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 Rikitake dynamo system (1958) is a famous two-disk dynamo model that is 

capable of executing nonlinear chaotic oscillations similar to the chaotic 

oscillations as revealed by palaeomagnetic study. First, we detail the Rikitake 

dynamo system, its signal plots and important dynamic properties. Then a 

circuit design using Multisim is carried out for the Rikitake dynamo system. 

New synchronous quasi-sliding mode control (QSMC) for Rikitake chaotic 

system is studied in this paper. Furthermore, the selection on switching 

surface and the existence of QSMC scheme is also designed in this paper. 

The efficiency of the QSMC scheme is illustrated with MATLAB plots. 
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1. INTRODUCTION 

Many advances of chaos theory and chaotic systems have been actively carried out in the last few 

decades [1]-[3]. Classical examples of 3-D chaotic systems include the Rikitake dynamo system [4], and Liu 

system [5]. New chaotic systems have been also reported in the literature such as Sambas systems [6]-[9], 

Chen system [10], and Sprott system [11]. Chaos theory has many applications of nonlinear chaotic 

oscillators [12]-[15]. Idowu et al. [13] discussed the adaptive control and circuit implementation of a new 3-

dimensional chaotic system with quadratic, cubic and quartic nonlinearities. Hu et al. (2 discussed adaptive 

control methods for Chua’s chaotic system [15].  

Chaotic systems have applications in neuron models [16]-[18]. Akaishi et al. [16] presented a new 

theoretical model for the nonlinear clinical and pathological manifestations in multiple sclerosis.  

https://creativecommons.org/licenses/by-sa/4.0/
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Luo et al. [17] presented new results for the adaptive passive control of the FitzHugh-Nagumo chaotic 

neuron model. Hong [18] used adaptive control to discuss the chaos in neurons and devise synchronization 

schems for Hindmarsh–Rose neuron model.  

Chaotic systems have applications in neural networks [19]-[21]. Akhmet and Fen [19] discussed the 

generation of cyclic and toroidal chaos by Hopfield neural networks. Wang et al. [20] derived new results for 

the synchronization of fuzzy cellular neural network attractors via adaptive control method. Bao et al. [21] 

derived new results for memristive neural networks with threshold electromagnetic induction. 

 In order to enable synchronisation of chaotic systems for encryption schemes and secure 

communication devices, many useful control techniques have been devised in the literature such as adaptive 

control [22], [23], active control [24], [25], fuzzy control [26], [27], backstepping control [28], [29], and 

sliding mode control [30], [31]. Sliding mode control (SMC) is a special robust approach for variable 

structure control (VSC) knowledge. Since SMC technique-based control law is effective and guarantees both 

the occurrence of sliding motion and controlling of the nonlinear systems [32], [33]. So, in this paper, an 

improved SMC approach is proposed for the synchronous control of chaotic system with Lyapunov-based 

SMC strategy. The chattering problem, which appeared in these designed sliding mode control laws, is 

handled thanks to a proposed quasi sliding mode control (QSMC) technique [34], [35]. 

In this research work, quasi-sliding mode control (QSMC) approach to design the synchronous 

control of chaotic system with Lyapunov-based SMC strategy is proposed. In this work, a QSMC based 

master and slave Rikitake chaotic circuits are proposed to guarantee asymptotic synchronization. QSMC 

design has advantages of fast convergence, robustness and unperturbed by system uncertainties. MATLAB 

plots are exhibited to illustrate the efficiency of the proposed QSMC control scheme. 
 
 

2. RIKITAKE CHAOTIC DYNAMO SYSTEM 

Explaining research chronological, including research design, research procedure (in the form of 

algorithms, Pseudocode or other), how to test and data acquisition [1]-[3]. The description of the course of 

research should be supported references, so the explanation can be accepted scientifically [2], [4]. Rikitake 

chaotic dynamo system (1958) is described as follows [4]: 
 

{

�̇� = −𝑏𝑥 + 𝑧𝑦
�̇� = −𝑏𝑦 + (𝑧 − 𝑎)𝑥
�̇� = 1 − 𝑥𝑦

        (1) 

 

We use the notation 𝑋 = (𝑥, 𝑦, 𝑧) to represent the state of the Rikitake system (1). Here, ,a b  are positive 

parameters.  

The Rikitake dynamo system is a famous model that is capable of executing nonlinear chaotic 

oscillations similar to the chaotic oscillations as revealed by palaeomagnetic study. The behaviour of two 

disk dynamos coupled to one another was examined by Rikitake [4] in relation to the earth's magnetic field. It 

was found by Rikitake [4] that reversals of electric current and magnetic field occur in the Rikitake two-disk 

dynamo system (1) unlike the case of a single disk dynamo. 

In this work, we assume that (𝑎, 𝑏) = (3,1) and 𝑋(0) = (1,1,1). The Lyapunov exponents of the 

Rikitake system (1) are obtained using MATLAB as: 
 

𝐿1 = 0.1661, 𝐿2 = 0, 𝐿3 = −2.1661      (2) 
 

Since 𝐿1 > 0and 𝐿1 + 𝐿2 + 𝐿3 < 0, we conclude that the Rkikitake system (1) is chaotic and dissipative. 

Thus, the system orbits of the Rikitake dynamo system (1) are ultimately confined into a specific limit set of 

zero volume and the asymptotic motion settles onto a chaotic attractor. The Kaplan-Yorke dimension of the 

Rikitake dynamo system (1) is found as; 
 

𝐷𝐾𝑌 = 2 +
𝐿1+𝐿2

|𝐿3|
= 2.0767       (3) 

 

This shows the high complexity of the Rikitake dynamo system (1). We find that the Rikitake system (1) is 

invariant under the coordinates transformation, 
 

(𝑥, 𝑦, 𝑧) ↦ (−𝑥,−𝑦, 𝑧)         (4) 
 

The invariance holds for all values of the parameters 𝑎 and 𝑏. This shows that the Rikitake dynamo  

system (1) has rotation symmetry about z-axis. The equilibrium points of the Rikitake dynamo system (1) are 

easily obtained as: 
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𝐸1 = [
1.8174
0.5503
3.3028

] ,  𝐸2 = [
−1.8174
−0.5503
3.3028

]       (5) 

 

A simple calculation shows that 𝐸1 and 𝐸2are saddle-foci equilibrium points. Hence both are 

unstable. Thus, the Rikitake dynamo system exhibits self-excited chaotic oscillations. The phase portraits of 

the Rikitake dynamo system (1) are showed in Figure 1. From this figure, we see that the Rikitake dynamo 

system (1) exhibits a double-scroll chaotic attractor. 
 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 1. Numerical simulations of the Rikitake dynamo system (1) for (𝑥(0), 𝑦(0), 𝑧(0)) = (1,1,1) and 

(𝑎, 𝑏) = (3,1): (a) x - y plane, (b) y - z plane, (c) x - z plane, and (d) R3 

 

 

3. CIRCUIT IMPLEMENTATION OF THE RIKITAKE DYNAMO SYSTEM 

Circuit design of chaotic systems has important applications in engineering [36], [37]. Zhang and 

Liao [38] discussed chaos synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits 

with memristor synapse and they gave a design of the memristor-based circuit of FitzHugh-Nagumo model. 

The Rikitake dynamo system (1) is designed in Multisim by making use of the electronic components such as 

capacitors, resistors, operational amplifiers TL082CD and analog multipliers AD633JN.  

For the Multisim circuit design, operating voltage of the operational amplifier is ±15𝑉. The 𝑥, 𝑦, 𝑧 

signals of the Rikitake dynamo system (1) are emulated by the output voltages of the integrators. For the 

circuit implementation of the Rikitake system (1), we adopt the following scaling of the signals 𝑥, 𝑦, 𝑧 of the 

Rikitake system (1):  
 

 {
𝑋 = 2𝑥
𝑌 = 2𝑦
𝑍 = 2𝑧

         (6) 
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The rescaled Rikitake dynamo system is given by; 
 

 

{
 
 

 
 �̇� = −𝑏𝑋 +

1

2
𝑌𝑍

�̇� = −𝑏𝑌 + (
1

2
𝑍 − 𝑎)𝑋

�̇� = 2 −
1

2
𝑋𝑌

        (7) 

 

We apply the Kirchchoff’s laws to derive the circuit presented in Figure 2 as follows; 
 

{
 
 

 
 �̇� = −

1

𝐶1𝑅1
𝑋 +

1

𝐶1𝑅2
𝑌𝑍

�̇� = −
1

𝐶2𝑅3
𝑌 +

1

𝐶2𝑅4
𝑋𝑍 −

1

𝐶2𝑅5

�̇� =
1

𝐶3𝑅7
𝑉1 −

1

𝐶3𝑅6
𝑋𝑌

𝑋       (8) 

 

We take values of the system components as follows: 

Let 𝐶1 = 𝐶2 = 𝐶3 = 1𝑛𝐹. 
Let 𝑅1 = 𝑅3 = 400𝑘𝛺 and𝑅 2 = 𝑅4 = 𝑅6 = 800𝑘𝛺.   
Let 𝑅5 = 133.33 𝑘𝛺and 𝑅7 = 200 𝑘𝛺. 
Let 𝑅8 = 𝑅9 = 𝑅10 = 𝑅11 = 100 𝑘𝛺. 

The values of various capacitors and resistances were assumed using parameter values of the 

Rikitake dynamo system and practical considerations. We obtain Multisim outputs of the Rikitake circuit 

which are shown in Figure 2. It is clear that the Multisim outputs in Figure 3 exhibit the double scroll 

attractor of the system (7). Thus, the system (7) undergoes chaotic behavior. The Multisim outputs of the 

Rikitake circuit (7) in Figure 3 are consistent with the MATLAB plots given in Figure 1 of the Rikitake 

dynamo system (1). 

Figure 4 illustrates the Fourier spectral analysis plot in Multisim for the chaotic signal X of the 

Rikitake circuit (7). The frequency range is 5 kHz, maximum peak 750 Hz. It corresponds to a prevailing 

frequency of the implementing oscillating loop. The power spectra of the produced signals are broadband, 

typical of chaotic signals. The frequency is quite low. Thus, the new chaotic system can only be used for low 

frequency applications. Fourier spectral analysis plot of Figure 4 confirms chaotic oscillations in the Rikitake 

dynamo system (1). 
 

 

 
 

Figure 2. The electronic circuit schematic of the Rikitake dynamo circuit (7) 
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(a) (b) (c) 
 

Figure 3. Multisim outputs of the scaled Rikitake dynamo circuit (7) in 

(a) x - y plane, (b) y – z plane, (c) x – z plane 

 

 

 
 

Figure 4. Fourier spectral analysis plot in Multisim for the signal X of the Rikitake circuit (7) 
 

 

4. QUASI-SLIDING MODE CONTROL BASED SYNCHRONISATION OF RIKITAKE 

CIRCUITS 

Sliding mode control (SMC) is proposed to tackle many control problems in engineering 

applications [39]. There are many variants of SMC such as higher order SMC [39], super-twisting SMC [40], 

integral SMC [41], robust integral SMC [42], and terminal SMC [43]. In this section, quasi-sliding mode 

control (QSMC)-based master and slave Rikitake chaotic dynamo systems are proposed to guarantee 

asymptotic convergence of the synchronization errors of the master-slave Rikitake circuits. The parameters of 

the Rikitake dynamo systems are taken as in the chaos case, i.e. (𝑎, 𝑏) = (3,1). 
Master system: 

 

 {

�̇�𝑚 = −𝑥𝑚 + 𝑧𝑚𝑦𝑚
�̇�𝑚 = −𝑦𝑚 + (𝑧𝑚 − 3)𝑥𝑚
�̇�𝑚 = 1 − 𝑥𝑚𝑦𝑚

       (9) 

 

Slave system: 
 

{

�̇�𝑠 = −𝑥𝑠 + 𝑧𝑠𝑦𝑠 + 𝑢
�̇�𝑠 = −𝑦𝑠 + (𝑧𝑠 − 3)𝑥𝑠
�̇�𝑠 = 1 − 𝑥𝑠𝑦𝑠

        (10) 

 

In the slave Rikitake system (10), u is the quasi-integral sliding mode control (QSMC). We next describe the 

synchronising errors between the Rikitake systems as follows; 
 

 {

𝑒1(𝑡) = 𝑥𝑠(𝑡) − 𝑥𝑚(𝑡)
𝑒2(𝑡) = 𝑦𝑠(𝑡) − 𝑦𝑚(𝑡)

𝑒3(𝑡) = 𝑧𝑠(𝑡) − 𝑧𝑚(𝑡)
        (11) 
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The error dynamic system is calculated as follows; 
 

 {

�̇�1(𝑡) = −𝑒1 + 𝑧𝑠𝑦𝑠 − 𝑧𝑚𝑦𝑚 + 𝑢
�̇�2(𝑡) = −𝑒2 + (𝑧𝑠 − 3)𝑥𝑠 − (𝑧𝑚 − 3)𝑥𝑚
�̇�3(𝑡) = −𝑥𝑠𝑦𝑠 + 𝑥𝑚𝑦𝑚

      (12) 

 

The proposed quasi-sliding mode control (QSMC) u can be defined by; 
 

 𝑢 = −𝑤𝜂
𝑠

|𝑠|+𝛿
         (13) 

 

The switching surface can be chosen as follows: 
 

𝑠 = 𝑒2 + 𝜆𝑒1         (14) 
 

Here, 𝜆, 𝛿, 𝑤are constants and 
 

𝜂 = |[−𝑒2 + (𝑧𝑠 − 3)𝑥𝑠 − (𝑧𝑚 − 3)𝑥𝑚] + 𝜆[−𝑒1 + 𝑧𝑠𝑦𝑠 − 𝑧𝑚𝑦𝑚]|   (15) 
 

The quasi-sliding mode control (QSMC) u is designed to derive the error dynamics (11) satisfying 

the reaching condition 𝑠(𝑡)�̇�(𝑡) < 0 for the sliding surface ( ) 0.s t =  The invariance conditions of the 

sliding manifold are given as follows: 
 

𝑠(𝑡) = 0 and �̇�(𝑡) = 0        (16) 
 

To simplify the notation, we define 
 

𝐴 = −𝑒1 + 𝑧𝑠𝑦𝑠 − 𝑧𝑚𝑦𝑚and 𝐵 = −𝑒2 + (𝑧𝑠 − 3)𝑥𝑠 − (𝑧𝑚 − 3)𝑥𝑚   (17) 
 

In (15) can be then simplified as follows: 
 

𝜂 = |𝐵 + 𝜆𝐴|         (18) 
 

We also note that; 
 

�̇� = �̇�2 + 𝜆�̇�1 = 𝐵 + 𝜆(𝐴 + 𝑢)       (19) 
 

That is, 
 

�̇� = 𝐵 + 𝜆𝐴 + 𝜆𝑢         (20) 
 

The proposed Lyapunov function can be provided as; 
 

𝑉 =
1

2
𝑠2          (21) 

 

We calculate the time-derivative of V as follows: 
 

�̇� = 𝑠�̇� = 𝑠(𝐵 + 𝜆𝐴 + 𝜆𝑢) = 𝑠(𝐵 + 𝜆𝐴) + 𝑠𝜆𝑢     (22) 
 

Thus, it follows that 
 

�̇� ≤ 𝜂|𝑠| −
𝑤𝜂𝑠2

|𝑠|+𝛿
= 𝜂|𝑠| − 𝑤𝜂 (|𝑠| −

|𝑠|𝛿

|𝑠|+𝛿
)      (23) 

 

We note that  
 

 
|𝑠|𝛿

|𝑠|+𝛿
≤ 𝛿         (24) 

 

Thus, we can simplify (23) as follows: 
 

�̇� ≤ 𝜂|𝑠| − 𝑤𝜂(|𝑠| − 𝛿 = (1 − 𝑤)𝜂 (|𝑠| −
𝑤𝛿

𝑤−1
)     (25) 

 

We define 
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𝛿𝑄 =
𝑤𝛿

𝑤−1
         (26) 

 

With 1w  and | ( ) | ,Qs t  we can conclude that  

 

�̇� = (1 − 𝑤)(|𝑠| − 𝛿𝑄) < 0       (27) 
 

By Lyapunov stability theory [44], we conclude that 𝑠(𝑡) → 0asymptotically as 𝑡 → ∞. By  

quasi-sliding mode control theory, we have established the chaos synchronization between the master 

Rikitake system (8) and slave Rikitake system (9). 

 

4.1.  Numerical simulations 

In this section, we give MATLAB simulation results for the asymptotic synchronization between the 

master Rikitake system (8) and slave Rikitake system (9). The QSMC control parameters are set as 𝜆 = 30, 
𝛿 = 0.003and 𝑤 = 1.5. The initial data for the master system (8) is taken as 𝑥𝑚(0) = 0.3, 𝑦𝑚(0) = 0.2 and 

𝑧𝑚(0) = 0.1. The initial data for the slave system (9) is taken as 𝑥𝑠(0) = 0.6, 𝑦𝑠(0) = −0.1 and  

 𝑧𝑠(0) = −0.4. The synchronization of the respective state trajectories between the master and slave Rikitake 

dynamo systems (8) and (9) is shown in Figure 5. The synchronization error vector  

𝑒(𝑡) = (𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡)) between the master and slave Rikitake circuits is depicted in Figure 6. 

 

 

 
 

Figure 5. Complete synchronization of the master and slave Rikitake systems (8) and (9) 

 

 

 
 

Figure 6. Time-plot of the synchronization error 𝑒(𝑡) = (𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡)) 
between the master and slave 

Rikitake dynamo systems (8) and (9) 
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5. CONCLUSION  

In this paper, we gave a brief study of the dynamic properties of the Rikitake circuit (1958) and 

presented a circuit design for the Rikitake chaotic attractor using Multisim. The main result of this paper is 

the chaotic synchronisation of Rikitake circuits using a quasi-sliding mode control (QSMC) design. Suitable 

quasi-sliding mode control controllers were designed by using Lyapunov stability theory. We designed the 

switching surface for the synchronisation error dynamics. Then a quasi-sliding mode control was considered 

to guarantee the synchronisation effect on the master and slave Rikitake circuits. MATLAB simulations were 

shown to illustrate the signal plots of Rikitake circuits and synchronisation results via QSMC. 

Synchronisation of chaotic systems and circuit design have several applications in engineering areas such as 

secure communication systems and encryption devices. 
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