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 In this paper, a hybrid method has been introduced to improve the 

classification performance of naïve Bayes (NB) for the mixed dataset and 

multi-class problems. This proposed method relies on a similarity measure 

which is applied to portions that are not correctly classified by NB. Since the 

data contains a multi-valued short text with rare words that limit the NB 

performance, we have employed an adapted selective classifier based on 

similarities (CSBS) classifier to exceed the NB limitations and included the 

rare words in the computation. This action has been achieved by transforming 

the formula from the product of the probabilities of the categorical variable to 

its sum weighted by numerical variable. The proposed algorithm has been 

experimented on card payment transaction data that contains the label of 

transactions: the multi-valued short text and the transaction amount. Based on 

K-fold cross validation, the evaluation results confirm that the proposed 

method achieved better results in terms of precision, recall, and F-score 

compared to NB and CSBS classifiers separately. Besides, the fact of 

converting a product form to a sum gives more chance to rare words to 

optimize the text classification, which is another advantage of the proposed 

method. 
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1. INTRODUCTION 

In many cases, datasets consist of both numerical and categorical variables. Many classifiers, such as 

linear regression, support vector regression, and k-nearest neighbour (KNN) are well-defined and validated for 

the computation of numerical variables. For these algorithms, it is easier to establish the relations between a 

target and its predictors when both are numerical. However, the numerical operations are not applicable to 

categorical variables, except if it has been converted to numeric one using coding systems such as dummy 

coding, effects coding, or even contract coding [1, 2]. Another approach is based on similarity and dissimilarity 

measures between categorical and numerical variables, where the data matrix is transformed into a distance 

configuration matrix after applying similar or dissimilar functions [3-5]. 

However, the previous approaches increase the number of predictors when categorical variables  

are numerous. In this case, the coding systems proposed additional steps to reduce the number of  

predictors [6, 7]. Though those approaches do not apply to multi-valued categorical variables that contain more 

than a single word, Mikolov proposes the Word2Vec model that represents the text in a vector format and saves 

https://creativecommons.org/licenses/by-sa/4.0/
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the syntax and the semantic meaning of natural language [8, 9]. The Word2vect is applicable even for a 

disordered multi-word text, where linguistic and semantic rules are not respected. 

In the pre-processing and classification context, some approaches relying on similarity measure 

classification are applying cosine and string similarity to measure the distance between vectors. Other 

approaches propose utterly hybrid classifiers depending on the similarity-based measure. In this context, SBC 

algorithm (similarity-based classifier) [10] and CSBS (selective classifier based on similarities) are two 

algorithms that combine the measures of equality, reliability, and density to classify vectors. Both classifiers 

show excellent performance in terms of text classification [11, 12]. 

On the other hand, naïve Bayes (NB) is still highly useful to classify the categorical and numerical 

variables [13], especially compare its performance with other classifiers. In general, identifying suitable 

similarity measures between categorical variables or between categorical and numerical variables is 

considered a complex challenge. To address this challenge, a hybrid NB model has been constructed using an 

adapted CSBS. Where, the categorical variable is a short text, and we apply tokenization and stop-words in 

the pre-processing phase. For classification, NB has been used to train our model that used only the categorical 

variable. And for the portions that are poorly explained by NB, the adapted CSBS intervened in the second 

phase to improve the classification by including numerical variable. 

The organization of the paper is as follows. Section 2 briefly presents the related works we address 

in the paper. Section 3 provides different methods used in this study. Section 4 introduces a description of the 

proposed hybrid naïve Bayes algorithm. Section 5 shows the experimental results of applying algorithms on 

the real credit card dataset. The last section presents the concluding remarks 
 

 

2. LITERATURE REVIEW 

2.1.  Categorical variable and similarity measures 

Categorical and qualitative multi-valued data have been studied for a long time in different contexts. 

Computing similarity has a long history, started with chi-square in the late 1800s that is frequently used for 

independence tests between categorical variables. Also, Pearson's chi-square has known many improvements 

that handled several data similarity cases [14]. So far, classical categorical data has changed. Notably, the 

categories number of a qualitative variable has increased to important values. Also, the categorical variables 

start to include multi-valued short text [10], so many limitations are exposed. Fortunately, different methods 

based on similarity measures have been proposed to overcome this challenge. However, the performance of 

those methods depends largely on data characteristics [15].  

For the main data characteristics, we consider a categorical data contains N objects, with p 

categorical variables. While 𝐴𝑘  denotes the 𝑘𝑡ℎvariable, and Ω𝑘  the set of different values in Ak and 𝑛𝑘  its 

cardinality. The key characteristics are the following: 

− 𝑓𝑘(𝑥): The number of times the attribute 𝐴𝑘to take x as a value in a data set.  

− 𝑝𝑘(𝑥):  The sample probability of 𝐴𝑘to take x as a value in a data set, and it is given by; 
 

 𝑝𝑘(𝑥) =
𝑓𝑘(𝑥)

𝑁
          (1) 

 

− 𝑝𝑘
2(𝑥): Another probability formula of 𝐴𝑘 to take x as a value in the given data set, and it’s given by; 

 

𝑝𝑘
2(𝑥) =

𝑓𝑘(𝑥)(𝑓𝑘(𝑥)−1)  

𝑁(𝑁−1)
           (2) 

 

In general, to measure a similarity value between two data instances X and Y belonging to a data set, all used 

measures respect the following form: 
 

𝑆(𝑋, 𝑌) = ∑ 𝑤𝑘
𝑑
𝑘=1 𝑆𝑘(𝑋𝑘, 𝑌𝑘)       (3) 

 

𝑆𝑘(𝑋𝑘 , 𝑌𝑘): The per-attribute similarity between two values for the categorical attribute 𝐴𝑘. 

𝑤𝑘 : The weight assigned to the attribute 𝐴𝑘, thereafter, it is fixed to 1/p. 

The above expression has been the point of many studies and is interpreted into different functions depending 

on the data. Where three examples of 𝑆𝑘(𝑋𝑘 , 𝑌𝑘) and 𝑤𝑘 have been mentioned. Starting with the sample one, the 

overlap measure: it counts the number of attributes that match in the two data instances, using the measure (4): 
 

𝑆𝑘(𝑋𝑘 , 𝑌𝑘) = {
1    𝑖𝑓𝑋𝑘 = 𝑌𝑘

0   𝑖𝑓𝑋𝑘 ≠  𝑌𝑘
       (4) 

 

The Goodall 4: measure: aims to normalize the similarity between two objects, based on the probability where 

the similarity value observed could be generated from a random sample of two points [16]. 



TELKOMNIKA Telecommun Comput El Control   

 

A Hybrid naïve Bayes based on similarity measure to…  (Fatima El Barakaz) 

157 

𝑆𝑘(𝑋𝑘 , 𝑌𝑘) = {
𝑝𝑘

2(𝑥)        𝑖𝑓𝑋𝑘 = 𝑌𝑘

0                 𝑖𝑓𝑋𝑘 ≠  𝑌𝑘
       (5) 

 

2.2.  Bank customer transactions classification 

Customer classification and targeting are widely applied in practice. In recent years, banks have 

invested in their data and applied machine learning methods for customer identification, where they achieved 

fruitful results. Eskin et al. [17] propose the use of a random sampling method to improve the support vector 

machine (SVM) model, for bank customer churn prediction. In the same context, De Caigny et al. [18, 19] 

suggested a combination of both methods of logistic regression and decision trees. While for fraud detection, 

Jurgovsky et al. showed how using long short-term memory (LSTM) improves the detection accuracy used 

the Random Forest classifier and incorporated transaction sequences [20]. Others focus on the pre-processing 

part, for the credit applications where various information about payment appear in qualitative, categorical 

attributes. In general, the classification of customer transactions could be used to extend a system that can 

compute socioecological impact from categorized transactions, and provide more analysis about the 

community and its relationship with the geographic location. And it is used in risk management, security and 

fraud detection, or commercial departments bank to identify customer behaviour. 
 

2.3.  Text classification 

Text classification is a fundamental task in natural language processing. It is widely applied in 

sentiment analysis, recommendation and Fraud and spam detection [21, 22]. Machine learning includes many 

approaches for text classification as NB, support vector machine, and other algorithms. Lately, deep learning 

has shown an over-performing compared to traditional machine learning methods. And that is noticed in the 

known methods below: convolutional neural networks (CNNs) [23], recurrent neural networks (RNNs), and 

the combination of CNNs and RNNs [24]. 

Although the great success has shown in processing long sentences, it was not the case for short 

text explained by the data sparsity problem. Recently, many works have been applying various text 

presentation models to extract more information from short text [25, 26]. As mentioned earlier, some are based 

on features from multiple aspects, and others are based on transforming words into vectors. However, the text 

representations still face the data sparsity problem when the data include many new and rare words [27]. In 

our case, the text in question is categorized as a short text, where the variable is very multi-valued. So, the 

new and rare words cause a serious classification problem. In this paper, we propose a hybrid NB classifier 

based on adapted similarity measures applied to card transaction payment data. 
 

 

3. RESEARCH METHOD 

3.1.   Naïve Bayes classifier 

Naive Bayes is a supervised learning algorithm based on a probabilistic classification. 

This classifier is extremely faster compared to other methods. NB aims to calculate the joint probabilities of 

words and categories to estimate each category the text will be affected. The ‘Naive’ expression is due to the 

fact the words are independents. In other words, the conditional probability of a word from a category is 

assumed to be independent of the conditional probabilities of other words from the same category [28]. 
 

3.2.   CSBS classifier 

The CSBS is a classifier based on similarity measures, in which the treated limitations shown for 

short text classification are based on three measures: equality, reliability, and density [10]. For the sake of 

notation, for a class C, we distinguish between the amplitude 𝑎𝑐 and the own amplitude 𝑎𝑐∗, When the own 

amplitude of a given attribute serves to predict whether this is reliable relatively compare to other attributes, 

and that through eliminating the intervals containing values belonging to the other classes from 𝑎𝑐. 

In CSBS classifier [11], equality is measured by the number of objects sharing the same values per 

attribute. The higher the measure is, the more the values indicate the membership to the class. However, the 

own amplitude indicates the reliably of the attribute. At the same time, an instance is more likely to belong to 

a class when the attribute value is included in its own amplitude. While the density of the membership of an 

instance to a class C is measured using the (6): 
 

 𝜉𝑙𝐶 =  
1

𝑁
∑ 𝑝𝑗𝐶

𝑀
𝑗=1 ×

𝑁𝑗
𝐶 +𝑎𝑗

𝐶∗ − 𝑑(𝑥𝑙𝑗 ,𝑐𝑗
𝑐̅̅ ̅)

𝑁𝑗+𝑎𝑗
𝐶+𝜀

      (6) 

 

where: M is the number of attributes. 

N : The number of instances. 

𝑝𝑗𝐶   : The coefficient of reliability on 𝑥𝑗 to predict C. 

𝑁𝑗
𝐶 : The number of instances that take the value of processed instance on attribute 𝑗𝑡ℎ per C. 
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𝑎𝑗
𝐶∗  : The own amplitude of C per attribute 𝑗𝑡ℎ. 

𝑎𝑗
𝐶   : The simple amplitude of C per attribute 𝑗𝑡ℎ. 

𝑐𝑗
�̅�  : The center of C per attribute 𝑗𝑡ℎ. 

𝑁𝑗 : The number of instances that take the value of processed instance on attribute 𝑗𝑡ℎ. 

𝜀 :  A very small positive value. 

Finally, the class of a given instance is the one having the highest membership measure using (7):  
 

𝑌𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒  =𝑎𝑟𝑔𝑚𝑎𝑥𝑐 𝜖 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑔𝑟𝑜𝑢𝑝 𝜉𝑙𝐶       (7) 
 

 

4. THE PROPOSED METHOD 

The primary purpose of the proposed algorithm is to provide a new hybrid algorithm that performs 

better for mixed data. This algorithm combines the individual strengths of NB for text application and CSBS. 

It mitigates the disadvantages of the two methods knowing that the performance of NB moves down where the 

number of rare words goes up. Besides, it has numerous advantages that can be described as follows: 

− By combining a probabilistic algorithm with an algorithm based on distance and density, the model 

eliminates the probabilistic property of the proposed method. 

− The computation complexity is lower compared to NB model as the proposed classifier turned the product 

form into a sum form. 

− The impact of rare words number can not be ignored since it becomes an optimizer of classification 

performance. 

− The CSBS contains a normalized distance, which is better for numerical variables applications. 

− Implementation is more simple and easier.  

The communicated advantages could be noticed through the algorithm’s description as shown in 

Figure 1. The process shows the main steps to exceed the constraint due to NB fail to classify a particular 

instance, and the combination with the adapted CSBS in a specific stage. To illustrate the logic of our proposed 

model, Figure 2 represents the dealing of different components at each level. The trials’ number is based on 

the value of K. For each trial the NB classifies the text instances based on the occurrence of words and the 

probabilities of belonging. However, and due to the high number of rare words, the NB affects an important 

portion to the wrong class. By adding the weight of the numerical dimension, the adapted CSBS tries to make 

the classification better and promote the position of each word in the dataset. 
 

 

 
 

Figure 1. The proposed algorithm 
 

 

 
 

Figure 2. Illustration of different stages of proposed algorithm 
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5.      RESULTS AND ANALYSIS 

5.1.     Experiments 

5.1.1.  Data description and preparation 

The aim of our proposed solution is to effectively handle mixed data for card transactions payment 

classification problems. The dataset illustration contains 1312 instances and two variables. The first variable 

is a categorical variable that describes the transaction labels. The second is the numeric variable that consists 

of the amount associated with each operation. We extracted the data from a personal account created in 

Moroccan bank territory that we aim to classify them into four classes. 

Observing our dataset, the categorical variable is an unstructured text and does not strictly respect 

the syntax or the semantic meaning of natural language (English, French...), or any abbreviation rules. Or 

either the emplacement of a word in a sentence does not have any importance. It could be categorized as a 

normal categorical dimension with few values, other cases contain multi-values, further, and it may also be 

classed as short text. In Table 1, each case has been presented with some selected instances. 

The preparation of such data imposes three parts: tokenization, removal of stop words, then the 

construction of the bag of words. To tokenize the text of the categorical variable, strings of text have been split 

into words, we moved, and the stop words have been identified. For example: the, and, or... Stop words can 

also be a specified list of expressions, for example, taking the label: “Supermarket EL JADIDA”, the expression 

“EL JADIDA” which is a name of a Moroccan city, has no sense in our proposed model, so our list of stop 

words combine the standard stop words in French and English languages list and the list of all Moroccan cities. 

Finally, the bag of words has been constructed as a matrix. This one helps the classifier to train on the data and 

recovers the significant terms of each class. 
 
 

Table 1. Different cases selected from payment transaction text variable 
Case Payment transaction text Comment 

Standard Categorical dimension “Achat YVES ROCHER MAROC“ 
“Achat via WWW.ALIEXPRESS.COM“ 

“Pay UBER MAROC E-COM bill”  

Each instance belongs to different classes, and 
it appears in one form for the whole dataset. 

Multi-value categorical dimension “Achat Marjane market Alina” 
“Achat Marjane Bigdil” 

“Pay Marjane bill” 

All instances belong to same classes, however 
the third one will be misclassified based using 

NB. 

Short text “Bill L’ARBRE DE ZOE” 
“Facture KINANI CHAUSSURES” 

“GRAS SAVOYE Molay Youssef” 

 

The rare words are highly represented in this 
sample, the only keywords are “bill” and 

“facture”, and the both are not enough to affect 

a correct classification with NB. 

 
 

5.1.2.  Experimental procedures 

To evaluate the proposed algorithm, we train with three models. The first is NB, which was applied 

to the categorical variable to avoid the overlapping of the numerical variable. The second model used the 

adapted CSBS on both categorical and numerical variables. The last one introduced our proposed model that 

combines the NB and the adapted CSBS algorithm. To adjust the CSBS (cited in (6)) to the structure of the 

dataset. The adapted CSBS is given in the (8):  
 

𝜉𝑙𝐶(X) =
𝑁𝑡

𝐶+𝑎𝑡
𝐶∗− 𝑑(𝑥 ,𝑐𝑡

𝑐̅̅ ̅)

𝑁𝑡+𝑎𝑡
𝐶+𝜀

×
1

𝑁
∑ 𝑝𝑗𝐶

𝑀′

𝑗=1       (8) 

 

where: 𝑝𝑗𝐶  indicate the frequency of the word  𝑤𝑗  per class C. 

t: used to index the parameters of the numerical attribute. 

M′: Number of words of the categorical variable 

For a reasonable comparison, we organized the dataset into different subset sizes, n=280, 560, 840, 

and 1120, respectively, which are selected each time arbitrarily from our dataset of 1312 instances. The  

K-Fold Cross-validation sampling method is frequently used to evaluate models in machine learning and data 

mining. The dataset is segmented randomly into K segments, where each segment is retained once, and the 

classifier is learned on the other K-1 segments. In our case, K will take 4, 7, and 10, respectively. 

Therefore, the learning procedure is performed K times on each different subset. The overall performance is 

evaluated in terms of recall, precision, and F-measure: 
 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (9) 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (10) 

 

F_score = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
       (11) 
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where: FN is the number of false negatives. 

FP is the number of false positives. 

TP is the number of true positives. 

The calculation of those two factors in a multi-class classifier situation request the notions below:  

Classified 
 

C =Actual   

𝑐11 … 𝑐1𝑛

…   
𝑐𝑛1  𝑐𝑛𝑛

 

 

The confusion elements for each class are given by: 
 

𝑡𝑝𝑖 =  𝑐𝑖𝑖                     ;              𝑓𝑛𝑖 =  ∑ 𝑐𝑖𝑙
𝑛
𝑙=1 − 𝑡𝑝𝑖     (12, 13) 

 

𝑓𝑝𝑖 =  ∑ 𝑐𝑙𝑖
𝑛
𝑙=1 − 𝑡𝑝𝑖         (14) 

 

𝑡𝑛𝑖 =  ∑ ∑  𝑛
𝑘=1 𝑐𝑘𝑙

𝑛
𝑙=1 − 𝑡𝑝𝑖 − 𝑓𝑝𝑖 − 𝑓𝑛𝑖      (15) 

 

5.2.  Experiments results: 

The performance evaluation of our hybrid model constructed using K-fold cross-validation 

introduced in the section above. Since the parameter K took different values, we compute the model on 30 

trials for each sample size. The results for the three classifiers NB, adapted CSBS, and the proposed method 

are reported in Table 2. The improvements of the hybrid method in terms of the different measures refer at 

first to the performance of naïve Bayes on the dataset, then at second to the adding of the adapted CSBS 

performance applied to the partitions poorly classified. Furthermore, the notable role of the adapted CSBS 

could not be denied, since it kept an excellent harmonic mean between the recall and the precision for each 

different simulation. And better, when it is combined with NB performance. To present the progress of our 

classifier in term multi-classification improvement, we selected for K=10 four trials randomly applied on a 

sample of n=280. And based on Table 3, which describes the recall, precision, and F-score values, the 

proposed method outperformed for the three evaluation indicators. 
 
 

Table 2. The results of the different classifier for different K value, based on 30 trials on average 
  Naive Bayes Adapted CSBS The proposed model 

 Sample size Recall Precision F-score Recall Precision F-score Recall Precision F-score 

K=4 280 0.63 0.76 0.62 0.78 0.79 0.83 0.79 0.89 0.89 

560 0.61 0.73 0.62 0.75 0.82 0.79 0.78 0.89 0.86 

840 0.72 0.71 0.71 0.83 0.89 0.77 0.88 0.93 0.86 
1120 0.76 0.68 0.72 0.76 0.75 0.72 0.89 0.89 0.94 

K=7 280 0.71 0.75 0.64 0.78 0.84 0.75 0.84 0.92 0.93 

560 0.78 0.69 0.62 0.84 0.74 0.64 0.8 0.88 0.85 
840 0.63 0.79 0.72 0.65 0.87 0.63 0.83 0.94 0.83 

1120 0.67 0.71 0.74 0.74 0.85 0.71 0.98 0.91 0.89 

K=10 280 0.6 0.61 0.62 0.77 0.89 0.62 0.88 0.8 0.88 
560 0.7 0.6 0.62 0.83 0.81 0.73 0.84 0.97 0.8 

840 0.76 0.8 0.71 0.74 0.74 0.66 0.77 0.96 0.89 

1120 0.78 0.67 0.72 0.72 0.84 0.77 0.9 0.88 0.94 
 

 

Table 3. The results of precision, recall, and F-score per trial and per method 
  Method Recall Precision F-Score 

Trial.1 1 Naive Bayes 0.78 0.89 0.83 

 2 Adapted CSBS 0.74 0.76 0.75 

 3 Proposed method 0.89 0.94 0.91 
Trial. 2 4 Naive Bayes 0.9 0.85 0.88 

 5 Adapted CSBS 0.78 0.77 0.78 

 6 Proposed method 0.94 0.91 0.92 
Trial. 3 7 Naive Bayes 0.87 0.9 0.88 

 8 Adapted CSBS 0.8 0.74 0.77 

 9 Proposed method 0.93 0.94 0.94 
Trial. 4 10 Naive Bayes 0.83 0.85 0.84 

 11 Adapted CSBS 0.77 0.75 0.76 

 12 Proposed method 0.9 0.93 0.91 

 

 

Even more, the hybrid method guarantees a good efficiency in terms of the one class classification 

performance, so we have: 
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Precision (CNB) < Precision (CThe poposed method)   And:    Recall(CNB ) < Recall(CThe poposed method) 
 

To visualize this, enhance, a demonstration with a confusion matrix is recommended. Figure 3 illustrates the 

confusion matrix of different selected trials per method.  Moving from NB to adapted CSBS to the proposed 

method for each trial, the numbers in the confusion matrix increased where the numbers outside decreased, 

which proves the progress of one-class classification. We also note that the True Positive in tables (3), (6), 

(9), and (12) are better than its equivalent in tables (2), (5), (8), and (11). This result highlights the fact of how 

the hybrid method works significantly better for the rare words and achieved excellent results for both mixed 

data classification and text classification. In general, the NB shows good results comparing to the results of 

CSBS. However, the combination of both achieved meaningful classification progress. 
 

 

 
 

Figure 3. The confusion matrices of four trials were randomly selected to explain the result of Table 3 
 

 

6. CONCLUSION 

The main objective of this contribution is to deal with the classification of mixed data that include 

a multi-valued short text variable. We introduced a hybrid naïve Bayes that is based on similarity measures to 

effectively process both categorical and numerical variables. In the proposed method, the naive Bayes predicts 

the portion of the target only explained by the categorical variable, and the remaining part is predicted using 

the adapted CSBS that provides good classification using numerical variables. The proposed solution 

combines NB with an adapted CSBS. The hybrid model was compared to the naïve Bayes, and the adapted 

CSBS separately. The experiments were performed using the card transactions payment data that contains a 

multi-valued short text variable and numerical variable. The solution has achieved significant progress in 

terms of recall, precision, and F-measure. Furthermore, it deals well with rare words issues, and also improves 

the classification of the model. 

This work is limited because it has not been applied to different known dataset yet. However, it 

was proposed to handle the classification of short text using multi-valued variables, applied to a real case 

problem: card transaction payment classification. This study could be extended on many mixed datasets in a 

different field in order to optimize the classification of categorical dimensions. In future work, the 

dimensionality of vector-text supported by our method will be investigated while maintaining its simplicity. 
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