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 In this work, the antlion optimization (ALO) is employed due to its 

efficiency and wide applicability to estimate the parameters of four modified 

models of the basic constructive cost model (COCOMO) model. Three tests 

are carried out to show the effectiveness of ALO: first, it is used with Bailey 

and Basili dataset for the basic COCOMO Model and Sheta’s Model 1 and 2, 

and is compared with the firefly algorithm (FA), genetic algorithms (GA), 

and particle swarm optimization (PSO). Second, parameters of Sheta’s 

Model 1 and 2, Uysal’s Model 1 and 2 are optimized using Bailey and Basili 

dataset; results are compared with directed artificial bee colony algorithm 

(DABCA), GA, and simulated annealing (SA). Third, ALO is used with 

Basic COCOMO model and four large datasets, results are compared with 

hybrid bat inspired gravitational search algorithm (hBATGSA), improved 

BAT (IBAT), and BAT algorithms. Results of Test1 and Test2 show that 

ALO outperformed others, as for Test3, ALO is better than BAT and IBAT 

using MAE and the number of best estimations. ALO proofed achieving 

better results than hBATGSA for datasets 2 and 4 out of the four datasets 

explored in terms of MAE and the number of best estimates. 
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1. INTRODUCTION 

With over the last few decades, software systems have spread outstandingly and this spread is very 

likely to go on much swifter in the future. This is due to the rapid growth in scientific, industrial, and 

commercial technologies all around the world [1]. Starting a project with an acceptably estimated size or 

effort enables the manger to gain confidence regarding future activities, this is due to the fact that most of the 

decisions made throughout the development are affected by the initial estimations. So, the process of cost or 

effort estimations is considered as one of the most decisive stages of planning and managing software  

projects [2]. The importance of estimating software effort during early stages of software development has 

been pointed out so many times. But then again, estimating the software effort is considered to be very hard 

at the beginning of a project, this is because people productivity differs, so very little is known about the 

software being developed [1]. 

As the software development cost or effort is progressively rising, software has grown to be the 

major cost taken by a system. Many projects such as National Aeronautics and Space Administration (NASA) 

or Air Force estimates software development cost to reach 50% of the total cost required. This is due the high 

complexity encountered in the NASA software projects’ systems, either hardware or software [3]. All this led 

https://creativecommons.org/licenses/by-sa/4.0/
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the way towards the development of a model capable of predicting software effort, and although there are 

various accurate models for computing project’s effort, there is still a strong challenge for more accurate and 

precise models. Of these powerful models is the constructive cost model (COCOMO) that estimates the effort 

of any project during the early stage of the project. This can lead to minimize the overall cost of the project [1]. 

The process of effort estimation is affected by a large number of parameters; these parameters are 

estimated using different techniques. The aim of this work is to use the antlion optimization algorithm, 

attributable to its efficiency, in tuning the parameters of the COCOMO model variants, the first is the basic 

COCOMO model and the other four are its extensions. After parameter tuning, the obtained results are 

compared with the other methods. Most of the work related to this field goes back to 2010, when Aljahdali 

and Sheta [3] suggested the use of differential evolution (DE) to estimate the COCOMO model parameters, 

these models were tested using NASA software project dataset.  

In 2012, Singh and Misra [4] explored the crisp input effect with genetic algorithms (GAs), and 

applied a modified version of the COCOMO model to NASA dataset. In the same year, Kundu and Sethi [5] 

recommended the use of simulated annealing (SA) to optimize the coefficients of COCOMO II model aiming 

for more accurate effort estimations. Later in 2013, Dhiman and Diwaker [6] also used GAs to optimize the 

coefficients of COCOMO II model in order to acquire accurate estimations.  

Ghatasheh et al. [7], explored the use of the Firefly algorithm in 2015 to optimize the parameters of 

three COCOMO based models. Also, in 2015, Gupta and Sharma [8] submitted a new calibrated intermediate 

COCOMO model developed using the bat algorithm. The model generated new optimized coefficients, and 

results showed that the optimized coefficients gave better results for all project types in terms of mean 

magnitude of relative error (MMRE) when compared to coefficients gained using regression analysis.  

Khuat and Le [9] in 2016 used artificial bee colony algorithm for parameter tuning according to the 

actual effort. Their work was verified with NASA software dataset and was compared to some existing 

models. In the same year, Bardsiri and Dorosti [10] increased the accuracy of COCOMO estimation by a 

hybrid model that combined bee colony algorithm with the COCOMO estimation method. Their method gave 

more efficient coefficient comparative to the basic COCOMO, finding better coefficients can greatly 

maximizes the method’s efficiency. Also, in 2016 Girotra and Sharma [11] considered cost driver and the 

issue of inaccurate and ambiguous selection of values which leads to inaccurate effort estimations, and they 

showed that a small change in the selection of COCOMO cost drivers can cause significant improvements in 

metrics such as MMRE. Whereas in 2017, A-Srhan, et al. [1] established a hybrid cuckoo search algorithm 

and genetic algorithm called (CSGA) for parameter estimation. A NASA software project dataset was used in 

the experiments. Results show that CSGA enhanced the effort estimation accuracy. 

In 2018 Nandal and Sangwan [12] introduced a hybrid bat inspired gravitational search algorithm 

method called (BATGSA) to optimize the COCOMO model. In the same year, Khatibi and Bardsiri [13] 

suggested a combined model for effort estimation. The model was based on particle swarm optimization 

algorithm with a linear regression method to optimally discover coefficient. Later in 2018 Dizaj and 

Gharehchopogh [14] improved GAs with bat algorithm to study the influence of qualitative factors and false 

variables on the total cost estimation. Their model was explored and tested using four datasets with seven 

criteria; results showed that the model improved the accuracy of cost estimation. 

To give a precise estimated cost for project development, in 2019 Venkataiah et al. [15] suggested 

the implementation of hybrid methodology for tuning parameters of COCOMO model. To check the 

efficiency of the presented model, they used IBMDPS, COCOMO NASA 2 and DESHARNAIS and 

COCOMO 81. As for the employed optimization method, ALO algorithm has been successfully applied in 

many areas such as tuning the parameter of control devices in systems of generators’ excitation for the model 

of TAFM in 2018 by Špoljarić and Pavić [16]. In this work, the ALO algorithm is employed along with heavy 

comparisons in opposite to related work aiming to cover possible gaps; using five models instead of only one 

or three, the same also goes for datasets engaged in testing and comparisons, as five different sized datasets 

were used to carry out inclusive comparisons among ALO and the other methods. 
 

 

2. RESEARCH METHOD  

This section includes problem description of software effort estimation models, there are many 

models suggested for estimating software effort, all of them were derived from the COCOMO Model, in this 

section, the software effort estimation models that were utilized in this paper will be described as well as the 

mathematical equation of them. In addition, this section includes an explanation of the antlion optimization 

algorithm and describes the methodology of this algorithm and explains how can the traps of the antlions 

affect the random walk of ant and how can antion building the traps to make the trapped ant sliding down 

towards the center of the pits, this mechanism modeled by mathematical equations described below. Finally, 

the last subsection represents the mechanism of elitism of this algorithm. 
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2.1.  Software effort estimation models  
Software cost estimation is the practice of predicting the required effort for developing a project. 

Such estimation gives the impression of simplicity, but in reality, it is very difficult and complex. Costs for 

software projects depend largely on the project’s nature and characteristics, while the estimation accuracy 

depends merely upon the amount of reliable information gained regarding the developed product [5]. 

Scientific efforts are being carried out for developing new techniques to estimate software cost. 

Nearly all estimation models for software cost are algorithmic and expert judgment based. Accuracy 

modelling affects estimation accuracy, which is why finding good models for software estimation is the 

greatest significant objective for software engineers. In the core of these models is the COCOMO 

(constructive cost model), this model is the most frequently used due its simplicity in estimating the  

person-month effort for projects at various development stages [5]. 

The COCOMO model in (1) was first developed in 1984 by Boehm [17]. It has been considered to 

be empirical due to the enormous amount of data used in its development; these data are taken from several 

projects. In addition, it is found that many project managers employ the COCOMO model; this is because its 

details are available unlike other models [18, 19]. 

 

E = a(SIZE)b         (1) 

 

Parameter values (a) and (b), rely principally on the software project class. Software projects were classified 

based on the complexity of the project into three categories: organic, semidetached, and embedded. The 

model helps is defining mathematical equations that identify the cost, schedule and quality of a software 

product [18]. 

This work represents an attempt to optimize the parameters of five variations of the COCOMO 

model. The first is the basic COCOMO model given in (1). The other two are modifications of the basic 

COCOMO model proposed by Sheta [20], both modified models consider the methodologies (ME) to 

linearly affect effort. One of them is Sheta’s Model 1 given in (2) and is named (Model I) in this work, the 

other is Sheta’s Model 2 given in (3), and named (Model II) here [7]. 

 

E = a(Size)b + c (ME)         (2) 

 

E = a(Size)b + c(ME) + d       (3) 

 

The last two models are proposed by Uysal [21], one of them contain five parameters a, b, c, d and e called 

Uysal’s Model 1, and is called (Model III) here, as in (4) [21]. 

 

E = a(Size)b + c. MEd + e       (4) 

 

The other model called Uysal’s Model 2 and called (Model IV) here, is presented as in (5) 

 

E = a(Size)b + c. MEd + e. ln(ME) + f. ln(Size) + g     (5) 

 

In this work, an attempt is conducted to optimize parameters (a, b, c, d, e, f, and g) using the antlion 

optimization (ALO) algorithm. 

 

2.2.  The antlion optimization algorithm  
Insects like antlions belong to a group in the family of myrmelentidae. The two main stages of its 

lifecycle are larval and adult stages. The antlion larva leaves trails in the sand in the search of a good location 

to construct its trap, which is why it is called "doodlebug". Antlions make a pit in the sand to hide inside it 

during hunting as shown in Figure 1 (a). Figure 1 (b) depicts the slipping of the prey towards the bottom, the 

antlion instantly grabs it. If it tries to escape, the antlion tosses some sand to the edge of the pit so that the 

pray slides into the lowermost of that pit. The larva also weakens the pit’s sides, forcing them to drop and 

take the prey with them [22]. The ALO algorithm inspiration comes from the foraging behaviour of the 

antlion’s larvae [23]. 

 

2.2.1.  ALO methodology 

Modelling the relationship between antlions and ants requires ants to go through the search space, 

where antlions are permitted to hunt them and thus develop their fitness to traps. In nature, ants move in a 

stochastic manner in search for food, thus a stochastic function (r(t)) can be defined as in (6), and a random 

walk is suitable for modelling the movement of ants as given in (7) [24]. 
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r(t) = {
1 if rand > 0.5
0 if rand ≤ 0.5

        (6)  

 

where rand is a random number made with uniform distribution in the interval of [0, 1]. 
 

X(t) = [(0, cumsum(2r(t1) − 1, . . . , cumsum(2r(tn) − 1)]    (7) 
 

where Cumsum is calculates the cumulative sum, n is the maximum number of iteration, and t shows the iteration,  
 

 

  
(a) (b) 

 

Figure 1. Behaviour of hunting [23] 
 

 

A matrix 𝑀𝐴𝑛𝑡 is used to store the position for all ants as in (8); this matrix will be utilized 

throughout optimization [23]. 
 

MAnt = [

A1,1 A1,2 ⋯ A1,d

⋮ ⋮  ⋯ ⋮
An,1 An,2 ⋯ An,d

]       (8) 

 

Ants are noted to be similar to the particles in PSO or individuals in GA, an ant’s position denote a particular 

solution parameter. The 𝑀𝐴𝑛𝑡 Matrix is used to register the post of all ants throughout optimization. To 

evaluate each ant, a function of fitness should be employed, matrix 𝑀𝑂𝐴 gathers the fitness values for all ants 

as in (9) [23]. Moreover, antlions are also assumed to be hiding someplace in the search space, and with the 

aim of saving their positions and fitness values, two matrices are used, 𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛  and 𝑀𝑂𝐴𝐿  [23, 25]. 
 

MOA = [

f(A1,1A1,2 … A1,d)

⋮ … ⋯
f(An,1An,2 … An,d)

]       (9) 

 

Basically, all random walks are established using (7), the update of positions for ants is done using 

the random walk at each and every stage of optimization. Nevertheless, updating position of ants cannot be 

directly accomplished using (7). So, to restrict the random walks of ants in the search space, (10) is used to 

normalize them and it must be applied in all iterations to ensure that the random walk occur inside the search 

space [22, 23]. Where, ai is the minimum of random walk for the ith variable, 𝑏𝑖 is the maximum of random 

walk in ith variable, 𝐶𝑖
𝑡 is the minimum of ith variable at ith iteration, di

t is the maximum of ith variable at ith 

iteration. 
 

Xi
t =

(Xi
t−ai)×(di−Ci

t)

(di
t−ai)

+ Ci        (10) 

 

2.2.2.  Pits and traps of antlions 

Antlions’ traps affect random walks of ants; this assumption is modelled mathematically using two 

proposed equations in (11) and (12). These two equations show that ants walk randomly in a hyper sphere 

expressed by C and D vectors nearby a selected antlion [22, 25]. Where 𝐴𝑛𝑡𝑙𝑖𝑜𝑛j
t is the position of selected 

jthAntlion at tth iteration. The selection of antlions is based on their fitness using the roulette wheel. This 

mechanism gives high chances to the fitter antlions to catch ants. Figure 2 illustrates how ants are expected to 

be trapped in only one particular antlion [23].  

 

Ci
t = Antlionj

t + Ct        (11) 
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Di
t = Antlionj

t + Dt        (12) 
 

 

 
 

Figure 2. Random walk of an ant inside the trap 

 

 

2.2.3.  Sliding towards antlions 

Antlions are now capable of building traps relatively to their fitness, where ants are required to 

move in random. Yet, once antlions recognize that an ant is trapped, they begin to throw sands away from the 

centre of the pit. This act slides down the escaping trapped ant, and to model this behaviour, the radius of the 

hyper-sphere for ants' random walks is reduced according to the ratio calculate by [22] and given in (13). 

Based on this ratio, two reductions are proposed as in (14) and (15) [26, 27]. 

 

I = 10𝑤 .
t

T
         (13) 

 

where t resembles current iteration, T gives the maximum number of iterations, and w is a constant defined 

based on the current iteration (w=2 when t>0.1T, w=3 when t>0.5T, w=4 when t>0.75 T, w=5 when  

t>0.9T, and w=6 when t>0.95T). Basically, the constant w can adjust the accuracy level of exploitation [23]. 

 

Ct = Ct

I
          (14) 

 

dt =
dt

I
           (15) 

 

Hunting comes to an end when an ant arrives at the bottommost area of the pit and is imprisoned by 

the jaws of the antlion. Subsequently, an antlion starts to drag the ant into the sand and ingest its body. To 

simulate such a process, an assumption has to be made that prey catching take place when ants grow fitter 

(sink in sand) than the correspondent antlion. Accordingly, the antlion has to enhance its chance of catching 

new prey by updating its position to the latest known position of the hunted ant; this is given in (16) [23]. 

Where t is the current iteration, 𝐴𝑛𝑡𝑖
𝑡 : is the position of ith ant at tth iteration. 

 

Antlionj
t = Anti

t if f(Anti
t) > f(Antlionj

t)      (16) 

 

2.2.4.  Elitism 

Best gained solutions are at risk of being lost through subsequent iterations; that is why elitism is 

needed. It allows best solutions to be kept through the iterations of the process. Being the fittest antlion, elite 

can affect the movements of each ant during all iterations. Hence, every ant is presumed to walk randomly 

around the antlion using roulette wheel and elitism concurrently as in (17) [23, 27]. 

 

Anti
t =

ra
t +re

t

2
          (17) 

 

2.2.5.  ALO algorithm for parameter tuning 

The workflows of the ALO algorithm can be graphically represented to describe the sequential or 

concurrent flows of activities of the algorithm in parameter tuning as in Figure 3. This figure shows the 

Activity diagram of ALO algorithm, the sequence of the activities, beginning from the starting point until the 

finishing point of the activity. To explain the requirements of ALO algorithm in tuning parameters, the use 

case diagram is modeled the functionality of the system using actors and uses case as illustrated in Figure 4. 
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Figure 3. Activity diagram of ALO algorithm in tuning parameters 
 
 

 
 

Figure 4. Use case diagram of ALO algorithm in tuning parameters 
 

 

3. RESULTS AND ANALYSIS  

After describing the ALO in the previous section, this section will demonstrate the datasets that are 

used in this study. This is done along with the evaluation criteria that are widely used to evaluate the quality of 

software effort estimation models and experiments. Results are analysed and compared with other methods. 

  

3.1.  Experimental datasets 

The previously discussed algorithm is implemented using MATLAB 2017 in this work. Actual 

common datasets are used during the analysis; and are downloaded from the promise data repository, they are: 
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 Bailey and Basili [28], widely employed in many of the research studies, such as Sheta [20] and  

Uysal [21]. It consists of two independent variables: line of code (LOC) and methodology (ME), in 

addition to one dependent variable: measured effort (man-months). 

 Dataset1 for the cocomo81 dataset covering 63 projects [29]. 

 Dataset2 for NASA dataset containing 60 projects [30].  

 Dataset3 for NASA dataset with 93 project [31]. 

 Dataset4 for kemerer dataset having 15 projects [32]. 

Each software project has its actual cost available in the dataset; it is used in comparisons with 

estimated costs so as to determine the mean relative error for projects. We conducted three tests on the 

aforementioned data sets. In the first and second tests we used Bailey and Basili dataset but on different 

models, in first test we optimize parameters for three models: basic COCOMO model, Sheta’s Model (named 

Model I) and Sheta’s Model 2 (named Model II).In second test we optimize the parameters of four models 

Sheta’s Model 1 (Model I), Sheta’s Model 2 (Model II), Uysal’s Model 1 (Model III) and Uysal’s Model 2 

(Model IV).The other four datasets were used in the third test to estimate the parameters of the basic 

COCOMO model.  

 

3.2.  Measures for evaluation 

A number of evaluation criteria is used to evaluate the efficiency of the developed model, they are: 

 Variance-Accounted-For (VAF) given in (18) [1] 
 

VAF = [1 −
var(y−y′)

var (y)
] ∗ 100%        (18) 

 

 Mean magnitude of relative error (MMRE) described in (19) [1] 
 

𝑀𝑀𝑅𝐸 =
1

𝑁
∑

|𝑦𝑖− �́�𝑖|

𝑦𝑖

𝑁
𝑖=1         (19) 

 

 The prediction at level N (PRED(N)) stated in (20) [9] 
 

PRED(L) =
1

N
∑ {

 1 if MRE ≤ L
0 otherwise

N
i=1  ∗ 100      (20) 

 

 Mean absolute error (MAE) as in (21) [9] 
 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐸 − �̂�|𝑁

𝑖=1          (21) 

 

 Mean squares error (MSE) as in (22) [7] 
 

MSE =
1

n
∑ (y − y′)2n

i=1         (22) 

 

 The correlation coefficient (R2) as in (23) [7] 
 

𝑅2 =
∑ (𝑦𝑖−�̅�𝑖)2− ∑ (𝑦𝑖−�́�𝑖)2𝑛

𝑖=1
𝑛
𝑖=1

∑ (𝑦𝑖−�̅�𝑖 )2𝑛
𝑖=1

        (23) 

 

 Root mean square error-RMSE as in (24) [33] 
 

RMSE = √
1

N
∑ (Ei − Êi)

2N
i=1         (24) 

 

 Median magnitude of relative error (MdMRE) as in (25) [33] 
 

𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(
1

𝑁
∑

|𝑦𝑖− �́�𝑖|

𝑦𝑖

𝑁
𝑖=1 )       (25) 

 

3.3.  Test1 

The dataset of Bailey and Basili is employed along with ALO to optimize parameters for three 

models: basic COCOMO model, Sheta’s Model (named Model I) and Sheta’s Model 2 (named Model II). 

The range of parameters used here are as presented in [20] and [7]. For comparison purposes, the population 
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size or number of antlion agents is set to 100 and the iteration number is set to 500 according to that of [7], 

for the same purpose, the mean absolute error (MAE) criteria is employed as the objective function.  

The data are divided into training and testing data; testing data is used to evaluate the optimized 

models by means of the following evaluation metrics VAF, MSE, MAE, MMRE, RMSE and R2. Results are 

compared with firefly algorithm (FA), genetic algorithm (GA), and particle swarm optimization (PSO). The 

ALO is applied to obtain the optimizing parameters for the three models, results are shown in Table 1.  

Tables 2, 3, and 4 show the evaluation results for testing the three models along with the comparison between 

ALO, FA, GA and PSO. From the results is seen that ALO exceeds FA, GA and PSO in the optimization of 

all models with all the evaluation metrics. 

 

 

Table 1. Optimizing parameters using ALO 
Models Value of parameters 

Basic COCOMO Model A=1.9391, B=0.90839 

Model I  A=1.9174, B=0.90948, C=0.024546 

Model II  A=0.77671, B=1.101, C=-0.11225, D=8.7914 

 

 

Table 2. Comparison for basic COCOMO model 
 ALO FA GA PSO 

VAF 99.18% 98.16% 97.97% 97.98% 
MSE 27.62 59.14 63.96 63.68 

MAE 3.74 5.65 6.06 6.04 

MMRE 0.06 0.11 0.13 0.12 
RMSE 5.25 7.67 8.00 7.98 

R2 0.9964 0.9781 0.9763 0.9765 

 

 

Table 3. Comparison for Model I Table 4. Comparison for Model II 
 ALO FA GA PSO 

VAF 99.14% 98.62% 97.97% 98.52% 

MSE 26.93 47.74 98.17 60.07 

MAE 3.76 5.56 7.70 5.63 
MMRE 0.07 0.24 0.29 0.23 

RMSE 5.19 6.82 9.39 7.72 

R2 0.9963 0.9823 0.9637 0.9778 
 

 ALO FA GA PSO 

VAF 99.39% 98.63% 97.60% 98.70% 

MSE 21.85 45.02 114.79 52.85 

MAE 3.45 5.57 7.83 5.29 
MMRE 0.10 0.24 0.27 0.21 

RMSE 4.67 6.62 9.86 7.19 

R2 0.9976 0.9833 0.9575 0.9805 
 

 

 

3.4.  Test2 

In this section, the parameters of four models Sheta’s Model 1 (Model I), Sheta’s Model 2  

(Model II), Uysal’s Model1 (Model III) and Uysal’s Model 2 (Model IV) are optimized. Bailey and Basili dataset 

is also used in this test, ALO parameter setting is set identical to [9], the iteration number is set to 100 and the 

population size is set to 10. The optimized parameters are shown in Table 5 using ALO and the four models. 

 

 

Table 5. Best values of model's parameters using ALO 
Models Best values of parameters 

Model I A=1.0558, B=1.0378, C=0.097135 
Model II A=1.01356, B= 1.06415, C= -0.5, D=16.6215 

Model III A=1.172, B=1.0201, C= -0.11415, D= 1.2049, E=8.8288 

Model IV A=1.0442, B=1.0484, C=-0.2539, D=1.1643, E=2.3631, F=0.13983, G=6.9971 

 

 

Initially, the accuracy of the models is assessed using MMRE, MdMRE, and PRED (25) criteria.  

Table 6 displays the gained results of the models using ALO in a comparison with GA for (Model I and 

Model II) and SA for (Model III and Model IV) that is given in [9] using directed artificial bee colony 

algorithm (DABCA) for the same four models. Results presented in Table 6 indicate that for Model I, the 

MMRE and MdMRE values for ALO are better than those of the others algorithms, PRED(25) is the same for 

all. This conclusion can also be drawn about Model II and Model III, with PRED(25) being better in both 

models. In Model IV however, ALO has the same good results in terms of MMRE and MdMRE but the 

PRED(25) value of DABCA is better than that of ALO. 

Table 7 displays the predicted and the actual effort values for Model I and Model II using ALO, 

DABCA, and GA for (18) projects. For Model I, ALO found better estimates in term of the actual for (10) 
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projects, while DABCA found (6), and GA found only (2). As for Model II, ALO achieved (11) better 

estimated projects, DABCA achieved (4), and GA achieved (3) only. Table 8 gives the same values for 

Model III and Model IV using ALO, DABCA, and SA for the same (18) projects. In Model III, ALO was 

capable of finding best estimates for (10) projects, DABCA obtained (5), and SA found (3). On the other hand, 

in Model IV, ALO succeeded in finding (8) best estimated projects, DABCA found (6), and SA found just (4). 

 

 

Table 6. Results based on MMRE, MdMRE and PRED(25) 
Model PRED(25) MdMRE(%) MMRE(%) 

Model I (GA) 61.11 14.5 23.79 

Model I (DABCA) 61.11 14.86 26.03 

Model I (ALO) 61.11 13.39 18.43 
Model II (GA) 38.89 49.27 63.64 

Model II (DABCA) 77.78 11.48 17.13 

Model II (ALO) 77.77 7.4 13.60 
Model III (SA) 77.78 8.2 20.04 

Model III (DABCA) 83.33 8.65 14.20 

Model III (ALO) 77.77 5.82 13.55 

Model IV (SA) 77.78 8.63 18.80 

Model IV (DABCA) 83.33 7.07 13.21 

Model IV (ALO) 83.33 5.37 13.36 

 

 

Table 7. Measured data and predicted values for Model I and Model II 
Proj Model I Model II Actual Cost 

 ALO DABCA GA ALO DABCA GA  
1 15.7999 122.617 124.8585 123.6537 130.6186 134.0202 115.8 

2 58.3195 75.9229 74.8467 66.5000 71.8103 84.1616 96 

3 58.6023 76.6194 75.4852 67.4139 72.7508 85.0112 79 
4 68.8641 86.1377 85.4349 78.0100 83.9645 94.9828 90.8 

5 40.7873 51.0323 50.5815 38.4189 41.9945 56.658 39.6 

6 125.1979 98.4043 99.0504 134.6901 98.378 107.2609 98.4 
7 17.4059 24.8788 24.148 18.9000 18.9008 32.6461 18.9 

8 15.4182 17.992 18.0105 11.9964 11.3608 25.0755 10.3 

9 28.5000 38.002 37.2724 27.6527 29.6205 44.3086 28.5 
10 5.9414 3.8676 4.5849 7.0000 3.7394 14.4563 7 

11 6.5270 9.0108 8.9384 11.7889 9.0007 19.9759 9 

12 11.9109 13.4767 13.5926 10.1406 8.6707 21.5763 7.3 
13 5.0000 0.303 1.51 4.8537 1.1195 11.2703 5 

14 8.4268 7.8061 8.2544 7.7404 5.2715 17.0887 8.4 

15 101.2579 108.7481 110.5249 104.5251 111.4279 118.0378 98.7 
16 13.7817 18.648 18.2559 14.4956 13.6236 26.8312 15.6 

17 17.1413 24.0082 23.369 18.0192 17.9404 31.6864 23.9 

18 129.9849 132.1635 135.4825 136.9700 143.8064 144.4587 138.3 

 

 

3.5.  Test3 

In this test, ALO is used to estimate the parameters of the basic COCOMO model using four large 

datasets (dataset1, dataset2, dataset3 and dataset4), with the mean relative error (MRE) being the objective 

function. Results are compared with hybrid bat inspired gravitational search algorithm method called 

(BATGSA), the improved BAT (IBAT), and the BAT algorithms as presented in [12]. 

Results for using these four datasets are as follows: 

 Dataset1 (63 project): ALO was used to estimate the values of parameters of basic COCOMO model, best 

values are a=2.3947, b=0.94614. Table 9 compares among all algorithms, based on MAE. Results show 

that the value of MAE of ALO is worse than the values of the other algorithms. As for the number of best 

estimated efforts, ALO achieved better results than BAT and IBAT, but BATGSA achieved the best 

estimates of (39), as shown in Table 9. 

 Dataset2 (60 project): best values of parameters obtained using ALO are a=3.678, b=1.0474. Table 10 

shows that the value of MAE for ALO is very close to that of BATGSA algorithm which is the best 

among the others. As for estimated efforts, ALO found the highest number of best estimates of (36) as 

presented in Table 10.  

 Dataset3 (93 project): ALO obtained best values of parameters as a=2.1657, b=1.082. Table 11 illustrates 

the MAE and comparison among all algorithms. Results indicate that the value of MAE of ALO is worse 

than the value of MAE for the other algorithms. The values of estimated efforts show that ALO was better 

than BAT and IBAT, but BATGSA found the best estimates of (64) as shown in Table 11. 
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 Dataset4 (15 project): the parameters of basic COCOMO model are estimated using ALO, best values of 

parameters are a=8.3445, b=0.5187. Table 12 resembles a comparison among all algorithms. Results 

designate that the value of MAE for ALO is better than the values of MAE of all other algorithms. Results 

of the estimated efforts illustrate that ALO succeeded in achieving better estimates in all 15 project than 

other methods in comparison with actual effort. 
 

 

Table 8. Measured data and predicted values for Model III and Model IV 
Proj Model III Model IV Actual Cost 

 ALO DABCA SA ALO DABCA SA  
1 117.6553 127.1478 124.794 119.4590 125.3071 124.3563 115.8 

2 63.0827 78.2194 81.6608 64.3798 77.743 81.6143 96 

3 63.7228 79.4325 83.1941 65.1364 79.1179 83.1781 79 
4 73.8163 89.7282 92.8603 75.3859 89.2478 92.757 90.8 

5 39.6000 39.5325 39.0238 38.2954 39.5424 39.6279 39.6 

6 127.4898 98.3011 98.0132 129.8607 97.2828 97.8566 98.4 
7 18.8307 23.3181 23.8838 18.9000 21.3727 23.8446 18.9 

8 13.7344 9.5814 7.7948 12.5379 8.5967 8.2993 10.3 

9 28.4731 30.8556 30.8864 27.7490 29.6235 31.0829 28.5 
10 6.7589 6.96 5.3694 7.0000 6.441 5.7918 7 

11 9.9296 15.4219 16.4089 11.0320 14.9203 16.7359 9 
12 11.2023 9.223 7.6178 10.5595 7.75 7.8978 7.3 

13 5.0000 2.8414 0.2631 4.9585 3.3478 0.9986 5 

14 8.2808 6.9379 5.1496 8.0212 5.6857 5.4465 8.4 
15 101.0944 105.0602 102.5719 101.4476 104.7675 102.7935 98.7 

16 14.6714 17.2108 17.0202 14.6292 15.2793 17.0407 15.6 

17 18.1841 21.7401 21.9803 18.1081 19.8065 21.9698 23.9 
18 130.4215 135.5447 131.2398 132.1492 133.8053 130.9554 138.3 

 

 

Table 9. Comparing algorithms using MAE and best estimates (dataset1) 
 ALO BATGSA IBAT BAT  

MAE 551.2843 433.215 437.537 444.405 
No. of Best Estimates  

from 63 Project 

14 39 9 1 

 

 

Table 10. Comparing algorithms using MAE and best estimates (dataset2) 
 ALO BATGSA IBAT BAT  

MAE 127.6691 127.530 132.486 137.401 

No. of Best Estimates  

from 60 Project 

36 10 4 10 

 
 

As the results show, ALO Algorithm was able to achieve better estimates than the other algorithms 

in Test1 and Test2. As for Test3, ALO succeeded in accomplishing better result than those of BAT and IBAT 

in all comparisons using all four datasets in terms of MAE and the number of best estimated projects for each 

dataset. In the comparison with BATGSA, ALO was able to achieve better results for 2 datasets (dataset2 and 

dataset4) out of the four investigated datasets also in terms of MAE and the number of best estimated projects 

for each dataset. 

 

 

Table 11. Comparing algorithms using MAE and best estimates (dataset3) 
 ALO BATGSA IBAT BAT  

MAE 378.7037 355.386 356.143 365.164 

No. of Best Estimates  

from 93 Project 

18 64 5 6 

 

 

Table 12. Comparing algorithms using MAE and best estimates (dataset4) 
 ALO BATGSA IBAT BAT  

MAE 118.7845 2398.141 4564.934 5528.158 

No. of Best 
Estimates  

from 15 Project 

15 0 0 0 
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4. CONCLUSION  

The parameters of the considered mathematical models are optimized in this work using the ALO 

algorithm. ALO is compared with various algorithms in a three-test approach to assess its efficiency. In  

Test1, the optimized models were evaluated using various evaluation metrics, namely: VAF, MSE, MAE, 

MMRE, RMSE and R2. Results of comparisons with FA, GA, and PSO showed that ALO succeeded in 

achieving the best estimates using Bailey and Basili dataset.  

ALO was compared with DABCA, GA, and SA in Test2, the criteria used in this test were: MMRE, 

MdMRE, and PRED (25). Results also indicated the superiority of ALO over other methods for Bailey and 

Basili dataset. As for Test3, ALO was capable of accomplishing better result than those of BAT and IBAT in 

all comparisons using all four datasets in terms of MAE and the number of best estimated projects for each 

dataset. In the comparing with BATGSA, ALO was able to achieve better results for 2 datasets (dataset2 and 

dataset4) out of the four investigated datasets also in terms of MAE and the number of best estimated projects 

for each dataset. 

The future work focuses on employing ALO algorithm in tuning parameters for other effort 

estimation models. Plants optimization studies have shown in recent years that plants possess intelligent 

behaviors. One of the plant intelligent algorithms can be used in parameters tuning. In addition, new models 

can be suggested for estimating the effort for projects that are influenced by the size and type of the datasets. 
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