating and configuring off-the-shelf software of the system [1].

There are many different processes of the software, but each one must involve four activities, for

this reason they represent the fundamental of the software engineering which contains: software

specification, Software design and implementation, software validation, and software evolution. A process

model of the software is a simple explaination of software process. Every one of them was showing a process

from a specific perspective. The process model of the software involves many models such as:

− The waterfall model: This model takes the essential process of development, specification, evolution and

validation. It also represents activites as separate stages of the process.

− Incremental development: The system of this model will be developed as a series of increments

(versions), the increamental model interleaves the activities of specification, development, and validation.

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control

Solving software project scheduling problem using grey wolf optimization (Marrwa Abd-AlKareem Alabajee)

1821

− Reuse-oriented software engineering: The development process of the system is focusing on merging

reusable components into a system instead of evolving them from scratch because it based on the

presence of a significant number of these reuseble components.

− Agile software approaches which incorporate the activities such as: testing and the elicitation of the

requirements into the implementation and the design. These approaches take the design and implemation

into consideration with main activities in the pocess of the software.

The development of the software is a very complex domain which faces many problems through the

development process [2]. The late delivery of the software projects is one of these problems. However,

several reasons are lead to late the delivery of the software projects. Such as: modifying the requirement of

the customer, issues of technical, miscommunication between the members of the team, inappropriate

schedules of the time, failure to analyze the risks involved, and resources underestimation such as

man-power, effort, and cost. Since with modifying times the complexity, software size have also modified.

Analyze the requirement of the software and review for its feasibility is very essential issue [3].

Whatever the process models of the software are utilized, project management of the software is an

essential portion of the software engineering. The projects of the software require to be managed because the

professional software engineering is always follows the schedule constraints and budget of the organization.

The job of the project manager is to guarantee that the project of the software meets and beats these

constraints as well as delivering software with high-quality [1].

It is necessary for the managers of the projects to planning to: nail the project development

deadlines, scheduling and estimating the development of the project, and specifying people to tasks. The

managers monitor the work to guarantee that it is accomplished to the standards which required, and

supervise the progress to examine that the development of the project is within budget and time [1], [4]. In

general, the management of the project composes of five phases: initiating, planning, executing, controlling,

and closing. When it comes to the development of the software project, scheduling of the project, planning of

the project, monitoring, risk management and controlling tasks will be taken into account [5].

The scheduling of the software project starts with analyzing the requirement of the software and on

the basis of this software estimation, size is made. The software project is then split into smaller parts which

are known as tasks. The network of the task assigns the various tasks, their expected period of completion

and different tasks dependency on each other. Next stage consists of resources estimating which needed for

tasks completion. The team of the project is decided for each task. A timeline for each task is assigned and it

is essential to keep a check on whether the development of the software is going along the assigned limit of

the time thereby observating and controlling the development process of the software [3]. The software

project scheduling problem (SPSP) is a spesific situation of the project scheduling problems (PSP). The

problem of SPSP is employees are assigned to tasks with the intent of reducing the period as well as the cost

of a project with the consideration of the resource constraints and the tasks precedence [6].

The SPSP is associated with the resource constrained project scheduling (RCPS), some variations

between SPSP and RCPS are: first, in SPSP there is a cost related to the employees and a cost related to a

project that must be reduced (in addition to the project period). Added to these in RCPS there are many types

of resources which have been evaluated, among renewable, nonrenewable and doubly constrained resources.

While the employee with several possible skills is the only kind in the SPSP. We must observe that the skills

of SPSP are variant from resource types of RCPS. In addition, every action in the RCPS needs different

quantities of every resource while skills of SPSP are not quantifiable entities [7], [8]. SPSP is considered as a

combinatorial optimization problem (COP) which has several different possible allocations between tasks

and employees and every allocation has different time as well as cost. The SPSP has been resolved using

incomplete techniques (metaheuristics and heuristics appraoches) which check only possible allocations parts

in order to find near optimal solutions in an acceptable time and effort [9].

In this topic, i would like to say that in the last years, a large amount of research has been performed.

The studies that have been conducted have focused on different sides [10]:

− Suggesting models in order to resolve the problem of assigning employees to tasks so that the price and

the period of the project are reduced.

− Applying or inserting more efficient algorithms of optimization.

− Studying the various metaheuristics performance to see which one is more acceptable to resolve the

problem.

The grey wolf optimization (GWO) is an algorithm of meta-heuristic which inspired by grey

wolves. The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in

nature [11]. In this paper, the grey wolf optimization (GWO) algorithm has been used to solve the problem of

software project scheduling (SPSP) and find effective assigning employees to tasks so that the cost and

period of the project are reduced. Added to these the results of GWO algorithm have been compared with

other techniques.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 6, December 2021: 1820 - 1829

1822

Many research articles have been presented in the software project scheduling problem field. The

variant in the gained outcomes is the result of utilizing a various methodology in each of these articles to

cover most of the previous work presented in this field. Alreffaee and Alabajee [12] used Whale optimization

algorithm (WOA) for solving the problem of SPS and utilized it on various instances from three datasets.

When the datasets have a few tasks the WOA gave good results but it failed to find feasible solutions when

increasing task’s number. Crawford et al. [13] presented the self-configuring of the velocity parameter of

IWD metaheuristic that effects the algorithm behaviour by having a direct relationship between removed soil

and velocity. The proposed methodology was used in solving the SPSP and the outcomes of standard version

(IWDSTD) and configuring version (IWDAS) were very similar.

Almshhadany and Ibrahim [9] introduced a new algorithm of swarm intelligence (multi-objective

artificial fish) based on the Pareto archived evolution strategy (PAES) algorithm principles and it was used to

solve the problem of SPSP. At the same years, Crawford et al. [6] proposed metaheuristic intelligent water

drops for solving the SPSP optimization problems, it obtained a good result. The outcoms were compared

with an ant colony optimization (ACO) approach which is known as ACS-SPSP algorithm and with SPSP

utilizing a max-min ant system with a hyper-cube framework (MMAS-HC). Velázquez's et al. [10] presented

a survey on the existing articles that focused on resolving the SPSP problem. This paper analyzed and

categorized a number of research studies which take into account a group of criteria namely, the problem

model, the goals, and the techniques of the optimization which utilized to resolve the problem, the

methodology was utilized to evaluate the main outcomes and the different methods.

Rachman and Ma'sum [14] compared the max-min ant colony system performance with ant colony

extended algorithm to solving the problem of SPSP with the assistance of fitness value, and ant colony

extended algorithm was show a better performance. Also in the same year, Nigar [15] gave a new formula to

SPSP as an optimization problem under uncertainties and dynamics for hybrid scRUmP software model. The

mathematical model has four different objectives: project duration, cost, robustness, task fragmentation and

stability. Crawford et al. [16] explored the firefly algorithm as the first use to solving SPSP problem, to prove

the firefly algorithm soundness and viability, the outcomes were compared with other techniques such as

(genetic algorithm (GA) and ant colony algorithm (ACO)).

Biju et al. [5] presented a differential evolution (DE) method to solve the SPSP problem. The

proposed method superiority was demonstrated and experimented by solving the SPSP on 50 random

instances and the outcomes were compared with some previous techniques. Also, Crawford et al. [17] to

solve the problem of SPSP they design a model using ACO algorithm with the employ of Hyper-Cube

framework. This allows to autonomously handling the exploration of search area to attaining hopeful

solutions. Lately, Luna et al. [18] analyzed the scalability of eight multiobjective algorithms when they were

applied to the SPSP problem, they have performed an experimental evaluation utilizing a benchmark of 36

automatically generated instances with increasing size. The PAES algorithm proved that it is not only the

algorithm which scales the best but also shown the best solution quality (in terms of HV). Also in the same

year, Hanchate and Bichkarto [19] solved the SPSP problem by presented a particle swarm optimization

algorithm (PSO). The effect of PSO parameter on the cost and time of the project was studied and some

better outcomes were obtained in terms of minimum cost estimation and time of the software as compared to

some techniques (GA and ACO).

In the same year, Crawford et al. [20] proposed a max-min ant system algorithm as a new approach

to solve the SPSP problem. The outcomes were compared with ACO System and GA. The proposed method

for smaller instances gave the best results. Last but not least Xiao et al. [21] employed ACO approach in

order to solve the problem of SPSP. To consider the task efforts factors, task importance, and allocated

dedications of employees, six domain-based heuristics were designed. Experimental outcomes of ACS-SPSP

on 30 random instances obtained higher hit rates with more accuracy when compared to (GA) solution.

2. RESEARCH METHOD

The SPSP finds the table of employee-task, with the considration of task precedence and resource

constraint. As well as the project’s duration and cost should be minimized. This section includes the

description of software project scheduling problem (SPSP). In addition, it includes an explanation of all steps

of GWO algorithm.

2.1. The formulation's problem of the SPSP

SPSP aim is to get the perfect and correct assigning of the employee to tasks of the project. SPSP

should take into account the employees' rewards and skills in determining the needs of each task. In order to

schedule any project of the software, we need information about: the project tasks, the employees who must

TELKOMNIKA Telecommun Comput El Control

Solving software project scheduling problem using grey wolf optimization (Marrwa Abd-AlKareem Alabajee)

1823

work on various tasks and the skills which needed to complete the different tasks of software project. We

described this information in detailed and then explained the mathematical models [6], [9]:

− Tasks

All the major activities that must do to plenary a project are project tasks. These activities may

contain the analysis, design of different components, programming, documentation and the entire testing

process. Each project has tasks (Ta), every task (tai) has a set of skills (tai
skills)and an estimated

effort (tai
effort). TPG is the Precedence Graph of the task, it used to observe task precedence. This graph is

non occuring in cycle, knowed as G (E,V). The set of tasks represented by V = {tai, … , ta|T| }. Set of edges is

the linkage between the tasks, the edge (tai, taj) ∈ E indicates that the task tai is come before the task taj.

So, project tasks is knowed as: ta = {ta1, … , ta|T| }, |T| refers to the tasks number [6].

− Skills

Various skills need to accomplished the different tasks that staffs must have to be allocated to those

tasks, e.g: leadership, expert analyst, expert in some programming language, GUI designer, database expert,

interfaces expert, leader and others. To complete the tasks, it should has a group of skills. The set of all skills

should be in the project is konwn asski = { ski1, … , ski|S| }, where |S| is the maximum of skills [6], [17].

− Employees

Employees are the only source of SPSP. They have the skills of software engineering. The set of

employees are allocated to tasks which defined as empl = {empl1, … . . , empl|EM|}, whereas |EM| is the

employees’ maximum number. The emloyees must comply with the task’s skills, every employee (empli)

has a group of skills (empli
skills) which is a subset of all various skills available in the staff members (S) of

the project, each employee also has a salary(empli
salary

), and a maximum dedication(empli
max). It is a

number of hours that the employee work on the project (empli
max ∈ [0,1]). The SPSP solution is illustrated

as a matrix D of size (EM ∗ T) where every Dij is the amount of employee’s dedication (empli) to task (taj),

Table 1 explains the solution for matrix D.

To avoid overwork, the dedication’s summation for each employee must not exceed the maximum

dedication of employee. The amount of maximum dedication for all employees is always assumed to be 1.

The aim of SPSP is to reduce both cost and completion time of the project [6], [9], [17].

Table 1. Example of solution for matrix D
𝐷𝑖𝑗 𝑡𝑎1 𝑡𝑎2 𝑡𝑎3 𝑡𝑎4 𝑡𝑎5 𝑡𝑎6

𝑒𝑚𝑝𝑙1 0.00 0.50 0.00 1.00 0.25 0.00

𝑒𝑚𝑝𝑙2 0.25 0.00 0.75 0.00 0.50 1.00

𝑒𝑚𝑝𝑙3 1.00 0.00 0.25 0.25 0.00 0.00

𝑒𝑚𝑝𝑙4 0.00 0.75 0.00 0.25 0.00 0.50

To calculate the duration of project, we have to get each tasks duration 𝑡𝑎𝑗
𝑑𝑢𝑟 . For this reason, we

utilize the effort in month 𝑡𝑎𝑗
𝑒𝑓𝑓𝑜𝑟𝑡

 and the totality of the dedication of every employee allocate to the task 𝑗.

As the following [6]:

𝑡𝑎𝑗
𝑑𝑢𝑟 =

𝑡𝑎𝑗
𝑒𝑓𝑓𝑜𝑟𝑡

∑ 𝐷𝑖𝑗
𝐸𝑀
𝑖=1

 (1)

with the task’s duration and the information of the precedence in TPG, we can get the starting time taj
start and

the ending time taj
end for task j.

We must look at two cases:

− First: The staring time is (taj
start = 0.0).

− Second: The starting time is equal to the ending time tac
end when the task has precedence, tac

end is the

ending of the time of the maximum overdue previous task. taj
start is known in (2) [6]:

𝑡𝑎𝑗
𝑠𝑡𝑎𝑟𝑡 = {

0 𝑖𝑓 ∀ 𝑐 ≠ 𝑗, (𝑡𝑎𝑐 , 𝑡𝑎𝑗) ∉ 𝐸

max{𝑡𝑎𝑐
𝑒𝑛𝑑|(𝑡𝑎𝑐 , 𝑡𝑎𝑗) ∈ 𝐸

 (2)

The finishing time for a task j (taj
end) is calculated from (3) [9]:

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 6, December 2021: 1820 - 1829

1824

𝑡𝑎𝑗
𝑒𝑛𝑑 = 𝑡𝑎𝑗

𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑎𝑗
𝑑𝑢𝑟 (3)

To compute the total project duration, we utilize the information of the Gantt chart and the duration

of every task in the project. For this, we just need the ending time of the last task, the whole duration is

calculated from (4) [6]:

𝑝𝑟𝑜𝑑𝑢𝑟 = 𝑚𝑎𝑥{𝑡𝑎𝑙
𝑒𝑛𝑑|∀ 𝑙 ≠ 𝑗, (𝑡𝑎𝑗 , 𝑡𝑎𝑙) ∉ 𝐸} (4)

In the project, each task’s cost must be previously obtained, for calculating later the whole cost of

the project(procost), for the task j, the cost (taj
cost) can be computed utilizing the (5), Then The project’s cost

is the cost summation of all tasks in the project as illustrated in (6) [6], [9]:

𝑡𝑎𝑗
𝑐𝑜𝑠𝑡 = ∑ 𝑒𝑚𝑝𝑙𝑖

𝑠𝑎𝑙𝑎𝑟𝑦
∗ 𝐷𝑖𝑗 ∗ 𝑡𝑎𝑗

𝑑𝑢𝑟𝐸𝑀
𝑖=1 (5)

𝑝𝑟𝑜𝑐𝑜𝑠𝑡 = ∑ 𝑡𝑎𝑗
𝑐𝑜𝑠𝑡𝑇

𝑗=1 (6)

Usually, we must define a fitness function to meet the aim of the problem, The SPSP fitness is related

to the whole duration produr and whole cost procost of the project. The fitness function is given in (7) [17].

𝑓(𝑋) = 𝑝𝑟𝑜𝑐𝑜𝑠𝑡 ∗ 𝑊𝑐𝑜𝑠𝑡 + 𝑝𝑟𝑜𝑑𝑢𝑟 ∗ 𝑊𝑑𝑢𝑟 (7)

Where the (Wcost) and (Wdur) are real values. It is essential to introduce a few constraints and limitation into

the project in order to ensure that a feasible and realistic SPSP optimization schedule is achieved, for more

see [6], [7], [9].

2.2. Summarized description of GWO algorithm

There are several forms of intelligence which emerge from the insects’ community, fish, birds, or

mammals [22], one of the recently suggested swarm intelligence-based algorithms is the grey wolf

optimization. This algorithm was developed in Mirjalili et al. [11]. It is inspired by grey wolves in nature that

searching for the optimal way for hunting preys [23].

2.2.1. Basics of GWO

After studying the problem of scheduling in details. GWO algorithm will be employed to solve this

problem. This subsection presents in briefly the mathematical model of GWO algorithm, including social

hierarchy, tracking, encircling and attacking prey of wolves. The GWO algorithm for SPSP is outlined.

− Social hierarchy

Alpha, beta and delta are considered as the fittest solution, second and third best solutions as

respectively, omega are the rest of the candidate solutions. The optimization process in the GWO algorithm is

guided by α, β, and δ. The ω wolves follow these three wolves [24].

− Encircle prey

When the wolves do the hunting they will encircle the prey. This is represented in (8) and (9)

respectively [25]:

�⃗⃗� = |𝐶 . 𝑋 𝑝 (𝑡) − 𝑋 (𝑡)| (8)

𝑋 (𝑡 + 1) = 𝑋 𝑝 (𝑡) − 𝐴 . �⃗⃗� (9)

where:

t : The current iteration.

A⃗⃗ , C⃗ : The coefficient vectors of the prey.

X⃗⃗ p(t): Prey position.

X⃗⃗ (t) : Grey wolves position.

The vectors A⃗⃗ and C⃗ are calculated as follows in (10) and (11) [26].

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗ − 𝑎 (10)

TELKOMNIKA Telecommun Comput El Control

Solving software project scheduling problem using grey wolf optimization (Marrwa Abd-AlKareem Alabajee)

1825

𝐶 = 2 . 𝑟2⃗⃗ ⃗ (11)

where:

a⃗ elements will linearly decreased from 2 to 0 over the course of iteration.

r1⃗⃗ ⃗, r2⃗⃗ ⃗ : are random vectors in between [0, 1].

− Hunting

The mechanism of the hunt depends on the position of the superior search agents so it’s guided by

alpha, Beta and delta [25]. The equations sets in from 12 to 18 signify the updates of the position [27]:

𝐷𝛼
⃗⃗⃗⃗ ⃗ = |𝐶1

⃗⃗⃗⃗ . 𝑋𝛼
⃗⃗ ⃗⃗ − 𝑋 | (12)

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗ − 𝐴1
⃗⃗⃗⃗ . (𝐷𝛼

⃗⃗⃗⃗ ⃗) (13)

𝐷𝛽
⃗⃗ ⃗⃗ = |𝐶2

⃗⃗⃗⃗ . 𝑋𝛽
⃗⃗ ⃗⃗ − 𝑋 | (14)

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗ − 𝐴2
⃗⃗ ⃗⃗ . (𝐷𝛽

⃗⃗ ⃗⃗) (15)

𝐷𝛿
⃗⃗ ⃗⃗ = |𝐶3

⃗⃗⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗ − 𝑋 | (16)

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗ − 𝐴3
⃗⃗ ⃗⃗ . (𝐷𝛿

⃗⃗ ⃗⃗) (17)

𝑋 (𝑡 + 1) =
𝑋1⃗⃗⃗⃗ ⃗+𝑋2⃗⃗⃗⃗ ⃗+𝑋3⃗⃗⃗⃗ ⃗

3
 (18)

− Attacking prey (exploitation)

The gray wolves finish the hunt by attacking the hunt as soon as it stops. So, the value of a⃗ is

decreased. The fluctuation range of A⃗⃗ also decreases by a⃗ . A⃗⃗ is a random value in [-a,a] where a is reduced

from 2 to 0 through iterations, the following place of a search agent can be in any place between its existing

place and the place of the victim when random values of A⃗⃗ are in [-1,1] [24], [28].

− Search for prey (exploration)

Alpha, beta and delta, they splay from each other to seek and huddle to offense the victim. Here A⃗⃗ is

exercised as maximal than 1 or minimal than -1 to point the search agent to space and meet the victim. This

allow GWO search globally and asserts exploration [25].

2.2.2. The GWO algorithm for SPSP

This section displays the steps of GWO-SPSP, which employed the GWO algorithm in solving SPSP:

− Reading the instances file which was created through the generator of the SPSP instance. All data's types

of SPSP are modelling which saved in this file, including number of task, number of employee, TPG of

the project, group of needed skills of a task, the dedication required for every task, skills of each

employee, employees’ salaries and so on, and then the SPSP model was structured according to pervious

data.

− Initializing the parameters of the GWO algorithm such as A, C, a, maximum number of cycles and agents

number.

− Generating the initial random population as schedules, each schedule has two dimensions (employee and

task).

− Calculating the duration and cost of every search agent, then calculate the fitness function and determine

the values of Xα ,Xβ , Xδ : namely: the best, the second and the third best search agent respectively.

− Repeating the steps (6-9) when the stopping condition is not satisfied.

− For every search agent, update the position of current search agent.

− Update the GWO algorithm parameters: a, A, and C.

− Calculating the fitness of every search agent after updating the positions of grey wolf population,

− Update𝑋𝛼, 𝑋𝛽 andXδ.

− Return 𝑋𝛼 which contains best schedule of the total project.

3. RESULTS AND ANALYSIS

The experiments were carried out on a computer with Intel Core i5 and Windows7 Ultimate was

built using matlab 2017. GWO-SPSP runs every experiment for 30 trials using the parameters’ values which

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 6, December 2021: 1820 - 1829

1826

presented in Table 2. Table 2 shows the values of parameters which selected based on experience. The

average values were used to evaluate the quality of solution.

Table 2. Values of parameters
Name Value

Number of cycle 1000

Number of agent 40

𝑊𝑐𝑜𝑠𝑡 10-6

𝑊𝑑𝑢𝑟 10-1

3.1. Description of datasets

To implement a significative study, we used a different instance from two dataset that are generated

by the instance generator, an instance generator is an easily parameterizable program which derive

automatically instances for a problem, a deeper description of the generator can be searched at URL

http://tracer.lcc.uma.es/problems/psp [7]. DS1 (Dataset1): The skills’ amount is 10; the number of the skills

of an employee is 2–3; the number of required skills in the task is 2–3, DS1 is consists of nine instances Its

acombinations of employee (5,10,15), Task (10,20,30) and skill (10), the first instance is (5 employee, 10

task, 10 skill), second instance (5 employee, 20 task, 10 skill), third instance (5 employee, 30 task, 10 skill)

and so on.

DS2 (Dataset2): The skills’ amount is 5; the number of skills of an employee is 2–3; the number of

required skills in the task is 2–3. DS2 is also consists of nine instances Its acombinations of employee

(5,10,15), Task (10,20,30) and skill (5). the first instance is (5 employee, 10 task, 5 skill), second instance (5

employee, 20 task, 5 skill), third instance (5 employee, 30 task, 5 skill) and so on.

The instances in DS1and DS2 have the same TPG; the tasks have the same effort and each

employee has the same values of maximum dedication and salary. We have written a program that analyzes

and interprets data for each set of data sets that taken from the instance generator and storing the outputs in

another file that we used later with scheduling issue files and gray wolf algorithm files to solve the

optimization issue, to find the best solution for them in the least time and cost.

3.2. The effect of employees’ number

If we want to study the effect of employees’ number and tasks’ number on the outcomes, we should

take a various instance from DS1, then should note that human resources (employees) are the only resources

for this problem and the tasks duration is directly associated with the utilize of this resource. The task’s

duration differ according to employees allocated to that task, it is essential to show that this interaction can

vary the duration of the project. As shown in Table 3, we used three different numbers of employees: 5, 10

and 15. The results show that when the number of employees is increased, the duration of the project

decreases. But with the cost of the project, we cannot discover a direct relationship with it.

The convergence curve to better solution for three instances that are taken from DS1 is shown in

Figure 1, the numbers of tasks are fixed only the number of employees is variable with five skills. For the

three instances, we can obtain better solutions from iteration (100) and converges slowly to the best solution.

On the other hand, the influence of the different number of employees on the three instances from

DS2 was also studied. From Table 4 we concluded that when the number of employees increasing, this will

decrease the duration and cost of the total project. The convergence curve of DS2 is shown in Figure 2, the

algorithm gives better solutions for instance (5 employees) and instance (15 employees) from iteration 200,

and from iteration 300 for instance (10 employees), the curve converges slowly to the best solution for the

three instances that studies from DS2 where the numbers of tasks are constant only the number of employees

are variable with ten skills.

Also, it was observed that increasing the level of skill set also increases the search space so when

comparing the outcomes of Table 3 and Table 4 we concluded that increasing the number of skills will affect

on the search space size, it becomes bigger and this does not assistance the search operation, so the fitness

function of DS2 instances is higher than the fitness function of DS1 instances.

Table 3. Results of DS1 with (5, 10, 15) employees’ number
Instance Fitness Cost Duration

5_10_5 (employee-task-skill) 2.1191 791280 13.2783

10_10_5 (employee-task-skill) 1.4086 799900 6.0875

15_10_5 (employee-task-skill) 1.2911 776020 5.1508

TELKOMNIKA Telecommun Comput El Control

Solving software project scheduling problem using grey wolf optimization (Marrwa Abd-AlKareem Alabajee)

1827

Table 4. Results of DS2 with (5, 10, 15) employees’ number
Instance Fitness Cost Duration

5_10_10 (employee-task-skill) 3.0275 940600 20.8694

10_10_10 (employee-task-skill) 2.2432 928110 13.1507

15_10_10 (employee-task-skill) 1.8646 717080 11.4757

Figure 1. Convergence curve of DS1

Figure 2. Convergence curve of DS2

3.3. The effect of tasks number

If we want to show the impact of the tasks’ number on the solutions. We should solve three

instances from DS1 where the number of employees is 10 but we change the projects of the software. The

three projects of the software have a various tasks’number: 10, 20, and 30. As clarify in Table 5, when the

tasks increased, directly the cost and duration of the whole project increased too. We observed from the

outcomes that when increasing the tasks number, the problem becomes harder. Figure 3 show the

convergence curve of instances that taken from DS1 with different numbers of tasks.

Table 5. Results with (10, 20, 30) tasks number
Instance Fitness Cost Duration

10_10_5 (employee-task-skill) 1.4086 799900 6.0875
10_20_5 (employee-task-skill) 4.1210 2134200 19.8680

10_30_5 (employee-task-skill) 7.0611 3141900 39.1913

Figure 3. Convergence curve of different number of tasks for DS1

3.4. Comparison with other methods

In this section, we will focuse on comparing the outcomes of our experiments with another

constructive metaheuristic. We compared our results with the results obtained in [6]. Table 6 shows that the

GWO is better than MMAS-HC, ACO, and IWD. To assess the GWO algorithm quality, we compared its

results with the results obtained in [13], the GWO algorithm exceeded the results of IWDSTD and IWDAS

as shown in Table 7.

Table 6. Comparison the fitness of GWO with IWD, MMAS-HC and ACO
Instance 5 employee 10 task 5 skill 10 employee 10 task 5 skill 15 employee 10 task 5 skill 10 employee 20 task 5 skill

GWO 2.1191 1.4086 1.2911 4.1210

IWD 3.353 2.763 2.186 6.603

MMAS-HC 3.311 2.617 1.996 6.211
ACO 3.558 2.638 2.083 6.369

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 6, December 2021: 1820 - 1829

1828

Table 7. Comparison the GWO with IWDSTD and IWDAS
Instance 5 employee 10 task 5 skill 5 employee 10 task 10 skill 10 employee 10 task 5 skill 10 employee 10 task 10 skill

GWO 2.1191 3.0275 1.4086 2.2432
IWDSTD 3.1073 3.6253 2.5629 2.8881

IWDAS 3.1446 3.6603 2.5313 2.8992

At last, we compared our results with the results of firefly algorithm in [16], Table 8 shows that

GWO exceeded FA for all instances except one. We concluded from the values of Tables 6-8 that the GWO

algorithm was better than the other algorithms because it found values of fitness function for most instances

that used in this work less than the values of fitness function for other algorithms compared with them.

To show the effectiveness of GWO algorithm we performed a statistical test and computed the

relevant p-values to compare the GWO algorithm with all algorithms mentioned above. Table 9 show

wilcoxon signed ranks test results. According to the p-value computed by wicoxon signed ranks test [29] in

the Table 9. It is evident that GWO algorithm has significant performance in all evaluated aspects. For the

first five comparisons (GWO with the rest algorithms), we can say that the significant performance of GWO

verifies at confidence interval 80%. The reason for the confidence interval is relatively low justifiable by the

number of samples is less than six. Regarding the performance of GWO comparing with FA, it also has

significant performance at higher confidence interval which is 95%.

Table 8. Comparison the GWO with FA
Instance 5

employee
10 task 5

skill

10

employee
10 task 5

skill

5

employee
10 task 10

skill

10

employee
10 task 10

skill

10

employee
20 task 5

skill

15

employee
20 task 5

skill

10

employee
30 task 5

skill

10

employee
30 task 10

skill

GWO 2.1191 1.4086 3.0275 2.2432 4.1210 3.8677 7.0611 9.5219

FA 3.4065 2.6158 4.2416 2.3206 6.3151 4.4841 9.6307 8.3977

Table 9. Wilcoxon signed ranks test results
Comparison p-value

GWO versus IWD 0.125

GWO versus MMAS-HC 0.125

GWO versus ACO 0.125
GWO versus IWDSTD 0.125

GWO versus IWDAS 0.125

GWO versus FA 0.03906

4. CONCLUSION

In this paper, I would like to employ GWO algorithm in order to solve the SPSP problem. SPSP is a

nessesary issue for the management of the software project and for the problem of NP-hard. We applied the

GWO-SPSP on different instances from two datasets and studied the impact of variation of employees and

tasks number. We conclude from a study of the variation of employees’ number for the first dataset that has

five skills, increasing employees’ number leads to reduce the time of the project, but we could not find an

explanation for the cost’ values. As for the second dataset, where the number of skills is ten, increasing the

number of employees leads to a reduction in project time and cost. We conclude from the study of increasing

the number of tasks that the issue becomes complex and the algorithm needs more cycles as the number of

tasks increases in order to find the best solution for scheduling, meaning that the time and cost increase.

Numerical outcomes demonstrated that the proposed GWO algorithm outperforms IWD, ACO, MMAS-HC,

IWDSTD, IWDAS and FA for all instances, except one instance that FA is outperform the GWO.

REFERENCES
[1] I. Sommerville, "Software engineering," ninth edition, Addison-Wesley Publishing Company, United States,

ISBN-13: 978-0-13-703515-1, ISBN-10: 0-13-703515-2, pp. 792, 2010.

[2] M. Ahmad et al., "Management Issues in Software Development," Proceedings of the 9th WSEAS international

conference on Software engineering, parallel and distributed systems, 2010, pp. 232–237, doi: 10.1007/3-540-

54194-2_28.

[3] M. Kaur, "Particle swarm optimization approach to software project scheduling," International Journal of Academic

Research and Development, vol. 3, no. 1, pp. 308-310, 2018.

http://dx.doi.org/10.1007/3-540-54194-2_28
http://dx.doi.org/10.1007/3-540-54194-2_28

TELKOMNIKA Telecommun Comput El Control

Solving software project scheduling problem using grey wolf optimization (Marrwa Abd-AlKareem Alabajee)

1829

[4] M. Kaur, "Software project scheduling using ant colony optimization," International Journal of Advanced Research

and Development, vol. 3, no. 1, pp. 214-217, 2018.

[5] A. C. Biju, T. A. A. Victoire, and K. Mohanasundaram, "Retracted: An Improved Differential Evolution Solution for

Software Project Scheduling Problem," Scientific World Journal, vol. 2015, pp. 9, 2015, doi: 10.1155/2015/232193.

[6] B. Crawford et al., "Solving the Software Project Scheduling Problem Using Intelligent Water Drops," Technical

Gazette, vol. 25, no. 2, pp. 350-357, 2018, doi: 10.17559/tv-20160629224348.

[7] E. Alba and J. F. Chicano, "Software project management with Gas," Information Sciences, vol. 177, no. 11,

pp. 2380-2401, 2007, doi: 10.1016/j.ins.2006.12.020.

[8] F. Habibi, F. Barzinpour, and S. J. Sadjadi, “Resource-constrained project scheduling problem: review of past and

recent developments,” Journal of Project Management, vol. 3, no. 2, pp. 55-88, 2018, doi: 10.5267/j.jpm.2018.1.005.

[9] S. E. Almshhadany and L. M. Ibrahim, "Using Multi-objective Artificial Fish Swarm Algorithm to Solve the

Software Project Scheduling Problem," International Journal of Computer Applications, vol. 181, no. 16, pp. 6-13,

2018, doi: 10.5120/ijca2018917753.

[10] M. Á. V. Velázquez's, A. G. Nájera, and H. Cervantes's, "A survey on the Software Project Scheduling Problem,"

International Journal of Production Economics, vol. 202, pp. 145-161, 2018, doi: 10.1016/j.ijpe.2018.04.020.

[11] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer," Advances in Engineering Software, vol. 69,

pp. 46-61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.

[12] T. R. Alreffaee and M. A. Alabajee, “Solving Software Project Scheduling Problem using Whale

Optimization Algorithm,” IOP Conference Series: Materials Science and Engineering, vol. 928, 2020,

doi: 10.1088/1757-899x/928/3/032084.

[13] B. Crawford et al., "Self-configuring Intelligent Water Drops Algorithm for Software Project Scheduling Problem,"

International Conference on Information Technology & Systems ICITS 2019: Information Technology and

Systems, 2019, pp 274-283, doi: 10.1007/978-3-030-11890-7_27.

[14] V. Rachman and M. A. Ma'sum, “Comparative analysis of ant colony extended and mix-min ant system in software

project scheduling problem,” in Big Data and Information Security (IWBIS), 2017 International Workshop on. IEE,

2017, pp. 85-91, doi: 10.1109/iwbis.2017.8275107.

[15] N. Nigar, "Model-based dynamic software project scheduling," In Proceedings of 2017 11th Joint Meeting on

Foundations of Software Engineering, 2017, pp. 1042-1045, doi: 10.1145/3106237.3119879.

[16] B. Crawford, R. Soto, F. J. Parejas, C. Valencia, and F. Paredes, "Firefly Algorithm to Solve a Project Scheduling

Problem," Artificial Intelligence Perspective in Intelligent Systems Proceedings of the 5th Computer Science On-line

Conference 2016 (CSOC2016), 2016, pp. 449-458, doi: 10.1007/978-3-319-33625-1_40.

[17] B. Crawford, R. Soto, F. Johnson, S. Misra, F. Paredes, and E. Olguín, "Software project scheduling using the

hyper-cube ant colony optimization algorithm," Tehnički vjesnik, vol. 22, no. 5, pp. 1171-1178, 2015,

doi: 10.17559/tv-20140519212813.

[18] F. Luna, D. L. González-Álvarez, F. Chicano, and M. A.Vega-Rodríguez, "The software project scheduling

problem: A scalability analysis of multi-objective metaheuristics," Applied Soft Computing, vol. 15, pp. 136-148,

2014, doi: 10.1016/j.asoc.2013.10.015 .
[19] D. B. Hanchate and R. Bichkar, "Software Project Scheduling Management by Particle Swarm Optimization,"

Oeconomics of Knowledge, vol. 6, no. 4, pp. 24-54, 2014.

[20] B. Crawford, F. Johnson, R. Soto, E. Monfroy, and F. Paredes, "A Max-Min Ant System algorithm to solve the

Software Projects Scheduling Problem," Expert Systems with Applications, vol. 41, no. 15, pp. 6634–6645, 2014,

doi: 10.1016/j.eswa.2014.05.003.

[21] J. Xiao, X. T. Ao, and Y. Tang, "Solving software project scheduling problems with ant colony optimization,"

Computers and Operations Research, vol. 40, no. 1, pp. 33-46, 2013, doi: 10.1016/j.cor.2012.05.007.

[22] S. I. Khaleel and A. A. Al Thanoon,” Design a Tool for Generating Test Cases using Swarm Intelligence,” AL-Rafidain

Journal of Computer Sciences and Mathematics, vol. 10, no. 1, pp. 421-444, 2013, doi: 10.33899/csmj.2013.163468.

[23] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, "Grey wolf optimizer: a review of recent variants and

applications," Neural Computing and Applications, vol. 30, no. 2, pp. 413-435, 2017, doi: 10.1007/s00521-017-3272-5.

[24] H. Farughi, S. Mostafayi, and J. Arkat, "Healthcare Districting Optimization Using Gray Wolf Optimizer and

Antlion Optimizer Algorithms (Case Study:South Khorasan Healthcare System in Iran)," Journal of Optimization in

Industrial Engineering, vol. 12, no. 1, pp. 119-131, 2019.

[25] N. M. Hatta, A. M. Zain, R. Sallehuddin, S. Z. B. Abd. Rahim, and Y. Yusoff, "Recent studies on optimisation

method of GreyWolf Optimiser (GWO): a review (2014–2017)," Artificial Intelligence Review, vol. 52, no. 4,

pp. 2651-2683, 2018, doi: 10.1007/s10462-018-9634-2.

[26] M. A. Sen and M. Kalyoncu, “Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot

Trajectory Control of a Quadruped Robot,” Journal of Science, vol. 32, no. 2, pp. 674-684, 2019.

[27] J. S. M. Alneamy and M. M. A. Dabdoob, "The Use of Original and Hybrid Grey Wolf Optimizer in Estimating the

Parameters of Software Reliability Growth Models," International Journal of Computer Applications, vol. 167,

no. 3, pp. 12-21, 2017, doi: 10.5120/ijca2017914201.

[28] Z. M. Gao and J. Zhao, “An Improved Grey Wolf Optimization Algorithm with Variable Weights,” hindawi,

Computational Intelligence and Neuroscience, vol. 2019, pp. 1-13, 2019, doi: 10.1155/2019/2981282.

[29] J. Derrac, S. García, D. Molina and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a

methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm and Evolutionary

Computation, vol. 1 , no. 1, pp. 3-18, 2011, doi: 10.1016/j.swevo.2011.02.002.

https://doi.org/10.1155/2015/232193
https://doi.org/10.17559/tv-20160629224348
https://doi.org/10.1016/j.ins.2006.12.020
https://doi.org/10.5120/ijca2018917753
https://doi.org/10.1016/j.ijpe.2018.04.020
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://iopscience.iop.org/journal/1757-899X
https://doi.org/10.1088/1757-899x/928/3/032084.
https://link.springer.com/conference/icitss
https://link.springer.com/book/10.1007/978-3-030-11890-7
https://link.springer.com/book/10.1007/978-3-030-11890-7
https://doi.org/10.1007/978-3-030-11890-7_27
https://doi.org/10.1109/iwbis.2017.8275107
https://doi.org/10.1145/3106237.3119879
https://hrcak.srce.hr/tehnicki-vjesnik
https://hrcak.srce.hr/index.php?show=toc&id_broj=11869
https://doi.org/10.17559/tv-20140519212813.
https://www.sciencedirect.com/science/article/abs/pii/S1568494613003499#!
https://www.sciencedirect.com/science/article/abs/pii/S1568494613003499#!
https://www.sciencedirect.com/science/article/abs/pii/S1568494613003499#!
https://www.sciencedirect.com/science/article/abs/pii/S1568494613003499#!
https://doi.org/10.1016/j.asoc.2013.10.015
https://doi.org/10.1016/j.asoc.2013.10.015
https://doi.org/10.1016/j.eswa.2014.05.003
https://doi.org/10.1007/s00521-017-3272-5
https://www.researchgate.net/profile/Shayfull_Zamree_Abd_Rahim
https://doi.org/10.1007/s10462-018-9634-2
https://doi.org/10.5120/ijca2017914201
https://doi.org/10.1155/2019/2981282
https://doi.org/10.1016/j.swevo.2011.02.002

