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ABSTRACT

Matrix equations have its own important in the field of control system engineering
particularly in the stability analysis of linear control systems and the reduction of
nonlinear control system models. There are certain conditions where the classical
matrix equation are not well equipped to handle the uncertainty problems such as
during the process of stability analysis and reduction in control system engineering.
In this study, an algorithm is developed for solving fully fuzzy matrix equation
particularly for ÃX̃B̃−X̃ = C̃, where the coefficients of the equation are in near-zero
fuzzy numbers. By modifying the existing fuzzy multiplication arithmetic operators,
the proposed algorithm exceeds the positive restriction to allow the near-zero fuzzy
numbers as the coefficients. Besides that, a new fuzzy subtraction arithmetic operator
has also been proposed as the existing operator failed to satisfy the both sides of
the near-zero fully fuzzy matrix equation. Subsequently, Kronecker product and
V ec-operator are adapted with the modified fuzzy arithmetic operator in order to
transform the fully fuzzy matrix equation to a fully fuzzy linear system. On top of that,
a new associated linear system is developed to obtain the final solution. A numerical
example and the verification of the solution are presented to demonstrate the proposed
algorithm.
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1. INTRODUCTION
There are many types of matrix equations that have been modelled in various applications [1]

particularly in control system engineering [2, 3]. Basically, control system engineering is used to design the
feedback loops system [4]. The example applications that related to the feedback loops systems are medical
imaging acquisition system [5], image restoration [6], model reduction [7], signal processing [8] and stochastic
control [9]. According to [10], matrix equation plays the role as an equation solver for the control system
model. In dealing with any real applications, it is possible that any uncertainty conditions could occur, for
example, if there exist any conflicting requirements and instability of the environmental conditions during the
system process. If there is any existence of noise or unnecessary elements during the process, it would also
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distract the system [11]. In this case, the existing matrix equations sometimes are not well equipped to handle
those conditions. Therefore, one of the approaches that can be taken is to adapt the fuzzy numbers as the
coefficients of the matrix equation [12].

In the past few years, many researchers proposed their algorithms in solving matrix equations with
parameters in fuzzy numbers. This equation is known as the fully fuzzy matrix equation (FFME). Otadi and
Mosleh [13] are the pioneers in this field, who has applied linear programming technique to obtain a positive
solution for arbitrary FFME, ÃX̃m = B̃m. Apart from that, there is a study which has extended the algorithm
used in solving the fully fuzzy linear system (FFLS) to solve the FFME ÃX̃B̃ = C̃ [14]. Subsequently, in
2015, Shang et al. [15] proposed their algorithm in solving fully fuzzy Sylvester matrix equation (FFSE),
ÃX̃ + X̃B̃ = C̃ by applying the arithmetic multiplication operator, which has been previously proposed in
Dehghan et al. [16]. On the other hand, Malkawi et al. [17] have proposed an algorithm which offers faster
computational compared to Shang et al. [15]. While in 2020, Elsayed et al. [18] carried out a study in solving
the FFME of ÃX̃ + X̃B̃ = C̃, which considering the entries of the equation are in trapezoidal fuzzy numbers.

In this paper, we are propose an algorithm to solve the FFME of

ÃX̃B̃ − X̃ = C̃ (1)

considering the fuzzy coefficient Ã = (ãij)m×n or B̃ = (b̃ij)n×n is a near-zero fuzzy number, while
C̃ = (c̃ij)m×n is an arbitrary fuzzy coefficient and X̃ = (x̃ij)m×n is the solution of the FFME. This equation
has been previously solved by Daud et al. [19] in 2018. Unfortunately the algorithm proposed is only limited
to non-singular and positive fuzzy matrices. This limitation has motivated us to construct an algorithm to solve
the (1) without any restrictions. Moreover, in real-life applications, the coefficients of the FFME can either be
positive, negative or near-zero fuzzy numbers.

In developing the algorithm, the existing fuzzy multiplication arithmetic operators are modified as
the existing operators introduced by [17] and [20] are not applicable to perform the multiplication involving
near-zero fuzzy numbers. Besides that, a new fuzzy subtraction operation is also developed in solving the
FFME, since the existing operator is inadequated to subtract a near-zero fuzzy number to a positive fuzzy
number. Subsequently, the modified fuzzy arithmetic operator is adapted with the Kronecker product and
V ec-operator in converting the FFME to a simpler form of equation, which is a fully fuzzy linear system
(FFLS). Later on, the solution is obtained by means of associated linear system (ALS) which has been
established based on the modified fuzzy multiplication arithmetic operator.

The remaining part of the paper proceeds as follows. In Section 2, some preliminaries on the fuzzy
numbers and Kronecker product are shown. Then in Section 3, the theoretical foundation which supports the
developed algorithm are established. In Section 4, the developed algorithm for solving the FFME of (1) is
shown. Moving on, a numerical example and verification of the solution are illustrated in Section 5. Finally,
the conclusion is drawn in Section 6.

2. PRELIMINARIES
2.1. Fundamental concepts of matrix and set theory

The fundamental concept of matrix theory is important in order to solve the matrix equations. Some
fundamentals of matrix theory are defined in the following:

Definition 1. [21] Let N be a 3× 3 block matrix, such that

N =

 A B C
D E F
G H I

 , (2)

then,

|N | =det
[(

A B
D E

)
−
(
C
F

)
I−1

(
G H

)]
× det[I]

=det
[
A− CI−1G B − CI−1H
D − FI−1G E − FI−1H

]
× det[I]

(3)
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Remark 1. For the block matrix 3× 3 such that

P =

 A B C
D E F
G H I

 . (4)

Clearly that based on Definition 1, the determinant P is given as follows:

|P | =det
[(

E F
H I

)
−
(
D
G

)
A−1

(
B C

)]
× det[A]

=det
[
E −DA−1B F −DA−1C
H −GA−1B I −GA−1C

]
× det[A]

(5)

Definition 2. [22] Let A and B be sets. The union of A and B is the set of A ∪B = {x : x ∈ A or x ∈ B}.

2.2. Theory of fuzzy numbers
The following definition describing the theory of fuzzy numbers has been introduced since 1965 by Zadeh [23].

Definition 3. Let X be a nonempty set. A fuzzy set Ã in X is characterized by its membership function

µÃ : X → [0, 1] (6)

and µÃ(x) represents the degree of membership of element x in fuzzy set Ã for each x ∈ X .

In this study, the representation of fuzzy numbers is based on the triangular fuzzy numbers.

2.2.1. Triangular fuzzy number
Definition 4. A fuzzy number M̃ = (m,α, β) is said to be a triangular fuzzy number (TFN), if its membership
function is given by:

µM̃ (x) =


1− m−x

α , m− α ≤ x ≤ m,α > 0,

1− x−m
β , m ≤ x ≤ m+ β, β > 0,

0, otherwise.

(7)

In this case, m is the mean value of M̃ , whereas α and β are the right and left spreads, respectively.

Definition 5. A fuzzy number M̃ = (m,α, β) is called as an arbitrary fuzzy number where it may be positive,
negative or near zero which can be classified as follows:

• M̃ is a positive(negative) fuzzy number iff m− α ≥ 0 (β +m ≤ 0).

• M̃ is a zero fuzzy number if (m = 0, α, β = 0).

• M̃ is a near zero fuzzy number iff m− α ≤ 0 ≤ β +m.

The following definitions describe some important arithmetic operations of TFN [20].

Definition 6. The arithmetic operations of two TFN, M̃ = (m,α, β) and Ñ = (n, γ, δ), are as follows:

i. Addition:
M̃ ⊕ Ñ = (m,α, β)⊕ (n, γ, δ) = (m+ n, α+ γ, β + δ). (8)

ii. Opposite:
−M̃ = −(m,α, β) = (−m,β, α). (9)

iii. Subtraction:
(m,α, β)	 (n, γ, δ) = (m,α, β)⊕−(n, γ, δ)

= (m,α, β)⊕−(−n, δ, γ)
= (m− n, α+ δ, β + γ).

(10)
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iv. Multiplication:

• If M̃ > 0 and Ñ > 0, then

M̃ ⊗ Ñ = (m,α, β)⊗ (n, γ, δ) ∼= (mn,mγ + nα,mδ + nβ) (11)

• If M̃ < 0 and Ñ > 0, then

M̃ ⊗ Ñ = (m,α, β)⊗ (n, γ, δ) ∼= (mn, nα−mδ, nβ −mγ) (12)

• If M̃ < 0 and Ñ < 0, then

M̃ ⊗ Ñ = (m,α, β)⊗ (n, γ, δ) ∼= (mn,−nβ −mδ,−nα−mγ) (13)

Based on the multiplication arithmetic operator in (11) to (13), there is no operator applicable for a near-zero
fuzzy number. This is because a near-zero fuzzy number cannot be defined in the form of (m,α, β), unlike a
positive or negative fuzzy number could. Therefore, a new form of multiplication arithmetic operator has been
introduced by [24] which adapted the system of min-max function.

Definition 7. [24] The product of two fuzzy numbers M̃ = (m,α, β) and Ñ = (n, γ, δ), can be defined as

M̃ ⊗ Ñ = (mn, f1, f2) (14)

where
f1 = mn−Min((m− α)(n− γ), (m− α)(n+ δ)),
f2 = Max((m+ β)(n− γ), (m+ β)(n+ δ))−mn.

The operator as given in (14) is basically has been initiated based on [25] and [26]. In implementing the
multiplication, few times multiplication and comparison are needed, to obtain the minimum and maximum
values. Besides that, the operator is only compatible for positive fuzzy number Ñ as stated in the following
Theorem 1.

Theorem 1. [24] Consider an arbitrary fuzzy number M̃ = (m,α, β) and a positive fuzzy number
Ñ = (n, γ, δ),

i. If M̃ is positive, then the following inequalities are satisfied:

0 ≤ (m− α)(n− γ) ≤ (m− α)(n+ δ), (15)

0 ≤ (m+ β)(n− γ) ≤ (m+ β)(n+ δ) (16)

ii. If M̃ is negative, then the following inequalities are satisfied:

0 ≥ (m− α)(n− γ) ≥ (m− α)(n+ δ), (17)

0 ≥ (m+ β)(n− γ) ≥ (m+ β)(n+ δ) (18)

iii. If M̃ is near zero, then the inequalities in (16) and (17) are satisfied.

2.3. Fundamental concepts of fuzzy Kronecker products and fuzzy V ec-operator
Kronecker products and V ec-operator are the important tools in solving matrix equations. The definitions and
theorems of the fuzzy Kronecker products and fuzzy V ec-operator, are provided as follows:

Definition 8. [17] Let Ã = (ãij)m×n and B̃ = (b̃ij)p×q be fuzzy matrices. Fuzzy Kronecker product is
represented as Ã⊗k B̃, where

Ã⊗k B̃ =


ã11B̃ ã12B̃ . . . ã1nB̃

ã21B̃ ã22B̃ . . . ã2nB̃
...

...
. . .

...
ãm1B̃ ãm2B̃ . . . ãmnB̃

 = [ãijB̃](mp)×(nq) (19)
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Definition 9. [17] V ec-operator of a fuzzy matrix is a linear transformation that converts the fuzzy matrix of
C̃ = (c̃1, c̃2, ..., c̃n) into a column vector as

V ec(C̃) =


c̃1
c̃2
...
c̃n

 . (20)

Theorem 2. [17] If Ã = (ãij)m×m is a fuzzy matrix, and Ũ = (ũij)p×p is a unitary fuzzy matrix defined as

Ũ =


(1, 0, 0) (0, 0, 0) . . . (0, 0, 0)
(0, 0, 0) (1, 0, 0) . . . (0, 0, 0)

...
...

. . .
...

(0, 0, 0) (0, 0, 0) . . . (1, 0, 0)

 , (21)

then

i. ÃŨ = Ũ Ã = Ã

ii. ŨT = Ũ .

Definition 10. [17] Let A = (aij)m×m, B = (bij)n×n and X = (xij)m×n, then

i. V ec[ÃX̃] = [Ũn ⊗k Ã]V ec(X̃)

ii. V ec[X̃B̃] = [B̃T ⊗k Ũm]V ec(X̃)

iii. V ec[ÃX̃B̃] = [B̃T ⊗k Ã]V ec(X̃)

iv. V ec(X̃) = [Ũ ]V ec(X̃)

3. THEORETICAL DEVELOPMENT
This section demonstrates the establishment of the theoretical foundations which involved some

theorems, definitions and corallaries. There are four sections presented, consist of the introduction of a
new near-zero positive subtraction operator, a modification of arithmetic multiplication operator, some related
properties of FFME ÃX̃B̃ − X̃ = C̃ and also the construction of an associated linear systems.

3.1. Near-zero positive subtraction operator
Theorem 3. Let M̃ = (m,α, β) be a near-zero fuzzy number and Ñ = (n, γ, δ) is a positive fuzzy number.
The subtraction of M̃ and Ñ is given by

M̃ 	np Ñ = (m− n, α+ δ, β − δ). (22)

where β > δ.

Proof. Let β < δ, then β − δ < 0, which means that the spread value of β − δ is negative. This is violated
since it is always positive, as mentioned in Definition 4 . Thus, β > δ.

This new operator is known as a Near-zero positive subtraction operator, denoted as 	np.

3.2. Modification of multiplication arithmetic operators
In this study, fuzzy arithmetic multiplication operator as stated in Definition (7) is modified. The modified
multiplication operator provides simpler and direct computation as compared to the previous operators.

A modification of fuzzy arithmetic operators for solving near-zero... (W. S. W. Daud)
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Theorem 4. Let M̃ = (m,α, β) be a positive, negative or near-zero fuzzy number, and Ñ = (n, γ, δ) be a
positive fuzzy number. Then, the min and max in (14) are given by:

Min[(m− α)(n− γ), (m− α)(n+ δ)]

=

{
(m− α)(n− γ) if M̃ ≥ 0

(m− α)(n+ δ) if otherwise

(23)

Max[(m+ β)(n− γ), (m+ β)(n+ δ)]

=

{
(m+ β)(n− γ) if M̃ < 0

(m+ β)(n+ δ) if otherwise

(24)

Proof. Based on Theorem 1 and realize that (n− γ) < (n+ δ), then obviously:

• If M̃ is positive which is (m−α) ≥ 0, both multiplications of (m−α)(n− γ) and (m+ β)(n− γ) are
minimum compared to the multiplications of (m−α)(n+δ) and (m+β)(n+δ) respectively. However,
if (m− α) < (m+ β), then (m− α)(n− γ) is minimum.

On the other hand, since both multiplications of (m − α)(n + δ) and (m + β)(n + δ) are maximum
compared to the multiplication of (m − α)(n − γ) and (m + β)(n − γ) respectively, but since
(m+ β) > (m− α), thus the maximum value is (m+ β)(n+ δ).

• If M̃ is negative which is (m − α) < 0, both multiplications of (m − α)(n + δ) and (m + β)(n + δ)
are minimum compared to the multiplication of (m−α)(n− γ) and (m+β)(n− γ) respectively. From
that, since (m− α) < (m+ β), then (m− α)(n+ δ) is minimum.

On the other hand, since both (m − α)(n − γ) and (m + β)(n − γ) are maximum compared to the
multiplication of (m − α)(n + δ) and (m + β)(n + δ) respectively, but (m + β) > (m − α) thus the
maximum value is (m+ β)(n− γ).

• If M̃ is near-zero which is (m − α) ≤ 0 ≤ (β + m), based on the inequilities in (16) and (17), then
obviously (m− α)(n+ δ) is minimum, whereas (m+ β)(n+ δ) is maximum.

From Theorem 4 and (14), the modified multiplication arithmetic operators are defined in the following
theorem.

Theorem 5. Let M̃ = (m,α, β) be a positive, negative or near-zero fuzzy number, and Ñ = (n, γ, δ) be a
positive fuzzy number, then the multiplication of M̃ ⊗ Ñ is defined as follows:

1. If M̃ is positive, then

M̃ ⊗ Ñ = (m,α, β)⊗ (n, γ, δ) ∼= (mn, nα+ (m− α)γ, nβ + (m+ β)δ) (25)

2. If M̃ is negative, then

M̃ ⊗ Ñ = (m,α, β)⊗ (n, γ, δ) ∼= (mn, nα− (m− α)δ, nβ − (m+ β)γ) (26)

3. If M̃ is near-zero, then

M̃ ⊗ Ñ = (m,α, β)⊗ (n, γ, δ) ∼= (mn, nα− (m− α)δ, nβ + (m+ β)δ) (27)

Proof. By considering the Corollary 4, and applying it to (14), thus:

1. For M̃ is positive,

M̃ ⊗ Ñ = (mn,mn− (m− α)(n− γ), (m+ β)(n+ δ)−mn)
= (mn,mn−mn+mγ + αn− αδ,mn+mδ + βn+ βδ −mn)
= (mn,mγ + αn− αγ,mδ + βn+ βδ)

= (mn,αn+ (m− α)γ, βn+ (m+ β)δ)

(28)
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2. For M̃ is negative,

M̃ ⊗ Ñ = (mn,mn− (m− α)(n+ δ), (m+ β)(n− γ)−mn)
= (mn,mn−mn−mδ + αn+ αδ,mn−mγ + βn− βγ −mn)
= (mn,−mδ + αn+ αδ,−mγ + βn− βγ)
= (mn,αn− (m− α)δ, βn− (m+ β)γ)

(29)

3. For M̃ is near-zero,

M̃ ⊗ Ñ = (mn,mn− (m− α)(n+ δ), (m+ β)(n+ δ)−mn)
= (mn,mn−mn−mδ + αn+ αδ,mn+mδ + βn+ βδ −mn)
= (mn,−mδ + αn+ αδ,mδ + βn+ βδ)

= (mn,αn− (m− α)δ, βn+ (m+ β)δ)

(30)

Since (25) to (27) are shown, hence the theorem is proved.

Corollary 1. Let M̃ = (m,α, β) be a positive, negative or near-zero fuzzy number, and Ñ = (n, γ, δ) be a
positive fuzzy number:

1. If M̃ is positive, then the multiplication of M̃ ⊗ Ñ is positive, such that mn− (nα+ (m− α)γ) > 0.

2. If M̃ is negative, then the multiplication of M̃ ⊗ Ñ is negative, such that (nβ − (m+ β)γ) +mn < 0.

3. If M̃ is near-zero, then the multiplication of M̃ ⊗ Ñ is near-zero, such that
mn− (nα− (m− α)δ) < 0 < (nβ + (m+ β)δ) +mn.

Proof. The multiplication of M̃ ⊗ Ñ in Theorem 5 must satisfy the Definition 5, where

1. If M̃ is positive, then mn− (nα+ (m− α)γ) > 0 which is

mn− (nα+ (m− α)γ) = mn− nα−mγ + αγ

= (m− α)n− (m− α)γ
= (m− α)(n− γ)

(31)

Since both (m− α) and (n− γ) are > 0, then mn− (nα+ (m− α)γ) > 0.

2. If M̃ is negative, then (nβ − (m+ β)γ) +mn < 0 which is

(nβ − (m+ β)γ) +mn = nβ −mγ − βγ +mn

= (m+ β)n− (m+ β)γ

= (m+ β)(n− γ)
(32)

Since (m+ β) < 0 and (n− γ) > 0, then mn+ (nβ − (m+ β)γ) < 0.

3. If M̃ is near-zero, then mn− (nα− (m− α)δ) < 0 < (nβ + (m+ β)δ) +mn which is

mn− (nα− (m− α)δ) = mn− nα+mδ − αδ
= (m− α)n+ (m− α)δ
= (m− α)(n+ δ)

(33)

Since (m− α) < 0 and (n+ δ) > 0, then mn− (nα− (m− α)δ) < 0.

On the other hand,
(nβ + (m+ β)δ) +mn = nβ +mδ + βδ +mn

= (m+ β)n+ (m+ β)δ

= (m+ β)(n+ δ)

(34)

Since (m+ β) > 0 and (n+ δ) > 0, then (nβ + (m+ β)δ) +mn > 0.

After all the conditions are satisfied, then the corollary is proved.

A modification of fuzzy arithmetic operators for solving near-zero... (W. S. W. Daud)
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3.3. Related properties of FFME ÃX̃B̃ − X̃ = C̃

The definition of FFME ÃX̃B̃ − X̃ = C̃ is given as follows:

Definition 11. The matrix equation
ã11 ã12 . . . ã1m
ã21 ã22 . . . ã2m

...
...

. . .
...

ãm1 ãm2 . . . ãmm

⊗

x̃11 x̃12 . . . x̃1n
x̃21 x̃22 . . . x̃2n

...
...

. . .
...

x̃m1 x̃m2 . . . x̃mn

⊗

b̃11 b̃12 . . . b̃1n
b̃21 b̃22 . . . b̃2n

...
...

. . .
...

b̃n1 b̃n2 . . . b̃nm



	


x̃11 x̃12 . . . x̃1n
x̃21 x̃22 . . . x̃2n

...
...

. . .
...

x̃m1 x̃m2 . . . x̃mn

 =


c̃11 c̃12 . . . c̃1n
c̃21 c̃22 . . . c̃2n

...
...

. . .
...

c̃m1 c̃m2 . . . c̃mn


(35)

can also be represented as
ÃX̃B̃ − X̃ = C̃ (36)

where Ã = (aij), 1 ≤ i, j ≤ n, B̃ = (bij), 1 ≤ i, j ≤ m, the right hand side matrix C̃ = (cij),
1 ≤ i ≤ n, 1 ≤ j ≤ m is the fuzzy matrices, and X̃ = (xij), 1 ≤ i ≤ n, 1 ≤ j ≤ m is an unknown fuzzy
matrix.

There is a special criterion related to the order of matrix coefficients for FFME ÃX̃B̃ − X̃ = C̃.

Remark 2. Let ÃX̃B̃ − X̃ = C̃ be an FFME, where the fuzzy coefficient of Ã and B̃ must be any square
matrices.

Example 1. If Ã and B̃ are non-square matrices with any appropriate orders of Ãr×p and B̃q×s, and the
solution is X̃p×q , then

Ãr×pX̃p×qB̃q×s − X̃p×q = ÃX̃B̃r×s − X̃p×q.

However, the subtraction of ÃX̃B̃r×s and X̃p×q is not possible due to the different order. Thus, in all cases, Ã
and B̃ in FFME ÃX̃B̃ − X̃ = C̃ must be square matrices.

3.4. Construction of an associated linear system
Definition 12. Consider a fully fuzzy linear system (FFLS) in the form of

S̃X̃ = C̃ (37)

where S̃ = (m,α, β), X̃ = (n, γ, δ) and C̃ = (C,G,H), which is equivalent to
n∑

j=1,...,n

(mij , αij , βij)⊗ (nj , γj , δj) = (Ci, Gi, Hi). (38)

According to the new multiplication arithmetic operators stated in Theorem 5, the FFLS can be transformed in
a form of a crisp linear system, called as the ALS.

Definition 13. Let S̃ = (m,α, β) be a positive, negative or near-zero fuzzy number, X̃ = (n, γ, δ) be a
positive fuzzy number and C̃ = (C,G,H) be any form of fuzzy numbers, based on the multiplication arithmetic
operators in Theorem 5. Then, three forms of ALS are obtained, such that:

• If S̃ is positive, 
mn = C

αn+ (m− α)γ = G

βn+ (m+ β)δ = H m 0 0
α (m− α) 0
β 0 (m+ β)

nγ
δ

 =

CG
H

 (39)

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 2, April 2021 : 583 – 598



TELKOMNIKA Telecommun Comput El Control r 591

• If S̃ is negative, 
mn = C

αn− (m− α)δ = G

βn− (m+ β)γ = H

which can be represented as

 m 0 0
α 0 −(m− α)
β −(m+ β) 0

nγ
δ

 =

CG
H

 (40)

• If S̃ is near-zero, 
mn = C

αn− (m− α)δ = G

βn+ (m+ β)δ = H

which can be represented as

 m 0 0
α 0 −(m− α)
β 0 (m+ β)

nγ
δ

 =

CG
H

 (41)

By applying the concept of union sets as stated in Definition 2, these three ALS block matrices in (39), (40)
and (41) can be combined into a single ALS as illustrated in Definition 14.

Definition 14. Let S̃X̃ = C̃ be a FFLS, where the fuzzy coefficients S̃ and C̃ are arbitrary fuzzy numbers and
X̃ be a positive fuzzy solution. ALS is represented as

mn = C

αn+ (m− α)γ − (m− α)δ = G

βn− (m+ β)γ + (m+ β)δ = H

(42)

which can be written in the matrix form of m 0 0
α (m− α) −(m− α)
β −(m+ β) (m+ β)

nγ
δ

 =

CG
H

 (43)

where

m = (mij)m×n =

m11 ... m1n

...
. . .

...
mm1 ... mmn

 , α = (αij)m×n =

α11 ... α1n

...
. . .

...
αm1 ... αmn

 ,

β = (βij)m×n =

β11 ... β1n
...

. . .
...

βm1 ... βmn

 ,

n =

n1...
nn

 , γ =

γ1...
γn

 , δ =

δ1...
δn

 ,
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and

C =

C1

...
Cm

 , G =

G1

...
Gm

 , H =

H1

...
Hm

 .

This ALS can be denoted as
SX = C. (44)

However, the matrix S in (43) is always inconsistent since |S| = 0, which is proved in the following theorem:

Theorem 6. Let S be a coefficient of an ALS. The matrix S is singular or |S| = 0, when |m| = 0 or∣∣∣∣∣ (m− α) −(m− α)
−(m+ β) (m+ β)

∣∣∣∣∣ = 0.

Proof. Let

S =

 m 0 0
α (m− α) −(m− α)
β −(m+ β) (m+ β)


The singularity of S can be determined from the following procedure, which is based on Remark 1.

|S| = det
[

(m− α)− α(m)−1(0) −(m− α)− α(m)−1(0)
−(m+ β)− β(m)−1(0) (m+ β)− β(m)−1(0)

]
× det[m]

= det
[

(m− α) −(m− α)
−(m+ β) (m+ β)

]
× det[m]

From this, if |m| = 0, then obviously matrix S is singular. On the other hand, if |m| 6= 0, but∣∣∣∣∣ (m− α) −(m− α)
−(m+ β) (m+ β)

∣∣∣∣∣ = 0, hence, matrix S is singular.

Remark 3. There are two possibilities that make the determinant of
[

(m− α) −(m− α)
−(m+ β) (m+ β)

]
= 0, which

are:

i. At least one block matrix in both diagonal and anti-diagonal have all zeroes in a row, such that:
0 0 a b
0 0 c d
0 0 e f
0 0 g h


ii. The ith row or jth column of a matrix is a multiple of another row or column, such that:

a −b −a b
c d −c −d
−e −f e f
−g −h g h


In order to avoid the inconsistency of the solution, the ALS in (43) has been improvised to be in the following
form as stated in the next theorem.

Definition 15. Let S̃X̃ = C̃ be a FFLS such that S̃ = (m,α, β), X̃ = (n, γ, δ) and C̃ = (C,G,H), with
solution X̃ as a positive fuzzy number. Then the ALS of SX = C is written as: m 0 0

α (m− α)+ −(m− α)−
β −(m+ β)− (m+ β)+

nγ
δ

 =

CG
H

 (45)

where (m − α)+ and (m + β)+ contain the positive elements of (m − α) and (m + β) respectively, while
the negative elements are replaced by zero values. Similarly, (m − α)− and (m + β)− contain the negative
elements of (m− α) and (m+ β) respectively, while the positive elements are replaced by zero values.

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 2, April 2021 : 583 – 598



TELKOMNIKA Telecommun Comput El Control r 593

The solution obtained could be justified as a strong or weak fuzzy solution. According to [12, 27, 28], the
definition of strong and weak fuzzy solutions is written as follows:

Definition 16. A positive fuzzy solution X̃ = (n, γ, δ) of FFME in (1) is called a strong fuzzy solution if γ > 0
and δ > 0, otherwise it is called a weak fuzzy solution.

4. ALGORITHM FOR SOLVING ÃX̃B̃ − X̃ = C̃
There are three steps involved in constructing the algorithm. It begins with a conversion of FFME

to its equivalent FFLS, then followed by transforming the FFLS to the crisp form of matrices. From that, the
ALS is formed. Finally, the solution is obtained using the direct inverse method.

Step 1. Converting the FFME into FFLS.
Firstly, the FFME is converted to a simpler form of equation known as FFLS. The conversion is based

on the fuzzy Kronecker product and V ec-operator. Taking V ec-operator for both sides of (1), we have

V ec(ÃX̃B̃ − X̃) = V ec(C̃),

then,
V ec(ÃX̃B̃)− V ec(X̃) = V ec(C̃). (46)

As we assumed that one of the coefficients, Ã or B̃ in the FFME of (1) is a near-zero fuzzy matrix, then based
on Corollary 1, V ec(ÃX̃B̃) is also a near-zero fuzzy matrix. Next, based on Theorem 10[

(B̃T ⊗k Ã)
]
V ec(X̃)− [Ũ ]V ec(X̃) = V ec(C̃) (47)

then, [
(B̃T ⊗k Ã)− Ũ

]
V ec(X̃) = V ec(C̃) (48)

Suppose [(B̃T ⊗k Ã)− Ũ ] = S̃, where S̃ = (F,M,N), V ec(X̃) = (mx, αx, βx) and V ec(C̃) = (mc, αc, βc),
then (48) can be written as

S̃V ec(X̃) = V ec(C̃).

Step 2. Converting the FFLS to the crisp form of matrices.
In this step, both coefficients of FFLS, S̃ and C̃, are converted to its corresponding crisp matrices.

Considering that S̃V ec(X̃) = V ec(C̃) in the following form,

n∑
j=1,...,n

(ms
ij , α

s
ij , β

s
ij)⊗ (mx

j , α
x
j , β

x
j ) = (mc

i , α
c
i , β

c
i ). (49)

Then,

ms = (ms
ij)m×n =

ms
11 ... ms

1n
...

. . .
...

ms
m1 ... ms

mn

 , αs = (αsij)m×n =

αs11 ... αs1n
...

. . .
...

αsm1 ... αsmn

 ,

βs = (βsij)n×n =

β
s
11 ... βs1n
...

. . .
...

βsn1 ... βsnn

 ,

mx =

m
x
1

...
mx
n

 , αx =

α
x
1
...
αxn

 , βx =

β
x
1
...
βxn

 ,
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and

mc =

mc
1

...
mc
m

 , αc =

αc1
...
αcm

 , βc =

βc1
...
βcm


Step 3. Forming the ALS.

Based on the crisp matrices obtained in Step 2, the values for (ms − αs), (ms + βs), (ms − αs)+,
(ms − αs)−, (ms + βs)+ and (ms + βs)− are determined. Then, the ALS of (45) is formed.

Step 4. Obtaining the final solution.
In obtaining the final solution, a direct inverse method is applied to the ALS.

5. NUMERICAL EXAMPLE
Example 2. Consider the following FFME of ÃX̃B̃ − X̃ = C̃.(

(18, 2, 16) (10, 2, 7) (15, 1, 5)
(19, 8, 10) (9, 5, 7) (8, 2, 12)
(7, 2, 17) (10, 5, 9) (6, 3, 5)

)
⊗

(
x̃11 x̃12
x̃21 x̃22
x̃31 x̃32

)
⊗
(
(−10, 3, 12) (7, 4, 11)
(8, 5, 16) (−10, 6, 12)

)
−

(
x̃11 x̃12
x̃21 x̃22
x̃31 x̃32

)

=

(
(−333, 11887, 28754) (−1710, 15217, 21983)
(5, 11484, 25602) (−1750, 13722, 20295)

(−180, 10012, 22202) (−856, 12536, 17038)

)

where coefficient Ã is positive, while B̃ is a near-zero fuzzy number.

Solution:

Step 1. Converting the FFME into FFLS by fuzzy Kronecker product and V ec-operator.

(B̃T ⊗k Ã)− Ũ

=


(−181, 262, 248) (−100, 121, 134) (−150, 110, 190) (144, 96, 672) (80, 56, 328) (120, 78, 360)
(−190, 187, 248) (−91, 118, 122) (−80, 180, 120) (152, 119, 544) (72, 60, 312) (64, 46, 416)
(−70, 242, 118) (−100, 147, 138) (−61, 83, 82) (56, 41, 520) (80, 65, 376) (48, 39, 216)
(126, 78, 486) (70, 46, 236) (105, 63, 255) (−181, 364, 248) (−100, 172, 134) (−150, 170, 190)
(133, 100, 389) (63, 51, 225) (56, 38, 304) (−190, 274, 248) (−91, 166, 122) (−80, 240, 120)
(49, 34, 383) (70, 55, 272) (42, 33, 156) (−70, 314, 118) (−100, 204, 138) (−61, 116, 82)

 .

From that, the FFME can be written in the form of FFLS [(B̃T ⊗k Ã)− Ũ ]V ec(X̃)

= V ec(C̃), which is given as follows:
(−181, 262, 248) (−100, 121, 134) (−150, 110, 190) (144, 96, 672) (80, 56, 328) (120, 78, 360)
(−190, 187, 248) (−91, 118, 122) (−80, 180, 120) (152, 119, 544) (72, 60, 312) (64, 46, 416)
(−70, 242, 118) (−100, 147, 138) (−61, 83, 82) (56, 41, 520) (80, 65, 376) (48, 39, 216)
(126, 78, 486) (70, 46, 236) (105, 63, 255) (−181, 364, 248) (−100, 172, 134) (−150, 170, 190)
(133, 100, 389) (63, 51, 225) (56, 38, 304) (−190, 274, 248) (−91, 166, 122) (−80, 240, 120)
(49, 34, 383) (70, 55, 272) (42, 33, 156) (−70, 314, 118) (−100, 204, 138) (−61, 116, 82)



(mx

1,1, α
x
1,1, β

x
1,1)

(mx
2,1, α

x
2,1, β

x
2,1)

(mx
3,1, α

x
3,1, β

x
3,1)

(mx
1,2, α

x
1,2, β

x
1,2)

(mx
2,2, α

x
2,2, β

x
2,2)

(mx
3,2, α

x
3,2, β

x
3,2)

 =


(−333, 11887, 28754)
(5, 11484, 25602)

(−180, 10012, 22202)
(−1710, 15217, 21983)
(−1750, 13722, 20295)
(−856, 12536, 17038)

 .

Step 2. All the coefficients are written in the crisp form as follows:

ms =


−181 −100 −150 144 80 120
−190 −91 −80 152 72 64
−70 −100 −61 56 80 48
126 70 105 −181 −100 −150
133 63 56 −190 −91 −80
49 70 42 −70 −100 −61

 ,
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αs =


262 121 110 96 56 78
187 118 180 119 60 46
242 147 83 41 65 39
78 46 63 364 172 170
100 51 38 274 166 240
34 55 33 314 204 116

 , βs =


248 134 190 672 328 360
248 122 120 544 312 416
118 138 82 520 376 216
486 236 255 248 134 190
389 225 304 248 122 120
383 272 156 118 138 82



mc =


−333
5
−180
−1710
−1750
−856

 , αc =


11887
11484
10012
15217
13722
12536

 , βc =


28754
25602
22202
21983
20295
17038


Thus

(ms − αs) =


−443−221−260 48 24 42
−377−209−260 33 12 18
−312−247−144 15 15 9
48 24 42 −545−272−320
33 12 18 −464−257−320
15 15 9 −384−304−177

 ,

(ms − αs)+ =


0 0 0 48 24 42
0 0 0 33 12 18
0 0 0 15 15 9
48 24 42 0 0 0
33 12 18 0 0 0
15 15 9 0 0 0

 ; (ms − αs)− =


−443−221−260 0 0 0
−377−209−260 0 0 0
−312−247−144 0 0 0
0 0 0 −545−272−320
0 0 0 −464−257−320
0 0 0 −384−304−177


On the other hand,

(ms + βs) =


67 34 40 816 408 480
58 31 40 696 384 480
48 38 21 576 456 264
612 306 360 67 34 40
522 288 360 58 31 40
432 342 198 48 38 21

 ,

(ms + βs)+ =


67 34 40 816 408 480
58 31 40 696 384 480
48 38 21 576 456 264
612 306 360 67 34 40
522 288 360 58 31 40
432 342 198 48 38 21

 ; (ms + βs)− =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Step 3. Then, the ALS is performed based on (45).

−181 −100 −150 144 80 120 0 0 0 0 0 0 0 0 0 0 0 0
−190 −91 −80 152 72 64 0 0 0 0 0 0 0 0 0 0 0 0
−70 −100 −61 56 80 48 0 0 0 0 0 0 0 0 0 0 0 0
126 70 105 −181 −100 −150 0 0 0 0 0 0 0 0 0 0 0 0
133 63 56 −190 −91 −80 0 0 0 0 0 0 0 0 0 0 0 0
49 70 42 −70 −100 −61 0 0 0 0 0 0 0 0 0 0 0 0

262 121 110 96 56 78 0 0 0 48 24 42 443 221 260 0 0 0
187 118 180 119 60 46 0 0 0 33 12 18 377 209 260 0 0 0
242 147 83 41 65 39 0 0 0 15 15 9 312 247 144 0 0 0
78 46 63 364 172 170 48 24 42 0 0 0 0 0 0 545 272 320
100 51 38 274 166 240 33 12 18 0 0 0 0 0 0 464 257 320
34 55 33 314 204 116 15 15 9 0 0 0 0 0 0 384 304 177

248 134 190 672 328 360 0 0 0 0 0 0 67 34 40 816 408 480
248 122 120 544 312 416 0 0 0 0 0 0 58 31 40 696 384 480
118 138 82 520 376 216 0 0 0 0 0 0 48 38 21 576 456 264
486 236 255 248 134 190 0 0 0 0 0 0 612 306 360 67 34 40
389 225 304 248 122 120 0 0 0 0 0 0 522 288 360 58 31 40
383 272 156 118 138 82 0 0 0 0 0 0 432 342 198 48 38 21





mx
1,1

mx
2,1

mx
3,1

mx
1,2

mx
2,2

mx
3,2

αx
1,1

αx
2,1

αx
3,1

αx
1,2

αx
2,2

αx
3,2

βx
1,1

βx
2,1

βx
3,1

βx
1,2

βx
2,2

βx
3,2



=



−333
5

−180
−1710
−1750
−856

11887
11484
10012
15217
13722
12536

28754
25602
22202
21983
20295
17038


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Step 4: Finally, the solution is obtained by the direct inverse method as follows:

X =



mx
1,1

mx
2,1

mx
3,1

mx
1,2

mx
2,2

mx
3,2

αx1,1
αx2,1
αx3,1
αx1,2
αx2,2
αx3,2
βx1,1
βx2,1
βx3,1
βx1,2
βx2,2
βx3,2



=



9
7
10
14
8
7
2
2
4
3
3
2
4
12
2
5
7
3



or X =




mx

1,1
mx

2,1
mx

3,1
mx

1,2
mx

2,2
mx

3,2



αx1,1
αx2,1
αx3,1
αx1,2
αx2,2
αx3,2



βx1,1
βx2,1
βx3,1
βx1,2
βx2,2
βx3,2





=




9
7
10
14
8
7



2
2
4
3
3
2




4
12
2
5
7
3





.

Hence, the solution obtained is a strong fuzzy solution of

X̃ =

(
x̃11 x̃12
x̃21 x̃22
x̃31 x̃32

)
=

(
(9, 2, 4) (14, 3, 5)
(7, 2, 12) (8, 3, 7)
(10, 4, 2) (7, 2, 3)

)
. (50)

Verification of the solution
The solution is verified by substituting the solution X̃ obtained in (50) to the left hand side of Example 2.

ÃX̃B̃ =

(
(18, 2, 16) (10, 2, 7) (15, 1, 5)
(19, 8, 10) (9, 5, 7) (8, 2, 12)
(7, 2, 17) (10, 5, 9) (6, 3, 5)

)
⊗

(
(9, 2, 4) (14, 3, 5)
(7, 2, 12) (8, 3, 7)
(10, 4, 2) (7, 2, 3)

)
⊗
(
(−10, 3, 12) (7, 4, 11)
(8, 5, 16) (−10, 6, 12)

)

=

(
(−324, 11883, 28758) (−1696, 15212, 21988)
(12, 11472, 25614) (−1742, 13715, 20302)

(−170, 10010, 22204) (−849, 12533, 17041)

)

After that, since the fuzzy matrix ÃX̃B̃ is near-zero, while X̃ is positive, the subtraction operator defined in
Definition 3 is applied to implement the subtraction of ÃX̃B̃ − X̃ .

ÃX̃B̃ − X̃ =

(
(−324, 11883, 28758) (−1696, 15212, 21988)
(12, 11472, 25614) (−1742, 13715, 20302)

(−170, 10010, 22204) (−849, 12533, 17041)

)
−

(
(9, 2, 4) (14, 3, 5)
(7, 2, 12) (8, 3, 7)
(10, 4, 2) (7, 2, 3)

)

=

(
(−333, 11887, 28754) (−1710, 15217, 21983)
(5, 11484, 25602) (−1750, 13722, 20295)

(−180, 10012, 22202) (−856, 12536, 17038)

)

Hence, the solution is verified. However, if the subtraction of ÃX̃B̃ − X̃ is implemented using the existing
subtraction operator in (10), the following solution is obtained, which does not satisfy the right-hand side of
the matrix.

ÃX̃B̃ − X̃ =

(
(−324, 11883, 28758) (−1696, 15212, 21988)
(12, 11472, 25614) (−1742, 13715, 20302)

(−170, 10010, 22204) (−849, 12533, 17041)

)
−

(
(9, 2, 4) (14, 3, 5)
(7, 2, 12) (8, 3, 7)
(10, 4, 2) (7, 2, 3)

)

=

(
(−333, 11887, 28760) (−1710, 15217, 21991)
(5, 11484, 25616) (−1750, 13722, 20305)

(−180, 10012, 22208) (−856, 12536, 17043)

)

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 2, April 2021 : 583 – 598



TELKOMNIKA Telecommun Comput El Control r 597

6. CONCLUSION
This paper provides a modification of new subtraction and multiplication operators in order to solve the

FFME of ÃX̃B̃−X̃ = C̃, where either coefficient Ã or B̃ is a near-zero fuzzy matrix. A modification is needed
since the existing operators are not well-equipped to deal with the near-zero fuzzy numbers. The proposed
algorithm involves the transformation of FFME to FFLS by utilizing Kronecker product and V ec-operator.
Subsequently, a new associated linear system is established based on the new modification of multiplication
operators. Finally, the solution is easily obtained using the direct inverse method. As a result, the proposed
algorithm has provides a significant approach with fewer restrictions in terms of fuzzy numbers, regardless of
the size of the matrix equations.
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