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 A crucial part of the brain-computer interface is a classification of 

electroencephalography (EEG) motor tasks. Artifacts such as eye and muscle 

movements corrupt EEG signal and reduce the classification performance. 

Many studies try to extract not redundant and discriminative features from 

EEG signals. Therefore, this study proposed a signal preprocessing and feature 

extraction method for EEG classification. It consists of removing the artifacts 

by using discrete fourier transform (DFT) as an ideal filter for specific 

frequencies. It also cross-correlates the EEG channels with the effective 

channels to emphases the EEG motor signals. Then the resultant from cross 

correlation are statistical calculated to extract feature for classifying a left and 

right finger movements using support vector machine (SVM). The genetic 

algorithm was applied to find the discriminative frequencies of DFT for the 

two EEG classes signal. The performance of the proposed method was 

determined by finger movement classification of 13 subjects and the 

experiments show that the average accuracy is above 93 percent. 
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1. INTRODUCTION 

The most complex organ in the human body is the human brain. The basic units of the brain cells 

called neurons, which is considered the center of the human nervous system and controls different organs and 

functions. Neurons send electrical signals to control the human body and can be measured using 

electroencephalography (EEG), which measures the electrical activity of the brain by recording it via electrodes 

placed either on the cortex or the scalp. The signal generated by this electrical activity is non-stationary and 

complex random signals [1, 2]. The EEG signal contains a lot of information about the human brain functions, 

so the EEG analysis and information extraction are very complicated. Since the EEG signal consists of the very 

low-frequency components, so it is corrupted with different types of artifacts (noises and power line 

frequencies) [3-5].  

In recent years, the amount of researches and efforts have been directed towards the identification and 

utilization of the information from the human EEG signal. Most of the work in brain computer interface (BCI) 

literature on motor imagery has been towards classifying movements of the hand, foot, and tongue. These 

movements are large and topographically different corresponding to the brain areas.  

Farid Ghani, et al., classified different types of EEG data movements. They used discrete cosine 

transform (DCT) and independent component analysis (ICA) to reduce the number of the extracted features 

https://creativecommons.org/licenses/by-sa/4.0/
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and to improve the accuracy of classification [6]. There are multiple studies related to classifying EEGs into 

some categories like detecting normal, interictal, and epileptic signals [7]. Mohammad H. Alomari, et al., 

obtained pretty good classification results using neural networks (NNs) and support vector machine (SVM) to 

discriminate between EEG right and left-hand movement after applying band pass filter (BPF) with a specific 

set of statistical features (mean, power and energy) [8]. 

R. Zarei, et al., proposed a method to remove the artifacts from EEG data based on Principal 

component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory 

mental information states from EEG signals in BCI applications [9]. Shakshi, et al., removed the unwanted 

frequency components from the original signal by using different types of filters. Mean, skewness, standard 

deviation, and variance are used to extract features from the EEG signal. The information about the signal was 

determined with the help of different efficient DSP tools like discrete fourier transform (DFT), fast fourier 

transform (FFT), short-time fourier transform (STFT), and wavelet transform [7]. 

From the foregoing, it becomes clear that feature extraction plays an important and influential role to 

help the classifier for distinguishing between EEG signal classes. Therefore, the main goal of this study is to 

find the most related features that discriminate EEG real finger movement signal and uses the SVM classifier 

only as a tool to distinguish the EEG signals based on the extracted features. The genetic algorithm was 

employed to find the most relevant frequencies which are used as cutoff frequency of ideal filter based on DFT. 

Finding these frequencies improves the classification performance in terms of both accuracy and computational 

time. The organization of this article is: section 2 will describe the main materials used in this work. Section 3 

demonstrates the proposed method. Section 4 lists and explains the classification performance. The last section 

will discuss and explain the effects of each stage in the proposed method. 

 

 

2. MATERIALS AND METHODOLOGY  

This section covers the procedure used for solving the problem related to find the discriminative 

frequencies of the EEG signal. Hence, it describes the proposed method and the tools used in this article such 

as FFT, and cross correlation. It also describes the procedure to acquire the EEG signal. 

 

2.1.  Proposed method 

This study proposes a robust scheme that consists of five stages. Figure 1 illustrates the block diagram 

of the proposed method. These five stages are:  

− Preprocessing using FFT: this stage uses DFT as an ideal filter to filter the most discriminative EEG 

frequencies. The most discriminative frequencies are determined by using genetic algorithm (GA). Then, 

the EEG signals are reconstructed using discrete fourier transform (IDFT). 

− Cross correlation of the effective channel with right/left hemisphere: The brain is divided into 2 halves, or 

hemispheres, that are connected by the corpus callosum. Information from both hemispheres needs to be 

efficiently integrated; placing electrodes (EEG channels) on the scalp are split into two groups as the 

right/left hemisphere. Depending on the anatomical location of the signal generated in the brain or the 

channels close to the motor EEG signal region, the effective channel was selected so, the right hemisphere 

channels are cross correlated with the F4 channel and the left hemisphere channels with F3. This is done 

for whole training and testing sets. Cross correlation makes a more visible magnitude difference between 

the two hemispheres. 

− EEG feature extraction: significant and important features need to be extracted from the EEG raw data. In 

this study, ten statistical features are computed from the EEG data (min, max, mean, mode, median, std, 

range, entropy, 1st quartile, and 3rd quartile). This is done for whole training and testing sets. 

− Normalization: the current study explores the application of normalized EEG data to detect and identify the 

patterns of information flow in the functional brain networks. It makes the EEG signal lie between 1 and  

-1 by dividing each channel by the maximum absolute value of the same channel. 

− SVM classification: radial base Kernel function with auto kernel scale are the configuration of the SVM 

classifier. Ten-fold cross validation was used to evaluate the performance of the classifier. 
 

2.2.  DFT 

Representation of the digital signals in the time domain describes the signal amplitude versus the 

sample number. Some applications, signal in the frequency domain contains more useful information than the 

signal in a time domain. The transformation between time-domain signal samples and frequency domain 

components vice versa known as the DFT and IDFT respectively. Figure 2 shows the DFT application. 

In addition, the DFT is widely used in many other areas, including spectral analysis, acoustics, 

imaging/video, audio, instrumentation, and communications systems [10]. The DFT and IDFT equations are 

respectively shown below:  
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𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−
2𝑗𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0   [10]       (1) 

 

where: 0≤n≤N-1 

 

𝑥[𝑛] =
1

𝑁
∑ 𝑋[𝑘]𝑒

𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑘=0  [10]        (2) 

 

 

 
 

Figure 1. The proposed method 

 

 

 
 

Figure 2. DFT application 

 

 

2.3.  Cross correlation 

The correlation of signals is a signal-processing technique often used for measuring the similarity 

between two signals and results in a cross-correlation sequence. Basic statistic parameters can be taken from 

the cross-correlation sequence as features of a signal and then used in classification. Correlation is also used 

for the detection of targets in radar or sonar signal. The sample of cross-correlation between two signals is 

calculated by: 

 

𝑅𝑥𝑦[𝑚] = ∑ 𝑥[𝑖]𝑦[𝑖 − 𝑚]𝑁−|𝑚|−1
𝑖=0  [11]      (3) 

 

where 𝑅𝑥𝑦 [𝑚] is the cross-correlation at m lag and 𝑚 = [−(𝑁 − 1), … ,0,1,2 … , (𝑁 − 1)]. The samples of 

cross correlation for two sequences has 2N-1 sample length, each of the signals, x and y, consists of N finite 

number of samples [11]. 

 

2.4.  EEG feature extraction 

Feature extraction plays an important role in the process of classifying EEG signals. A training process 

will take place properly if features that describing the signal are extracted well [12, 13]. Many feature extraction 

algorithms are presented in the biomedical field, the simplest and most common algorithm that works to reduce 

the amount of data classified for EEG signal is the use of statistical approaches such as mean, median, mode, 

and standard deviation [14, 15]. 

 

2.5.  Classification method 

One of the most popular machine learning techniques is SVM. It is a statistical learning theory based 

on the classification method [16, 17]. SVM is applied in many applications like EEG signal classification, 
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cancer identification, bioinformatics, seizure prediction, face recognition, and speech disorder. The principle 

of SVM classification is to construct an optimal hyperplane as the decision surface to separate the training data 

and tries to find the nearest support vectors to that hyperplane with the minimal error of classification and 

maximal margin simultaneously to solve an optimization problem. The essential element in SVM is the kernel 

function, which maps samples in one feature space to another feature space. Radial kernel function (RBF), 

linear kernel function, polynomial kernel function, and gaussian function are some of the popular Kernel 

functions [18, 19]. The operation that takes data as input and transforms it into the required form is the function 

of the SVM kernel. The classification accuracy of SVM largely depends on the selection of the kernel function 

parameters [18]. 

 

2.6.  GA 

A GA is one of the heuristic methods for randomizing search and solving the optimization problems 

.Many different research fields used GA, genetic algorithms can be used for feature selection [20 , 21]. In GA, 

the chromosome is a possible solution vector, which consists of a set of genes. In the solution space, a set of 

chromosomes called population. The general scheme of the classic genetic algorithm as shown in Figure 3. 

First, define an initial population of N chromosomes each of length L. Each chromosome in the 

population is then evaluated using a fitness function. Chromosomes are selected to be parents and recombine 

to reproduce new offspring. For a particular chromosome, a probability of selection parents should depend on 

the fitness function. The selection probability would be: 

 

𝑝𝑠 = 𝑓(𝑥𝑖) ∑ 𝑓(𝑥𝑖) 𝑁
𝑖=1          (4)[23] 

 

where 𝑥𝑖 represents the i-th chromosome in the population and f (xi) its fitness.  

In the crossover operation, parents are selected for merging together and produced new children. 

Mutation consists of randomly altering genes inside chromosomes, with a very low probability. This leads the 

GA to escape converging towards local optima. The previous population is then replaced with a new 

population. Three GA operations (selection, crossover, and mutation) are iteratively applied until some 

stopping criterion is met or a predefined maximum number of iterations is reached. In order to obtain faster 

convergence towards the optimal solution and mitigate the risk of losing the best chromosome by crossover or 

mutation, a variation of the basic GA is introduced to improve its performance, by applying elitism, which 

consists of preserving the fittest chromosome in a population for the next generation [23]. 

 

 

 
 

Figure 3. steps of the genetic algorithm [22] 

 

 

2.7.  EEG dataset acquisition 

EEG raw signal from the user scalp is collected, amplified, digitized and transmitted through a 

Bluetooth module to the personal computer using EMOTIV EPOC headset with a sampling rate of 128 bps. 

EMOTIV headset measures EEG signal from 14 locations positioned at: AF3, AF4, F3, F4, F7, F8, FC5, FC6, 

P7, P8, T7, T8, O1, and O2 as shown in Figure 4 [24]. 
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Thirteen subjects performed real right/left finger movements. The subjects sat in a comfortable chair 

wearing the headset with closed eyes. In each session, the subject was informed in advance which hand to 

move. Auditory stimuli were used to notify the on-action period of the subject finger movement. The duration 

of each movement was six seconds while the rest periods in between had different durations. This process was 

performed four times in each session and separated by resting periods durations. The duration of each 

movement was six seconds while the rest periods in between had different lengths. This process was performed 

four times in each session and separated by a resting period durations [25].  

 

 

 
 

Figure 4. Emotiv EPOC electrode placement [24] 

 

 

3. RESULTS AND DISCUSSIONS  

Classification motor movements from the EEG signal faces a lot of difficulties, one of them is artifacts 

removal. Since motor signals are embedded among human body artifacts like eye movement eye blink, and 

internal organs signals. Motor signals are also suffered from external artifacts like bad electrode placement, 

environment sounds. Bad electrode placement adds a different ratio of noises to each electrode depending on 

the scalp connectivity with the electrode. Therefore, preprocessing is needed which tries to get rid of these 

artifacts and extracts the EEG motor signals. One of the most popular methods is filtering but the frequencies 

of the motor signals are unknown.  

Since GA is used to search for these frequencies (motor discriminative frequencies). The proposed 

method is used as a fitness function of GA to search for the discriminative frequencies of only two subjects 

(subjects 2 and 6). This operation is done using the mentioned subjects in order not to fall into local optima. 

The population size was chosen as 20 since the diversity is ensured and to reduce the harmful effects of the 

mutation operator. If the size of the population is too small, this leads to the negative impact of the genetic 

algorithm by the mutation operator, and conversely, the latency time of the GA will increase. Therefore, the 

population size is chosen experimentally. The GA Twenty GA iterations were performed to explore the 

frequencies between 0-64HZ and it found only 27 frequencies are the most discriminative frequencies. These 

frequencies are 6, 7, 9-15, 18, 19, 23, 24, 27, 28, 33, 37, 39, 44-46, 48, 50, 51, 53, 59 and 64. Figure 5 shows 

the best and worst cost values of only two subjects during GA search. 

The proposed method is applied to classify the movement of the thirteen subjects using the specified 

frequencies. Figure 6 illustrates the classification performance using the proposed method. The reliability of 

the preprocessing method (proposed method) is obviously clear and this shown with the impact performance 

that has an impact range of 90-100%. This is for ten subjects out of thirteen subjects. only one subject has a 

relatively not good impact above 70% and the rest (two subjects) have an impact range of 85-89%. The 

following equation is used to evaluate the classification rate: 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑥100%     (5) 

 

The second stage in the proposed method (cross-correlation stage) tries to enlarge the difference 

between the two brain hemispheres. Figure 7 illustrates the effects of cross-correlation. The difference between 

the right and left finger movements is shown in Figures 7 (a) and (b) and this difference isn't obviously clear. 
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Meanwhile, after using cross-correlation, the difference between the two EEG signals becomes extremely clear 

as shown in Figures 7 (c) and (d). 

 

 

 
 

Figure 5. The best and the worst cost values of GA 

 

 

 
 

Figure 6. The classification rates of 13 subject 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 7. EEG topography after and before cross-correlation effects; (a) and (b) original EEG right/left finger 

movements respectively, (c) and (d) same EEG signal after cross-correlation 

 

 

The statistical parameter stage reduces the feature space extracted from the EEG signal which reflect 

to the computational time and it also filter out the unnecessary and redundant features. Table 1 illustrates the 
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amount of features reduction after using the ten features statistical calculation. In this table, ten statistical 

features produce 140 features (14 channels x 10 statistical features) and the amount of data represents the fed 

data before and after cross-correlation. In 5 estimate the amount of data reduction. Therefore, the amount of 

data fed to the classifier are reduced to 7.8% and 3.9% before and after cross correlation stage respectively. 

 

𝐷𝑎𝑡𝑎 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  
𝑁𝑜.𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝑁𝑜.  𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎
𝑥100%      (6) 

 

 

Tabel 1. The data reduction percentages after and before feature extraction 

No. of input data Data Amount No. of features Data reduction 

Original data 14 channels x 128 samples 140 7.8% 

Cross correlated data 14 channels x 255 samples 140 3.9% 

 

 

4. CONCLUSIONS  

The paper presents the proposed method for preprocessing and extracting features from EEG real 

motor movements. It employs less complex tools like DFT and cross-correlation unlike using ICA or PCA 

mentioned in section one of some researches. The proposed method proves its effectiveness even with EEG 

signals acquired by gamming acquisition equipment (EMOTIV EPOC+), see Figure 6. Hence, the performance 

of the proposed method has good performance for thirteen subjects so that it proves that GA, which applied on 

two EEG subject signals, doesn't fall into local optima. The second stage of the proposed method enlarges the 

difference between the two EEG classes. We can clearly see that the Figure 7 meanwhile utilizing the statistic 

methods to reduce the amount of the processed features fed to the classifieras it is shown in the Table 1. 
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