
TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 19, No. 3, June 2021, pp. 817~828

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v19i3.16907 817

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

Parameter tuning of software effort estimation models using

antlion optimization

Marrwa Abd-AlKareem Alabajee, Najla Akram AlSaati, Taghreed Riyadh Alreffaee
Department of Software, College of Computer Science and Mathematics, University of Mosul, Iraq

Article Info ABSTRACT

Article history:

Received Jun 6, 2020

Revised Oct 5, 2020

Accepted Oct 15, 2020

 In this work, the antlion optimization (ALO) is employed due to its

efficiency and wide applicability to estimate the parameters of four modified

models of the basic constructive cost model (COCOMO) model. Three tests

are carried out to show the effectiveness of ALO: first, it is used with Bailey

and Basili dataset for the basic COCOMO Model and Sheta’s Model 1 and 2,

and is compared with the firefly algorithm (FA), genetic algorithms (GA),

and particle swarm optimization (PSO). Second, parameters of Sheta’s

Model 1 and 2, Uysal’s Model 1 and 2 are optimized using Bailey and Basili

dataset; results are compared with directed artificial bee colony algorithm

(DABCA), GA, and simulated annealing (SA). Third, ALO is used with

Basic COCOMO model and four large datasets, results are compared with

hybrid bat inspired gravitational search algorithm (hBATGSA), improved

BAT (IBAT), and BAT algorithms. Results of Test1 and Test2 show that

ALO outperformed others, as for Test3, ALO is better than BAT and IBAT

using MAE and the number of best estimations. ALO proofed achieving

better results than hBATGSA for datasets 2 and 4 out of the four datasets

explored in terms of MAE and the number of best estimates.

Keywords:

Antlion optimization algorithm

Parameter tuning

Software effort estimation

The COCOMO model

This is an open access article under the CC BY-SA license.

Corresponding Author:

Marrwa Abd-AlKareem Alabajee

Department of Software

Mosul University

Al Majmoaa Street, Mosul, Iraq

Email: marrwa_zedan@uomosul.edu.iq

1. INTRODUCTION

With over the last few decades, software systems have spread outstandingly and this spread is very

likely to go on much swifter in the future. This is due to the rapid growth in scientific, industrial, and

commercial technologies all around the world [1]. Starting a project with an acceptably estimated size or

effort enables the manger to gain confidence regarding future activities, this is due to the fact that most of the

decisions made throughout the development are affected by the initial estimations. So, the process of cost or

effort estimations is considered as one of the most decisive stages of planning and managing software

projects [2]. The importance of estimating software effort during early stages of software development has

been pointed out so many times. But then again, estimating the software effort is considered to be very hard

at the beginning of a project, this is because people productivity differs, so very little is known about the

software being developed [1].

As the software development cost or effort is progressively rising, software has grown to be the

major cost taken by a system. Many projects such as National Aeronautics and Space Administration (NASA)

or Air Force estimates software development cost to reach 50% of the total cost required. This is due the high

complexity encountered in the NASA software projects’ systems, either hardware or software [3]. All this led

https://creativecommons.org/licenses/by-sa/4.0/
mailto:marrwa_zedan@uomosul.edu.iq

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 817 - 828

818

the way towards the development of a model capable of predicting software effort, and although there are

various accurate models for computing project’s effort, there is still a strong challenge for more accurate and

precise models. Of these powerful models is the constructive cost model (COCOMO) that estimates the effort

of any project during the early stage of the project. This can lead to minimize the overall cost of the project [1].

The process of effort estimation is affected by a large number of parameters; these parameters are

estimated using different techniques. The aim of this work is to use the antlion optimization algorithm,

attributable to its efficiency, in tuning the parameters of the COCOMO model variants, the first is the basic

COCOMO model and the other four are its extensions. After parameter tuning, the obtained results are

compared with the other methods. Most of the work related to this field goes back to 2010, when Aljahdali

and Sheta [3] suggested the use of differential evolution (DE) to estimate the COCOMO model parameters,

these models were tested using NASA software project dataset.

In 2012, Singh and Misra [4] explored the crisp input effect with genetic algorithms (GAs), and

applied a modified version of the COCOMO model to NASA dataset. In the same year, Kundu and Sethi [5]

recommended the use of simulated annealing (SA) to optimize the coefficients of COCOMO II model aiming

for more accurate effort estimations. Later in 2013, Dhiman and Diwaker [6] also used GAs to optimize the

coefficients of COCOMO II model in order to acquire accurate estimations.

Ghatasheh et al. [7], explored the use of the Firefly algorithm in 2015 to optimize the parameters of

three COCOMO based models. Also, in 2015, Gupta and Sharma [8] submitted a new calibrated intermediate

COCOMO model developed using the bat algorithm. The model generated new optimized coefficients, and

results showed that the optimized coefficients gave better results for all project types in terms of mean

magnitude of relative error (MMRE) when compared to coefficients gained using regression analysis.

Khuat and Le [9] in 2016 used artificial bee colony algorithm for parameter tuning according to the

actual effort. Their work was verified with NASA software dataset and was compared to some existing

models. In the same year, Bardsiri and Dorosti [10] increased the accuracy of COCOMO estimation by a

hybrid model that combined bee colony algorithm with the COCOMO estimation method. Their method gave

more efficient coefficient comparative to the basic COCOMO, finding better coefficients can greatly

maximizes the method’s efficiency. Also, in 2016 Girotra and Sharma [11] considered cost driver and the

issue of inaccurate and ambiguous selection of values which leads to inaccurate effort estimations, and they

showed that a small change in the selection of COCOMO cost drivers can cause significant improvements in

metrics such as MMRE. Whereas in 2017, A-Srhan, et al. [1] established a hybrid cuckoo search algorithm

and genetic algorithm called (CSGA) for parameter estimation. A NASA software project dataset was used in

the experiments. Results show that CSGA enhanced the effort estimation accuracy.

In 2018 Nandal and Sangwan [12] introduced a hybrid bat inspired gravitational search algorithm

method called (BATGSA) to optimize the COCOMO model. In the same year, Khatibi and Bardsiri [13]

suggested a combined model for effort estimation. The model was based on particle swarm optimization

algorithm with a linear regression method to optimally discover coefficient. Later in 2018 Dizaj and

Gharehchopogh [14] improved GAs with bat algorithm to study the influence of qualitative factors and false

variables on the total cost estimation. Their model was explored and tested using four datasets with seven

criteria; results showed that the model improved the accuracy of cost estimation.

To give a precise estimated cost for project development, in 2019 Venkataiah et al. [15] suggested

the implementation of hybrid methodology for tuning parameters of COCOMO model. To check the

efficiency of the presented model, they used IBMDPS, COCOMO NASA 2 and DESHARNAIS and

COCOMO 81. As for the employed optimization method, ALO algorithm has been successfully applied in

many areas such as tuning the parameter of control devices in systems of generators’ excitation for the model

of TAFM in 2018 by Špoljarić and Pavić [16]. In this work, the ALO algorithm is employed along with heavy

comparisons in opposite to related work aiming to cover possible gaps; using five models instead of only one

or three, the same also goes for datasets engaged in testing and comparisons, as five different sized datasets

were used to carry out inclusive comparisons among ALO and the other methods.

2. RESEARCH METHOD

This section includes problem description of software effort estimation models, there are many

models suggested for estimating software effort, all of them were derived from the COCOMO Model, in this

section, the software effort estimation models that were utilized in this paper will be described as well as the

mathematical equation of them. In addition, this section includes an explanation of the antlion optimization

algorithm and describes the methodology of this algorithm and explains how can the traps of the antlions

affect the random walk of ant and how can antion building the traps to make the trapped ant sliding down

towards the center of the pits, this mechanism modeled by mathematical equations described below. Finally,

the last subsection represents the mechanism of elitism of this algorithm.

TELKOMNIKA Telecommun Comput El Control

Parameter tuning of software effort estimation models using… (Marrwa Abd-AlKareem Alabajee)

819

2.1. Software effort estimation models
Software cost estimation is the practice of predicting the required effort for developing a project.

Such estimation gives the impression of simplicity, but in reality, it is very difficult and complex. Costs for

software projects depend largely on the project’s nature and characteristics, while the estimation accuracy

depends merely upon the amount of reliable information gained regarding the developed product [5].

Scientific efforts are being carried out for developing new techniques to estimate software cost.

Nearly all estimation models for software cost are algorithmic and expert judgment based. Accuracy

modelling affects estimation accuracy, which is why finding good models for software estimation is the

greatest significant objective for software engineers. In the core of these models is the COCOMO

(constructive cost model), this model is the most frequently used due its simplicity in estimating the

person-month effort for projects at various development stages [5].

The COCOMO model in (1) was first developed in 1984 by Boehm [17]. It has been considered to

be empirical due to the enormous amount of data used in its development; these data are taken from several

projects. In addition, it is found that many project managers employ the COCOMO model; this is because its

details are available unlike other models [18, 19].

E = a(SIZE)b (1)

Parameter values (a) and (b), rely principally on the software project class. Software projects were classified

based on the complexity of the project into three categories: organic, semidetached, and embedded. The

model helps is defining mathematical equations that identify the cost, schedule and quality of a software

product [18].

This work represents an attempt to optimize the parameters of five variations of the COCOMO

model. The first is the basic COCOMO model given in (1). The other two are modifications of the basic

COCOMO model proposed by Sheta [20], both modified models consider the methodologies (ME) to

linearly affect effort. One of them is Sheta’s Model 1 given in (2) and is named (Model I) in this work, the

other is Sheta’s Model 2 given in (3), and named (Model II) here [7].

E = a(Size)b + c (ME) (2)

E = a(Size)b + c(ME) + d (3)

The last two models are proposed by Uysal [21], one of them contain five parameters a, b, c, d and e called

Uysal’s Model 1, and is called (Model III) here, as in (4) [21].

E = a(Size)b + c. MEd + e (4)

The other model called Uysal’s Model 2 and called (Model IV) here, is presented as in (5)

E = a(Size)b + c. MEd + e. ln(ME) + f. ln(Size) + g (5)

In this work, an attempt is conducted to optimize parameters (a, b, c, d, e, f, and g) using the antlion

optimization (ALO) algorithm.

2.2. The antlion optimization algorithm
Insects like antlions belong to a group in the family of myrmelentidae. The two main stages of its

lifecycle are larval and adult stages. The antlion larva leaves trails in the sand in the search of a good location

to construct its trap, which is why it is called "doodlebug". Antlions make a pit in the sand to hide inside it

during hunting as shown in Figure 1 (a). Figure 1 (b) depicts the slipping of the prey towards the bottom, the

antlion instantly grabs it. If it tries to escape, the antlion tosses some sand to the edge of the pit so that the

pray slides into the lowermost of that pit. The larva also weakens the pit’s sides, forcing them to drop and

take the prey with them [22]. The ALO algorithm inspiration comes from the foraging behaviour of the

antlion’s larvae [23].

2.2.1. ALO methodology

Modelling the relationship between antlions and ants requires ants to go through the search space,

where antlions are permitted to hunt them and thus develop their fitness to traps. In nature, ants move in a

stochastic manner in search for food, thus a stochastic function (r(t)) can be defined as in (6), and a random

walk is suitable for modelling the movement of ants as given in (7) [24].

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 817 - 828

820

r(t) = {
1 if rand > 0.5
0 if rand ≤ 0.5

 (6)

where rand is a random number made with uniform distribution in the interval of [0, 1].

X(t) = [(0, cumsum(2r(t1) − 1, . . . , cumsum(2r(tn) − 1)] (7)

where Cumsum is calculates the cumulative sum, n is the maximum number of iteration, and t shows the iteration,

(a) (b)

Figure 1. Behaviour of hunting [23]

A matrix 𝑀𝐴𝑛𝑡 is used to store the position for all ants as in (8); this matrix will be utilized

throughout optimization [23].

MAnt = [

A1,1 A1,2 ⋯ A1,d

⋮ ⋮ ⋯ ⋮
An,1 An,2 ⋯ An,d

] (8)

Ants are noted to be similar to the particles in PSO or individuals in GA, an ant’s position denote a particular

solution parameter. The 𝑀𝐴𝑛𝑡 Matrix is used to register the post of all ants throughout optimization. To

evaluate each ant, a function of fitness should be employed, matrix 𝑀𝑂𝐴 gathers the fitness values for all ants

as in (9) [23]. Moreover, antlions are also assumed to be hiding someplace in the search space, and with the

aim of saving their positions and fitness values, two matrices are used, 𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛 and 𝑀𝑂𝐴𝐿 [23, 25].

MOA = [

f(A1,1A1,2 … A1,d)

⋮ … ⋯
f(An,1An,2 … An,d)

] (9)

Basically, all random walks are established using (7), the update of positions for ants is done using

the random walk at each and every stage of optimization. Nevertheless, updating position of ants cannot be

directly accomplished using (7). So, to restrict the random walks of ants in the search space, (10) is used to

normalize them and it must be applied in all iterations to ensure that the random walk occur inside the search

space [22, 23]. Where, ai is the minimum of random walk for the ith variable, 𝑏𝑖 is the maximum of random

walk in ith variable, 𝐶𝑖
𝑡 is the minimum of ith variable at ith iteration, di

t is the maximum of ith variable at ith

iteration.

Xi
t =

(Xi
t−ai)×(di−Ci

t)

(di
t−ai)

+ Ci (10)

2.2.2. Pits and traps of antlions

Antlions’ traps affect random walks of ants; this assumption is modelled mathematically using two

proposed equations in (11) and (12). These two equations show that ants walk randomly in a hyper sphere

expressed by C and D vectors nearby a selected antlion [22, 25]. Where 𝐴𝑛𝑡𝑙𝑖𝑜𝑛j
t is the position of selected

jthAntlion at tth iteration. The selection of antlions is based on their fitness using the roulette wheel. This

mechanism gives high chances to the fitter antlions to catch ants. Figure 2 illustrates how ants are expected to

be trapped in only one particular antlion [23].

Ci
t = Antlionj

t + Ct (11)

TELKOMNIKA Telecommun Comput El Control

Parameter tuning of software effort estimation models using… (Marrwa Abd-AlKareem Alabajee)

821

Di
t = Antlionj

t + Dt (12)

Figure 2. Random walk of an ant inside the trap

2.2.3. Sliding towards antlions

Antlions are now capable of building traps relatively to their fitness, where ants are required to

move in random. Yet, once antlions recognize that an ant is trapped, they begin to throw sands away from the

centre of the pit. This act slides down the escaping trapped ant, and to model this behaviour, the radius of the

hyper-sphere for ants' random walks is reduced according to the ratio calculate by [22] and given in (13).

Based on this ratio, two reductions are proposed as in (14) and (15) [26, 27].

I = 10𝑤 .
t

T
 (13)

where t resembles current iteration, T gives the maximum number of iterations, and w is a constant defined

based on the current iteration (w=2 when t>0.1T, w=3 when t>0.5T, w=4 when t>0.75 T, w=5 when

t>0.9T, and w=6 when t>0.95T). Basically, the constant w can adjust the accuracy level of exploitation [23].

Ct = Ct

I
 (14)

dt =
dt

I
 (15)

Hunting comes to an end when an ant arrives at the bottommost area of the pit and is imprisoned by

the jaws of the antlion. Subsequently, an antlion starts to drag the ant into the sand and ingest its body. To

simulate such a process, an assumption has to be made that prey catching take place when ants grow fitter

(sink in sand) than the correspondent antlion. Accordingly, the antlion has to enhance its chance of catching

new prey by updating its position to the latest known position of the hunted ant; this is given in (16) [23].

Where t is the current iteration, 𝐴𝑛𝑡𝑖
𝑡 : is the position of ith ant at tth iteration.

Antlionj
t = Anti

t if f(Anti
t) > f(Antlionj

t) (16)

2.2.4. Elitism

Best gained solutions are at risk of being lost through subsequent iterations; that is why elitism is

needed. It allows best solutions to be kept through the iterations of the process. Being the fittest antlion, elite

can affect the movements of each ant during all iterations. Hence, every ant is presumed to walk randomly

around the antlion using roulette wheel and elitism concurrently as in (17) [23, 27].

Anti
t =

ra
t +re

t

2
 (17)

2.2.5. ALO algorithm for parameter tuning

The workflows of the ALO algorithm can be graphically represented to describe the sequential or

concurrent flows of activities of the algorithm in parameter tuning as in Figure 3. This figure shows the

Activity diagram of ALO algorithm, the sequence of the activities, beginning from the starting point until the

finishing point of the activity. To explain the requirements of ALO algorithm in tuning parameters, the use

case diagram is modeled the functionality of the system using actors and uses case as illustrated in Figure 4.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 817 - 828

822

Figure 3. Activity diagram of ALO algorithm in tuning parameters

Figure 4. Use case diagram of ALO algorithm in tuning parameters

3. RESULTS AND ANALYSIS

After describing the ALO in the previous section, this section will demonstrate the datasets that are

used in this study. This is done along with the evaluation criteria that are widely used to evaluate the quality of

software effort estimation models and experiments. Results are analysed and compared with other methods.

3.1. Experimental datasets

The previously discussed algorithm is implemented using MATLAB 2017 in this work. Actual

common datasets are used during the analysis; and are downloaded from the promise data repository, they are:

TELKOMNIKA Telecommun Comput El Control

Parameter tuning of software effort estimation models using… (Marrwa Abd-AlKareem Alabajee)

823

 Bailey and Basili [28], widely employed in many of the research studies, such as Sheta [20] and

Uysal [21]. It consists of two independent variables: line of code (LOC) and methodology (ME), in

addition to one dependent variable: measured effort (man-months).

 Dataset1 for the cocomo81 dataset covering 63 projects [29].

 Dataset2 for NASA dataset containing 60 projects [30].

 Dataset3 for NASA dataset with 93 project [31].

 Dataset4 for kemerer dataset having 15 projects [32].

Each software project has its actual cost available in the dataset; it is used in comparisons with

estimated costs so as to determine the mean relative error for projects. We conducted three tests on the

aforementioned data sets. In the first and second tests we used Bailey and Basili dataset but on different

models, in first test we optimize parameters for three models: basic COCOMO model, Sheta’s Model (named

Model I) and Sheta’s Model 2 (named Model II).In second test we optimize the parameters of four models

Sheta’s Model 1 (Model I), Sheta’s Model 2 (Model II), Uysal’s Model 1 (Model III) and Uysal’s Model 2

(Model IV).The other four datasets were used in the third test to estimate the parameters of the basic

COCOMO model.

3.2. Measures for evaluation

A number of evaluation criteria is used to evaluate the efficiency of the developed model, they are:

 Variance-Accounted-For (VAF) given in (18) [1]

VAF = [1 −
var(y−y′)

var (y)
] ∗ 100% (18)

 Mean magnitude of relative error (MMRE) described in (19) [1]

𝑀𝑀𝑅𝐸 =
1

𝑁
∑

|𝑦𝑖− �́�𝑖|

𝑦𝑖

𝑁
𝑖=1 (19)

 The prediction at level N (PRED(N)) stated in (20) [9]

PRED(L) =
1

N
∑ {

 1 if MRE ≤ L
0 otherwise

N
i=1 ∗ 100 (20)

 Mean absolute error (MAE) as in (21) [9]

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐸 − �̂�|𝑁

𝑖=1 (21)

 Mean squares error (MSE) as in (22) [7]

MSE =
1

n
∑ (y − y′)2n

i=1 (22)

 The correlation coefficient (R2) as in (23) [7]

𝑅2 =
∑ (𝑦𝑖−�̅�𝑖)2− ∑ (𝑦𝑖−�́�𝑖)2𝑛

𝑖=1
𝑛
𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

 (23)

 Root mean square error-RMSE as in (24) [33]

RMSE = √
1

N
∑ (Ei − Êi)

2N
i=1 (24)

 Median magnitude of relative error (MdMRE) as in (25) [33]

𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(
1

𝑁
∑

|𝑦𝑖− �́�𝑖|

𝑦𝑖

𝑁
𝑖=1) (25)

3.3. Test1

The dataset of Bailey and Basili is employed along with ALO to optimize parameters for three

models: basic COCOMO model, Sheta’s Model (named Model I) and Sheta’s Model 2 (named Model II).

The range of parameters used here are as presented in [20] and [7]. For comparison purposes, the population

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 817 - 828

824

size or number of antlion agents is set to 100 and the iteration number is set to 500 according to that of [7],

for the same purpose, the mean absolute error (MAE) criteria is employed as the objective function.

The data are divided into training and testing data; testing data is used to evaluate the optimized

models by means of the following evaluation metrics VAF, MSE, MAE, MMRE, RMSE and R2. Results are

compared with firefly algorithm (FA), genetic algorithm (GA), and particle swarm optimization (PSO). The

ALO is applied to obtain the optimizing parameters for the three models, results are shown in Table 1.

Tables 2, 3, and 4 show the evaluation results for testing the three models along with the comparison between

ALO, FA, GA and PSO. From the results is seen that ALO exceeds FA, GA and PSO in the optimization of

all models with all the evaluation metrics.

Table 1. Optimizing parameters using ALO
Models Value of parameters

Basic COCOMO Model A=1.9391, B=0.90839

Model I A=1.9174, B=0.90948, C=0.024546

Model II A=0.77671, B=1.101, C=-0.11225, D=8.7914

Table 2. Comparison for basic COCOMO model
 ALO FA GA PSO

VAF 99.18% 98.16% 97.97% 97.98%
MSE 27.62 59.14 63.96 63.68

MAE 3.74 5.65 6.06 6.04

MMRE 0.06 0.11 0.13 0.12
RMSE 5.25 7.67 8.00 7.98

R2 0.9964 0.9781 0.9763 0.9765

Table 3. Comparison for Model I Table 4. Comparison for Model II
 ALO FA GA PSO

VAF 99.14% 98.62% 97.97% 98.52%

MSE 26.93 47.74 98.17 60.07

MAE 3.76 5.56 7.70 5.63
MMRE 0.07 0.24 0.29 0.23

RMSE 5.19 6.82 9.39 7.72

R2 0.9963 0.9823 0.9637 0.9778

 ALO FA GA PSO

VAF 99.39% 98.63% 97.60% 98.70%

MSE 21.85 45.02 114.79 52.85

MAE 3.45 5.57 7.83 5.29
MMRE 0.10 0.24 0.27 0.21

RMSE 4.67 6.62 9.86 7.19

R2 0.9976 0.9833 0.9575 0.9805

3.4. Test2

In this section, the parameters of four models Sheta’s Model 1 (Model I), Sheta’s Model 2

(Model II), Uysal’s Model1 (Model III) and Uysal’s Model 2 (Model IV) are optimized. Bailey and Basili dataset

is also used in this test, ALO parameter setting is set identical to [9], the iteration number is set to 100 and the

population size is set to 10. The optimized parameters are shown in Table 5 using ALO and the four models.

Table 5. Best values of model's parameters using ALO
Models Best values of parameters

Model I A=1.0558, B=1.0378, C=0.097135
Model II A=1.01356, B= 1.06415, C= -0.5, D=16.6215

Model III A=1.172, B=1.0201, C= -0.11415, D= 1.2049, E=8.8288

Model IV A=1.0442, B=1.0484, C=-0.2539, D=1.1643, E=2.3631, F=0.13983, G=6.9971

Initially, the accuracy of the models is assessed using MMRE, MdMRE, and PRED (25) criteria.

Table 6 displays the gained results of the models using ALO in a comparison with GA for (Model I and

Model II) and SA for (Model III and Model IV) that is given in [9] using directed artificial bee colony

algorithm (DABCA) for the same four models. Results presented in Table 6 indicate that for Model I, the

MMRE and MdMRE values for ALO are better than those of the others algorithms, PRED(25) is the same for

all. This conclusion can also be drawn about Model II and Model III, with PRED(25) being better in both

models. In Model IV however, ALO has the same good results in terms of MMRE and MdMRE but the

PRED(25) value of DABCA is better than that of ALO.

Table 7 displays the predicted and the actual effort values for Model I and Model II using ALO,

DABCA, and GA for (18) projects. For Model I, ALO found better estimates in term of the actual for (10)

TELKOMNIKA Telecommun Comput El Control

Parameter tuning of software effort estimation models using… (Marrwa Abd-AlKareem Alabajee)

825

projects, while DABCA found (6), and GA found only (2). As for Model II, ALO achieved (11) better

estimated projects, DABCA achieved (4), and GA achieved (3) only. Table 8 gives the same values for

Model III and Model IV using ALO, DABCA, and SA for the same (18) projects. In Model III, ALO was

capable of finding best estimates for (10) projects, DABCA obtained (5), and SA found (3). On the other hand,

in Model IV, ALO succeeded in finding (8) best estimated projects, DABCA found (6), and SA found just (4).

Table 6. Results based on MMRE, MdMRE and PRED(25)
Model PRED(25) MdMRE(%) MMRE(%)

Model I (GA) 61.11 14.5 23.79

Model I (DABCA) 61.11 14.86 26.03

Model I (ALO) 61.11 13.39 18.43
Model II (GA) 38.89 49.27 63.64

Model II (DABCA) 77.78 11.48 17.13

Model II (ALO) 77.77 7.4 13.60
Model III (SA) 77.78 8.2 20.04

Model III (DABCA) 83.33 8.65 14.20

Model III (ALO) 77.77 5.82 13.55

Model IV (SA) 77.78 8.63 18.80

Model IV (DABCA) 83.33 7.07 13.21

Model IV (ALO) 83.33 5.37 13.36

Table 7. Measured data and predicted values for Model I and Model II
Proj Model I Model II Actual Cost

 ALO DABCA GA ALO DABCA GA
1 15.7999 122.617 124.8585 123.6537 130.6186 134.0202 115.8

2 58.3195 75.9229 74.8467 66.5000 71.8103 84.1616 96

3 58.6023 76.6194 75.4852 67.4139 72.7508 85.0112 79
4 68.8641 86.1377 85.4349 78.0100 83.9645 94.9828 90.8

5 40.7873 51.0323 50.5815 38.4189 41.9945 56.658 39.6

6 125.1979 98.4043 99.0504 134.6901 98.378 107.2609 98.4
7 17.4059 24.8788 24.148 18.9000 18.9008 32.6461 18.9

8 15.4182 17.992 18.0105 11.9964 11.3608 25.0755 10.3

9 28.5000 38.002 37.2724 27.6527 29.6205 44.3086 28.5
10 5.9414 3.8676 4.5849 7.0000 3.7394 14.4563 7

11 6.5270 9.0108 8.9384 11.7889 9.0007 19.9759 9

12 11.9109 13.4767 13.5926 10.1406 8.6707 21.5763 7.3
13 5.0000 0.303 1.51 4.8537 1.1195 11.2703 5

14 8.4268 7.8061 8.2544 7.7404 5.2715 17.0887 8.4

15 101.2579 108.7481 110.5249 104.5251 111.4279 118.0378 98.7
16 13.7817 18.648 18.2559 14.4956 13.6236 26.8312 15.6

17 17.1413 24.0082 23.369 18.0192 17.9404 31.6864 23.9

18 129.9849 132.1635 135.4825 136.9700 143.8064 144.4587 138.3

3.5. Test3

In this test, ALO is used to estimate the parameters of the basic COCOMO model using four large

datasets (dataset1, dataset2, dataset3 and dataset4), with the mean relative error (MRE) being the objective

function. Results are compared with hybrid bat inspired gravitational search algorithm method called

(BATGSA), the improved BAT (IBAT), and the BAT algorithms as presented in [12].

Results for using these four datasets are as follows:

 Dataset1 (63 project): ALO was used to estimate the values of parameters of basic COCOMO model, best

values are a=2.3947, b=0.94614. Table 9 compares among all algorithms, based on MAE. Results show

that the value of MAE of ALO is worse than the values of the other algorithms. As for the number of best

estimated efforts, ALO achieved better results than BAT and IBAT, but BATGSA achieved the best

estimates of (39), as shown in Table 9.

 Dataset2 (60 project): best values of parameters obtained using ALO are a=3.678, b=1.0474. Table 10

shows that the value of MAE for ALO is very close to that of BATGSA algorithm which is the best

among the others. As for estimated efforts, ALO found the highest number of best estimates of (36) as

presented in Table 10.

 Dataset3 (93 project): ALO obtained best values of parameters as a=2.1657, b=1.082. Table 11 illustrates

the MAE and comparison among all algorithms. Results indicate that the value of MAE of ALO is worse

than the value of MAE for the other algorithms. The values of estimated efforts show that ALO was better

than BAT and IBAT, but BATGSA found the best estimates of (64) as shown in Table 11.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 817 - 828

826

 Dataset4 (15 project): the parameters of basic COCOMO model are estimated using ALO, best values of

parameters are a=8.3445, b=0.5187. Table 12 resembles a comparison among all algorithms. Results

designate that the value of MAE for ALO is better than the values of MAE of all other algorithms. Results

of the estimated efforts illustrate that ALO succeeded in achieving better estimates in all 15 project than

other methods in comparison with actual effort.

Table 8. Measured data and predicted values for Model III and Model IV
Proj Model III Model IV Actual Cost

 ALO DABCA SA ALO DABCA SA
1 117.6553 127.1478 124.794 119.4590 125.3071 124.3563 115.8

2 63.0827 78.2194 81.6608 64.3798 77.743 81.6143 96

3 63.7228 79.4325 83.1941 65.1364 79.1179 83.1781 79
4 73.8163 89.7282 92.8603 75.3859 89.2478 92.757 90.8

5 39.6000 39.5325 39.0238 38.2954 39.5424 39.6279 39.6

6 127.4898 98.3011 98.0132 129.8607 97.2828 97.8566 98.4
7 18.8307 23.3181 23.8838 18.9000 21.3727 23.8446 18.9

8 13.7344 9.5814 7.7948 12.5379 8.5967 8.2993 10.3

9 28.4731 30.8556 30.8864 27.7490 29.6235 31.0829 28.5
10 6.7589 6.96 5.3694 7.0000 6.441 5.7918 7

11 9.9296 15.4219 16.4089 11.0320 14.9203 16.7359 9
12 11.2023 9.223 7.6178 10.5595 7.75 7.8978 7.3

13 5.0000 2.8414 0.2631 4.9585 3.3478 0.9986 5

14 8.2808 6.9379 5.1496 8.0212 5.6857 5.4465 8.4
15 101.0944 105.0602 102.5719 101.4476 104.7675 102.7935 98.7

16 14.6714 17.2108 17.0202 14.6292 15.2793 17.0407 15.6

17 18.1841 21.7401 21.9803 18.1081 19.8065 21.9698 23.9
18 130.4215 135.5447 131.2398 132.1492 133.8053 130.9554 138.3

Table 9. Comparing algorithms using MAE and best estimates (dataset1)
 ALO BATGSA IBAT BAT

MAE 551.2843 433.215 437.537 444.405
No. of Best Estimates

from 63 Project

14 39 9 1

Table 10. Comparing algorithms using MAE and best estimates (dataset2)
 ALO BATGSA IBAT BAT

MAE 127.6691 127.530 132.486 137.401

No. of Best Estimates

from 60 Project

36 10 4 10

As the results show, ALO Algorithm was able to achieve better estimates than the other algorithms

in Test1 and Test2. As for Test3, ALO succeeded in accomplishing better result than those of BAT and IBAT

in all comparisons using all four datasets in terms of MAE and the number of best estimated projects for each

dataset. In the comparison with BATGSA, ALO was able to achieve better results for 2 datasets (dataset2 and

dataset4) out of the four investigated datasets also in terms of MAE and the number of best estimated projects

for each dataset.

Table 11. Comparing algorithms using MAE and best estimates (dataset3)
 ALO BATGSA IBAT BAT

MAE 378.7037 355.386 356.143 365.164

No. of Best Estimates

from 93 Project

18 64 5 6

Table 12. Comparing algorithms using MAE and best estimates (dataset4)
 ALO BATGSA IBAT BAT

MAE 118.7845 2398.141 4564.934 5528.158

No. of Best
Estimates

from 15 Project

15 0 0 0

TELKOMNIKA Telecommun Comput El Control

Parameter tuning of software effort estimation models using… (Marrwa Abd-AlKareem Alabajee)

827

4. CONCLUSION

The parameters of the considered mathematical models are optimized in this work using the ALO

algorithm. ALO is compared with various algorithms in a three-test approach to assess its efficiency. In

Test1, the optimized models were evaluated using various evaluation metrics, namely: VAF, MSE, MAE,

MMRE, RMSE and R2. Results of comparisons with FA, GA, and PSO showed that ALO succeeded in

achieving the best estimates using Bailey and Basili dataset.

ALO was compared with DABCA, GA, and SA in Test2, the criteria used in this test were: MMRE,

MdMRE, and PRED (25). Results also indicated the superiority of ALO over other methods for Bailey and

Basili dataset. As for Test3, ALO was capable of accomplishing better result than those of BAT and IBAT in

all comparisons using all four datasets in terms of MAE and the number of best estimated projects for each

dataset. In the comparing with BATGSA, ALO was able to achieve better results for 2 datasets (dataset2 and

dataset4) out of the four investigated datasets also in terms of MAE and the number of best estimated projects

for each dataset.

The future work focuses on employing ALO algorithm in tuning parameters for other effort

estimation models. Plants optimization studies have shown in recent years that plants possess intelligent

behaviors. One of the plant intelligent algorithms can be used in parameters tuning. In addition, new models

can be suggested for estimating the effort for projects that are influenced by the size and type of the datasets.

ACKNOWLEDGEMENTS

The authors are very grateful to the University of Mosul/ College of Computer Science and

Mathematics for their provided facilities, which helped to improve the quality of this work.

REFERENCES
[1] A. Abu-Srhan, A. Sleit and A. Sharieh, "Parameters Estimation of the COCOMO Model Using Hybrid Algorithm

of Genetic Algorithm and Cuckoo Search Algorithm," Proceedings of the New Trends in Information Technology,

University of Jordan, Amman, pp. 67-73, 2017.

[2] A. Hussain, M. Mohanapriya and S. Rajalakshmi, "Software Effort Estimation Using Modified Fuzzy C Means

Clustering and Hybrid ABC-MCS Optimization in Neural Network," Journal of Intelligent Systems, vol. 29, no. 1,

pp. 251-263, 2018.

[3] S. Aljahdali and A. F. Sheta, "Software Effort Estimation by Tuning COCOMO Model Parameters Using

Differential Evolution," ACS/IEEE International Conference on Computer Systems and Applications - AICCSA

2010, Hammamet, Tunisia, pp. 1-6, 2010.

[4] B. K. Singh and A. K. Misra, "Software Effort Estimation by Genetic Algorithm Tuned Parameters of Modified

Constructive Cost Model for NASA Software Projects," International Journal of Computer Applications, vol. 59,

no. 9, pp. 22-26, 2012.

[5] A. Kundu and V. Sethi, "Parameter Estimation of COCOMO II using Simulated Annealing," International Journal

of Science and Research (IJSR), vol. 3, no. 8, pp. 530-534, 2012.

[6] A. Dhiman and C. Diwaker, "Optimization of COCOMO II Effort Estimation using Genetic Algorithm," American

International Journal of Research in Science, Technology, Engineering & Mathematics, vol. 3, no. 2, pp. 208-212,

2013.

[7] N. Ghatasheh, H. Faris, I. Aljarah and R. M. H. Al-Sayyed, "Optimizing Software Effort Estimation Models Using

Firefly Algorithm," Journal of Software Engineering and Applications, vol. 8, no. 3, pp. 133-142, 2015.

[8] N. Gupta and K. Sharma, "Optimizing Intermediate COCOMO Model Using BAT Algorithm," 2nd International

Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, 2015, pp. 1649-1653.

[9] T. T. Khuat and M. L. Hanh, "Optimizing Parameters of Software Effort Estimation Models using Directed

Artificial Bee Colony Algorithm," Informatica, vol. 40, pp. 427-436, 2016.

[10] V. K. Bardsiri and M. Dorosti, "An Improved COCOMO based Model to Estimate the Effort of Software Projects,"

Journal of Advances in Computer Engineering and Technology, vol. 2, no. 2, 2016.

[11] S. Girotra, and K. Sharma, "Tuning of Software Cost Drivers using Bat Algorithm," 3rd International Conference

on Computing for Sustainable Global Development (INDIACom). IEEE. 16-18 March 2016. New Delhi, India,

2016, pp. 1051-1056.

[12] D. Nandal and O. P. Sangwan, "Software Cost Estimation by Optimizing COCOMO Model Using Hybrid

BATGSA Algorithm," International Journal of Intelligent Engineering and Systems, vol. 11, no. 4, pp. 250-263,

2018.

[13] E. Khatibi and V. K. Bardsiri, "An Improved Algorithmic Method for software Development Effort Estimation,"

Journal of Advances in Computer Research, vol. 9, no.1, pp. 40-49, 2018.

[14] S. A. A. Dizaj and F. S. Gharehchopogh, "A New Approach in Software Cost Estimation by Improving Genetic

Algorithm with Bat Algorithm," Journal of Computer & Robotics. vol. 11, no. 2, pp. 17-30,2018.

[15] V. Venkataiah, R. Mohanty and M. Nagaratna, "Application of Hybrid Techniques to Forecasting

Accurate Software Cost Estimation," International Journal of Recent Technology and Engineering (IJRTE), vol. 7,

no. 6S, pp. 408-412, 2019.

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 817 - 828

828

[16] T. Špoljarić and I. Pavić, "Performance Analysis of an Ant Lion Optimizer in Tuning Generators' Excitation

Controls in Multi Machine Power System," 41st International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), Opatija, 2018, pp. 1040-1045.

[17] B. W. Boehm, "Software Engineering Economics," IEEE Transactions on Software Engineering, vol. 10, no. 1,

pp. 4-21, 1984.

[18] N. Sharma, A. Sinhal and B. Verma, "Software Assessment Parameter Optimization using Genetic Algorithm,"

International Journal of Computer Applications, vol. 72, no. 7, pp. 8-13, 2013.

[19] I. Z. Quba, "Software Projects Estimation using Neural Networks," M.Sc. Thesis. College of Computer Sciences &

Mathematics, University of Mosul. (In Arabic), 2012.

[20] A. F. Sheta, "Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software

Projects," Journal of Computer Science, DOI: 10.3844/jcssp.2006.118.123, vol. 2, no. 2, pp. 118-123, 2006.

[21] M. Uysal, "Estimation of the effort component of the software projects using simulated annealing algorithm,"

World Academy of Science, Engineering and Technology, vol. 41, pp. 258–261, 2008.

[22] M. Petrović, et al., "The Ant Lion Optimization Algorithm for Flexible Process Planning," Journal of Production

Engineering, vol. 18, no. 2, pp. 65-68, 2015.

[23] S. Mirjalili, "The Ant Lion Optimizer," Advances in Engineering Software, vol. 83, pp. 80-98, 2015.

[24] R. Satheeshkumar and R. Shivakumar, "Ant Lion Optimization Approach for Load Frequency Control of Multi-

Area Interconnected Power Systems," Journal of Scientific Research Publishing, vol. 7, no. 9, pp. 2357-2383,

2016.

[25] S. Talatahari, "Optimum Design of Skeletal Structures Using Ant Lion Optimizer," International Journal of

Optimization in Civil Engineering, vol. 6, no. 1, pp. 13-25, 2016.

[26] M. Nischal and S. Mehta, "Optimal Load Dispatch Using Ant Lion Optimization," Int. Journal of Engineering

Research and Applications, ISSN: 2248-9622, vol. 5, no. 8, (Part - 2) August, pp. 10-19, 2015.

[27] E. S. Ali, S. M. Abd Elazima and A.Y. Abdelaziz, "Ant Lion Optimization Algorithm for optimal location and

sizing of renewable distributed generations," Renewable Energy, vol. 101, pp. 1311 -1324, 2017.

[28] J. W. Bailey and V. R. Basili, "A Meta Model for Software Development Resource Expenditure," Proceedings of

the 5th International Conference on Software Engineering, 1981, pp. 107-116.

[29] http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff.

[30] http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_v1.arff.

[31] http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_2.arff.

[32] C. F. Kemerer, "An Empirical Validation of Software Cost Estimation Models," Communications of the

Association for Computing Machinery. vol. 30, no. 5, pp. 416–429, 1987.

[33] T. Urbanek, Z. Prokopova, R. Silhavy and V. Vesela, "Prediction Accuracy Measurements as a Fitness Function for

Software Effort Estimation," Springer Plus, vol. 4, no. 778, pp. 1-17, 2015.

http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff
http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_v1.arff
http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_2.arff

