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 Peat swamp forest plays a very important role in absorbing and storing large 

amounts of terrestrial carbon, both above ground and in the soil. There has 

been a lot of research on the estimation of the amount of biomass above the 

ground, but a little on peat swamp ecosystems using light detection and 

ranging (LiDAR) technology, especially in Indonesia. The purpose of this 

study is to build a biomass estimation model based on LiDAR data. This 

technology can obtain information about the structure and characteristics of 

any vegetation in detail and in real time. Data was obtained from the East 

Kotawaringin Regency, Central Kalimantan. Biomass field was generated 

from the available allometry, and Point cloud of LiDAR was extracted into 

canopy cover (CC), and data on tree height, using the FRCI and local maxima 

(LM) method, respectively. The CC and tree height data were then used as 

independent variables in building the regression model. The best-fitted model 

was obtained after the scoring and ranking of several regression forms such as 

linear, quadratic, power, exponential and logarithmic. This research concluded 

that the quadratic regression model, with R2 of  72.16% and root mean square 

error (RMSE) of 0.0003% is the best-fitted estimation model (BK). Finally, 

the biomass value from the models was 244.510 tons/ha. 
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1. INTRODUCTION 

Peat swamp forests have unique characteristics but are prone to degradation [1-3]. From 2004 to 2011, 

about 5.8 million ha of this forest was degraded [4, 5], therefore, proper management is needed to solve this 

problem as soon as possible. The right decision on the management of this forest requires detailed, accurate 

and up-to-date information. Furthermore, data on forest composition, structure (vertical and horizontal) and 

other biophysical data are important components in the decision-making process [6]. Remote sensing has 

advantages in conditions where the forest is inaccessible, and covers a wider area, especially in terms of forest 

mapping, monitoring, and modelling [7, 8]. UNFCCC (United Nations Framework Convention on Climate 

Change) recommends and measures the amount of carbon loss by combining field measurement and remote 

sensing. This is done in order to produce more accurate data [9]. LiDAR (light detection and ranging) which 

high accuracy is one of the most recent remote sensing technologies [10, 11]. It functions by sending laser 

pulses from its sensor, which is mounted on a flying platform, to a target on the surface of the earth, and this 
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pulse reflecting back to it. The returning light is then analyzed to measure the distance between the sensor and 

the object, and generate a 3D point cloud, through the position data, and orientation of the sensor [12]. This 

remote sensing technology can record various pulsed signal from several surface layers, such as primary signals 

which are pulsed by the top surface layer of vegetation, and the secondary signal and so on, which are pulsed 

from other surface layers such as bush and shrub. Lastly, the final signal is the pulse from the surface [13]. 

LiDAR generally produces 3D point cloud data such as digital surface model (DSM) which represents the 

elevation of vegetation canopy, digital terrain model (DTM) which represents ground elevation, and canopy 

height model (CHM), obtained by subtracting DTM from DSM which representing the height of vegetation. 

The technology is able of obtain data on canopy surface, and vegetation parameters such as height, tree 

density, canopy dimension, basal area, and profile of vertical canopy, which are required for the modeling an 

environment [14]. Popescu et al. [15] discovered the strong relationship between the field measurement data 

(canopy cover) and point density using this technology. Moreover, the estimation accuracy of above ground 

biomass increases simultaneously with the increase in point density [16]. As stated earlier on, LiDAR point 

cloud data, which has high resolution is capable of estimating the above ground biomass (AGB), by 

implementing allometric relationships of height point density and carbon stock data from the field sample [17]. 

Furthermore, Wan-Mohd-Jaafar et al. [18] developed the relationship between height and width data on canopy 

and it was validated with the field data. Therefore, it can predict the above ground biomass in tropical forests. 

This relationship could also be used to assess carbon stock [19, 20]. This research was conducted to study 

LiDAR technology, which can provide complete, fast, and accurate data, and when combined with field data 

can be used for planning, managing, and monitoring peatland ecosystems. In addition, it also aims to estimate 

the above ground biomass (AGB) model using LiDAR data. 

 

 

2. RESEARCH METHOD 

2.1.  Location and time 

Field measurement was conducted in the restoration area of the peatland ecosystem in PT. Rimba 

Makmur Utama, which is administratively located in East Waringin Regency of Central Kalimantan  

as shown in Figure 1 and has a IUPHHK-RE area of 217.755 ha. Data was collected between July-August 

2018. And were analyzed in the Spatial Analysis and Modeling Laboratory, Department of Conservation of 

Forest Resources and Ecotourism, Faculty of Forestry, IPB University.  

 

2.2.  Tools and materials 

The tools used were digital, and DSLR camera, fisheye lens, tripod, global positioning system (GPS), 

machete, phiband, hypsometer, compass, measuring tape, and ropes. While the software for managing and 

analysing the data were ArcGIS 10.3, Rstudio, HemiView 2.1, and Microsoft excel. Lastly, other materials 

utilized includes plot plan and coordinates of plot reference on GPS and tally sheet. 

 

 

 
 

Figure 1. Research location; (a) in Central Kalimantan Province, (b) East Kotawaringin Regency, and  

(c) IUPHHK-RE PT. Rimba Makmur Utama 

 

 

2.3.  Data collection 

LiDAR Point clouds data and vegetation data were the basic data used in this study. The data used for 

formulating biomass estimation model. Each of these data was obtained from direct acquisitions although by 

processed data. The types of data and research flow can be seen in Table 1 and Figure 2. 
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Figure 2. Research flow 
 
 

Table 1. Types of data in the research 
No Type of Data Year Method 

1 Tree Diameter and Height 2018 Direct measurement 

2 Point Cloud  (LiDAR) 2018 Direct measurement 
3 Tree canopy photo 2018 Hemispherical photograph 

 

 

2.4.  Field data measurement 

Determination of field survey to obtain vegetation and LiDAR data was performed by placing a plot of 

40x40 (m) within the LiDAR flight range, which is 2x1 (km) or 200 ha, using the systematic sampling method 

as shown in Figure 2. The Vegetation data collected were the diameter at breast height (dbh) of the trees with 

diameter ≥10 cm, total height of tree, tree species (common name and Latin name), plot coordinates, and 

anything related to growth sites around the measurement plots. To facilitate the measurement, the main plot 

(40x40) was divided into quadrant of 20x20 (m). Canopy density measurement was carried out at each central 

point of the quadrant, and central point of the main plot, therefore, the total observation point in each plot was 

5 points. The measurements were carried out using hemispherical camera and densitometer. LiDAR data was 

obtained from the third party (PT. Ocron Global) with acquisition parameters as shown in Table 2. The type of 

LiDAR sensor was the Yellow Scan Mapper, mounted on DJI Matrice 600 drone. 
 
 

Table 2. LiDAR Acquisition Parameters 
Parameter Specification 

Drone  DJI Matrice 600 

Speed 6-10 m/s 
Flight altitude  70-100 m above sea level 

Laser speed 2 s 

Horizontal accuracy 20-30 cm using GCP and more than 1 without GCP 
Vertical accuracy 10-15 cm 

LiDAR point density 12-18 points/m2 
Spatial resolution 5-15 cm/pixel depends on flight altitude 

Flight sidelap  60% 

Flight overlap  80% 
Scanning range  0.1-30 m 

Data acquisition rate 43,200 points/sec 

 

 

2.5.      Data analysis 

2.5.1.  Actual biomass  

Above ground biomass data can be measured directly from destruction sampling by cutting the trees. 

Unfortunatelly this method was costly and complicated, another way that we conducted was using allometric 

model. By using this allometric equation, we just measured tree diameter in the field. Data analysis of the above 

ground biomass (AGB) estimation, especially for the tree, was performed using the allometries equation 

developed by Jaya et al. [2] of AGB = 0.107 D2.486. D represented tree diameter of breast height (DBH). 
 

2.5.2.    LiDAR data processing 

2.5.2.1.  Designing of digital terrain model (DTM) 

Terrestrial model or DTM is the representation of a terrain obtained from the point features of LiDAR 

data of ground class. This data which was used for designing the ground model was edited to clear up the 

terrain point cloud, which was directly intersected with waters, and corrected proportionally. DTM making 

process was performed on the point cloud class of ground feature, to obtain a 2D raster. This creation was 
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carried out using the interpolation method, with a 0.5 resolution RStudio software. DTM was used for the 

normalization of the data on actual height, in order to estimate the canopy cover and tree height. 
 

2.5.2.2.  LiDAR canopy cover (CC) estimation 

Canopy cover estimation in percentage was performed using LiDAR data, in the form of digital terrain 

model (DTM), which had been normalized and filtered. The method used was the first return canopy index 

(FRCI). According to Ma et al. [21], FRCI could generate higher canopy cover data due to LiDAR penetration 

in forest areas. Furthermore, its calculation compares the first with the single returns as referred in [21, 22]. 
 

𝐹𝑅𝐶𝐼 =
∑ First  Canopy + ∑ Single  Canopy

∑ First  Total + ∑ Single  Total
       (1) 

 

Description: FRCI  = first return canopy index (%), First canopy=first return intersecting the canopy, Single 

canopy = single return intersecting the canopy, First total=total number of first return, Single total = total 

number of single return. 

 

2.5.2.3.  LiDAR tree height estimation 

The normalized and filtered point cloud was used to determine the top of each tree, which represents 

their position and height. The algorithm used was local maxima (LM) filtering in squares on Rstudio. As 

implemented by Popescu et al. [15], it shows that LM method with square windows is better than with circle 

ones. This research used 3x3 cm windows of 40x40 m according to the plot size of field data collection. The 

mean of the identification results of each tree height were estimated to represent the height value for each  

plot [23]. 

 

2.5.3.  Regression model formulation 

The formulated models were LiDAR height and biomass estimation models. The CC (canopy cover) 

and Tree High that were extracted by the point cloud LiDAR data were used as independet variable in 

formulation model.  Here are several regression models to formulate: 

− Linear regression: 

 

Y = a + bX         (2) 

 

− Logarithmic regression:  

 

Y = a + b ln X         (3) 

 

− Quadratic regression: 

 

Y = a + bX²         (4) 

 

− Exponential regression: 

 

Y = a + expbX           (5) 

 

− Power regression: 

 

Y = a Xb            (6) 

 

2.5.4.  Classic assumption test 

The classic assumption test was performed at the test level of 5% or α = 0.05. It was the normality test, 

and aimed to determine the distribution of data. Furthermore, it was carried out by the Kolmogorov-Smirnov 

test. The next test conducted was the heteroscedasticity test, which was intended to check the uniformity of the 

rest of the model, using the Gletser statistical test. 
 

2.5.5.  Correlation and accuracy test 

The statistical test used was the correlation test, and it aimed to find out the relationship between 

variables in the biomass estimation. The relationship between the biomass and LiDAR data was analyzed used 

the correlation approach of Pearson’s product moment (r). Correlation test was performed to find out the 

difference between the value obtained from field biomass and the best biomass from LiDAR, Leaf Area Index 

(LAI) and canopy cover of LiDAR (FRCI), and actual tree height and LiDAR tree height. When the correlation 
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value is approaching 1/-1 it means that the value of estimation model has a close relationship with the actual 

value of the field data. On the contrary, if the correlation value approaching 0, it means that the value of the 

estimation model has a distant relationship from the actual value. Accuracy test was performed to ascertain the 

accuracy of the estimation as compared to the actual data. This test could be performed by looking at the RMSE 

(root mean square error), aggregate deviation (SA) and s (deviation standart) value [24]. According to  

Spurr [25], a good equation has aggregate deviation (SA) value ranges from -1 to +1. The smaller the standard 

deviation is, the more accurate the expected value [26]. 
 

2.5.6.  Selection of the best-fit model 

For a model to be feasible as a regression model for the estimation of biomass, it needs to have a high 

coefficient of determination value. In addition, aggregate deviation value is also considered a criteria for 

selecting the best model. When a model has an Aggregate deviation value of -1 to 1 it means that that it is 

feasible to be used as the best estimation model [2]. Selection of the best biomass estimation model was 

conducted by ranking the comparative values (S, SA, RMSE), where the best rank was given to the greatest 

score. The score was identified using the (7): 
 

Score = ((
ev−min

max−min
) x (5 − 1)) + 1       (7) 

 

where, Ev: Estimation value, min: minimum value, and max: maximum value. 
 

 

3. RESULTS AND ANALYSIS 

3.1.  Field inventory 

The measurement of vegetation characteristics which includes, height, diameter, tree species and 

number of tree was performed manually using simple measuring tools. It was discovered that the average 

height, and diameter (DBH) of the trees was 27 m and 57 cm respectively. In addition, the number of tree at 

research location was 2632, and consisted of 68 types, and 36 Family. However, one of them could not be 

identified and so was labelled as unknown. The data was varied based on the height and tree data at each plot. 
 

3.2.  Actual biomass 

Biomass considered in this research was limited to the tree with diamater at breast height (DBH) 

greater than the 10 cm, and with plot area of 40x40 m. The highest biomass content using allometry by  

Jaya et al. [2] (BK) was 37.079 tons/plot and the lowest was 0.033 tons/plot as shown in Figure 3. The average 

biomass stock was 20.97 tons/plot at BK calculation. The results of the calculation using two allometries 

showed that both were not significantly different as shown in Figure 4. Therefore, in order to determine the 

biomass estimation model, the two results, and each biomass estimation models were used in Table 3.  
 

 

 
 

Figure 3. Result calculation field biomass 
 

 

3.3.  Estimation of canopy cover and height from LiDAR 

Canopy cover represented by FRCI value [21] resulted in the highest value at plot 6 with 99.82% and 

the lowest at plot 2 of 0.42% as shown in Figure 4. The plot with low density value was in the open forest, with 

vegetation composition dominated by shrubs, ferns and weeds, which could reach 2 m height. Therefore, the 

canopy cover was relatively low. 
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The comparison chart between actual and predicted canopy cover (Figure 4) showed almost similar 

changing pattern. In addition, similar distribution pattern showed a close relationship between the actual and 

the estimated value, with correlation value of 0.93 (LAI:FRCI). The high estimation value of LiDAR based on 

mean local maxima (LM) resulted in the range of mean tree height being 7.92-23.76 m, with the average at 

18.12 m. In addition, the tallest tree was at plot 9 while the lowest at plot 1 as shown in Figure 4. Data on height 

would be used as independent variable in designing the biomass estimation model. The comparison between 

the actual and predicted mean tree height in each plot (Figure 4) showed that the predicted height was greater, 

but both chart pattern were almost the same, and slightly intersected in plot 1, 2 and 4, which were the low 

plots. It indicated that tree height estimation from LiDAR was better in the area with low canopy cover. 

However, the predicted tree height had a close relationship with that of the actual tree, with correlation (r) value 

of 0.724 as shown in Table 4, and based on accuracy test, it showed a good RMSE= 0.986 and SA=0.352, since 

its value was within the recommended range of - 1 to 1 [25].  
 

 

 
Description: CC LAI=CC actual, CC p =CC prediction 

 

Figure 4. CC and tree high prediction value and their comparison with actual value per plot 
 

 

3.4.  Biomass estimation model 

The biomass estimation model was design based on the analysis of the relationship between the 

dependent variable (Y), which id the biomass, the independent variable (X), CC (X1) and tree height (X2) from 

LiDAR data. Furthermore, it was designed using 30 biomass field data, canopy cover (CC) from LiDAR and 

tree height from LiDAR. Selection of its equation was based on scatter diagram pattern.  
 

 

Table 3. Estimation model biomass calculation results 
Model BK Regression Equation 

M1 Y = -3.370 + 27.970*X1 

M2 Y = - 18.480 + 2.122*X2 

M3 Y = -18.470 + 0.030 X1 + 2.121*X2 
M4 Y = 22.045 + 5.387*LN(X1) 

M5 Y = -69.506 + 31.214*LN(X2)  
M6 Y = -73.062 – 0.424*LN(X1) + 32.397*LN(X2) 

M7 Y = 0.123 + 26.307*X1
2  

M8 Y = -2.164 + 0.064*X2
2  

M9 Y = -3.498 + 5.395*X1
2 + 0.056*X2

2  

M10 Y = 26.058* X1
1.808 

M11 Y = 0.035*X2 
2.168  

M12 Y = -12.145*X1
-0.031+ X2

1.197 

M13 Y = 2.70735*exp (2.286*X1)  

M14 Y = 2.175*exp(0.118*X2)  
M15 Y = 1.508*exp (0.712*X1+0.104*X2)  

Note: Y=BK,  X1=CC, X2=Height of LiDAR 

 

 

3.5.     Model building test 

3.5.1.  Classic assumption test 

A good model is one that meets classical assumptions with the expectation that it can provide accuracy 

and consistency in making estimations. The classic assumption tests used in this research were normality and 

heteroscedasticity test. Normality test was conducted to spot the normal distribution of the remainder of the 

model using Kolmogorov-Smirnov test, and the results (Table 4) showed that the models with the Y2 variable 

(BK) all met the normality assumption. The next test was the heteroscedasticity test. It aims to spot the 

uniformity of the rest of the model using glacier statistical test. The results of the significance test of variables 

were within the range of 0.087-0.995, therefore, it can be said that all models were homogeneous because when 
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the significance value of the independent variable is greater than 0.05, it means there is no heteroscedasticity 

or H0 rejection [27, 28]. The results of normality and heteroscedasticity tests provided information about the 

next model to be tested. 
 

 

Table 4. Results of normality test 
BK VS CCp;A_Hp 

Normality Test Heteroscedasticity Test 
Model P-Value Description P-Value Description 

M1 >0.150 Normal 0.990 Constant 
M2 >0.150 Normal 0.639 Constant 
M3 0.064 Normal 0.554 Constant 
M4 >0.150 Normal 0.195 Constant 
M5 >0.088 Normal 0.383 Constant 
M6 >0.078 Normal 0.460 Constant 
M7 <0.06 Normal 0.087 Constant 
M8 >0.150 Normal 0.479 Constant 
M9 >0.075 Normal 0.594 Constant 
M10 >0.150 Normal 0.096 Constant 
M11 >0.150 Normal 0.582 Constant 
M12 >0.150 Normal 0.520 Constant 
M13 >0.151 Normal 0.429 Constant 
M14 >0.152 Normal 0.176 Constant 
M15 >0.150 Normal 0.995 Constant 

 

 

3.5.2.  Correlation test 

The relationship between the dependent (Y) and independent variable (X) can be identified through 

correlation test. Moreover, to discover the relationship among the structuring variables in designing the model, 

a correlation test was performed on the actual and predicted values, which were the canopy cover value from 

CCa, the predicted canopy cover value from FRCI/CCp, actual mean tree height (A_Ha), and Mean tree height 

from LiDAR (A_Hp). CCa and FRCI represented the actual and predicted canopy cover (Table 5), and data on 

the later was collected from the previous studies. The correlation test aimed at proving that the field and 

predicted variable (LiDAR variable) were closely related. 

The results of the correlation analysis, which are shown in Table 5 show that the correlation between 

the actual and prediction variables were positive. Furthermore, the closeness relationship test was conducted 

between the parameter of the field and prediction, and the results showed that a strong relationship existed 

between them, such as between the actual and predicted height of 0.724, and between CCp and CCa of 0.934. 

This means that the parameters of tree height and canopy cover from LiDAR, as the predictive variables could 

represent the actual vegetation parameters. Therefore, the variable from LiDAR could be used as independent 

variable in the biomass estimation model. The results of the analysis in Table 5 showed that the correlation 

between the dependent (Y) and the independent variable (X) had a positive correlation, with range value of 

0.671-0.824. Furthermore, the positive correlation coefficient values were greater than 0.5 on each variables, 

and this indicated a close relationship between the biomass variable to the CC variable and the height variable 

from LiDAR data. The positive correlation value explained that an increase in biomass value would be followed 

by an increase in the CC and tree height value from LiDAR and vice versa.  
 
 

Table 5. Results of correlation test between variables 
Variable CCa A_Ha CCp A_Hp 

A_Ha 0.554    

CCp 0.934 0.499   
A_Hp 0.805 0.724 0.801  

BK 0.735 0.671 0.745 0.824 

Note: CCp=predicted canopy cover (%/plot), CCa= actual canopy cover from LAI (%/plot), A_Hp=predicted mean height from LiDAR 
(m/plot), A_Ha=actual mean height from field measurement (m/plot), BK= Biomass of equation calculation result (ton/plot),  

 

 

3.5.3.  Accuracy test 

Accuracy test was performed to find out how accurate the estimated values were, compared to the 

actual ones. In addition, the accuracy test used was RMSE. Model validation test aimed at determining the 

reliability of the resulted estimation by looking at the SA. Validation and accuracy tests were carried out by 

census, using all data (30 observation plots) (Table 6). The results of accuracy and validity tests (Table 6) 

showed acceptable value (CCp vs CCa2 RMSE = 0.005 and SA = -0.042), or in other word, FRCI variable 

could explain the actual variable. Accuracy tests were then performed on the biomass estimation model by 
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comparing the difference between the estimated and the actual value of each independent variable. 

The table shows that the estimated accuracy [28] of the range of RMSE values obtained from equation 

(BK) is 0.0001-1.5915 (%) (Table 7). Besides RMSE, the accuracy test value also used were Standard 

Deviation (S), and their value ranged from 5.25-7.27. According to Draper and Smith [26] the smaller the S 

value is the better model.   

SA value represented the validity value of the model. In addition, the smaller it is, the more valid the 

model is because the difference between the estimated and actual value would be smaller as well. The results 

of the analysis showed that value of SA ranged from –0.0125037 – 0.0090767 (Table 7). Furthermore, this was 

within the range of values required by Spurr [25], which is -1 to 1. Lastly, S, RMSE and those values would 

be used as the criteria to determine the best biomass estimator model. 
 
 

Table 6.  Results of accuracy tests of tree height and canopy cover  
Variable RMSE SA 

CCp VS  Cca 0.005 -0.042 

A_Hp Vs A_Ha 0.986 0.352 

Note: CCp=predicted canopy density, CCa= actual canopy cover from LAI, A_Hp=predicted mean height from 

LiDAR, A_Ha=actual mean height (field measurement) 

 
 

Table 7. Results of accuracy tests BK 
Model Code BK Equation S SA RMSE (%) 

Linear M1 Y = -2.500+28.120*X1 5.27 -0.0000914 0.0085 

M2 Y = -13.260+1.889*X2 5.31 -0.0002748 0.0191 
M3 Y = -12.840+9.02 X1+1.45*X2 5.25 0.0005719 0.0715 

Logarithmic M4 Y = 23.108+5.56*LN(X1) 5.33 -0.0000014 0.0004 

M5 Y = -60.890+28.55*LN(X\) 5.57 -0.0000064 0.0007 
M6 Y = -53.455+0.887*LN(X1)+26.081* LN(X2) 6.27 -0.0000066 0.0005 

Quadratic M7 Y = 1.407+25.924*X12 6.29 -0.0125037 0.0002 

M8 Y = 1.709+0.056*X2 6.21 -0.0000004 0.0001 

M9 Y = -1.109+11.395*X12+0.039*X22 5.41 -0.0000005 0.0003 

Power M10 Y = 26.4616*X11.47094 5.50 0.0023165 0.3520 

M11 Y = 0.161876*X21.67175 7.27 0.0056497 1.1523 
M12 Y = -5.686*X1-0.164 + X21.138 7.27 0.0000301 0.0622 

Exponential M13 Y = 3.612*exp2.021 * X1 5.72 0.0090767 1.5915 
M14 Y = 3.607*exp0.094*X2 5.29 0.0077671 1.1587 

M15 Y = 2.326*exp(1.017* X1 + 0.069*X2) 6.42 0.0072017 1.2023 

 

 

3.5.4.  Selection of the best biomass estimation model 

The models used in obtaining the biomass estimation equation are linear, logarithmic, power, 

quadratic and exponential models (see Table 7). Furthermore, the best regression equation model was obtained 

by scoring the standard deviation (s), aggregate deviation (SA) and root mean square error (RMSE). The 

highest score was ranked first, or in other words, it is the best biomass estimator model (Table 8). The scoring 

results showed that M9 which is a quadratic regression model was the best model in the BK equation, as it had a 

score of 14.973. Furthermore, it had a RMSE of 0.0003%, S of 5.41 and validation value (SA) of 0.0000005 

(Table 7). This validation results could be categorized as good since it approached the score ‘0’, and in other 

words the estimation model could increasingly describe the actual state. The M9 regression equation model 

was Y = -1.109+11.395*X1
2+0.039*X2

2 (see Table 7), with R2 of 72.16%, and it can be interpreted that the 

variable Y (Biomass) could be explained by FRCI and LiDAR tree height of 72.16%. 
 

 

3.6.  Biomass distribution 

The biomass distribution of the results of each calculation can be seen in Figure 5. Biomass at the 

research location ranged majorly from 27-55 (ton), with an average value of 39.871 tons. However, in some 

locations there were biomass stocks which had minus and zero values. This was due to the low FRCI variable 

(0). BK estimation model showed that the biomass value at the research location (logged-over secondary peat 

swamp forest) with an area of 200 ha was 244.314 tons/ha. This result was almost similar to that obtained in 

Novita’s research (276.95 tons/ha) [29], which was conducted in the logged-over peat swamp forests in 

Merang, South Sumatra, but higher than that mentioned in Rochmayanto [30] research, of 166.93 tons/ha, in a 

secondary peat forests, and Kroshendera et al. [31] of 159.9 tons/ha in a logged-over secondary forests. In 

addition, the biomass in the mixed peat forests, in Central Kalimantan was 311 tons/ha [32]. Some variations in the 

results of these calculations were due to differences the calculation method, and the condition of research areas. 
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Tabel 8. The chosen model of BK best biomass equation 
Model R2 S SA RMSE Score Ranking 

M9 72.16% 4.974 5.000 4.999 14.973 1 
M5 69.36% 4.893 5.000 4.998 14.892 2 

M3 69.90% 5.000 4.996 4.821 14.817 3 

M2 67.85% 4.845 4.999 4.952 14.796 4 
M8 67.19% 4.371 5.000 5.000 14.371 5 

M1 55.55% 2.984 5.000 4.979 12.962 6 

M7 55.35% 2.955 5.000 5.000 12.955 7 
M10 66.09% 3.097 4.981 4.116 12.193 8 

M14 63.27% 4.684 4.937 2.088 11.709 9 

M11 56.38% 4.523 4.937 2.104 11.565 10 
M4 40.26% 1.000 5.000 4.999 10.999 11 

M6 69.73% 1.000 5.000 4.999 10.999 12 

M15 68.28% 4.080 4.935 1.978 10.993 13 
M12 69.50% 4.931 1.000 4.844 10.775 14 

M13 53.92% 2.683 4.914 1.000 8.597 15 

 

 

 
 

Figure 5. Biomass distribution of BK equation 
 
 

4. CONCLUSION 

CC and tree height from LiDAR could be used as variables to estimate the amount of biomass, since 

there was accuracy (RMSE = 0.005, SA = -0.042) between the actual and predicted CC, and mean tree height 

(RMSE = 0,986, SA = 0,352). The biomass estimation model used the quadratic model, with equation  

Y1=-3.498+5.395*X1
2+0.0564*X2

2. In addition, the SA value was 0.0000005 (BK), and the resulting R2 was 

72.16% (BK). The models produced a biomass value of 244.510 tons/ha (BK). This study only used 30 samples 

because of limited resources. Therefore, in future studies, more samples should be used in order to obtain more 

accurate estimator models. Lastly, advanced analysis which integrates LiDAR and satellite imagery is needed 

to obtain the area (PT. RMU area) of the biomass. 
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