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 The current urban environment is very dynamic and always changes both 

physically and socio-economically very quickly. Monitoring urban areas is 

one of the most relevant issues related to evaluating human impacts on 

environmental change. Nowadays remote sensing technology is increasingly 

being used in a variety of applications including mapping and modeling of 

urban areas. The purpose of this paper is to classify the Pleiades data for the 

identification of roof materials. This classification is based on data from 

satellite image spectroscopy results with very high resolution. Spectroscopy 

is a technique for obtaining spectrum or wavelengths at each position from 

various spatial data so that images can be recognized based on their 

respective spectral wavelengths. The outcome of this study is that high-

resolution remote sensing data can be used to identify roof material and can 

map further in the context of monitoring urban areas. The overall value of 

accuracy and Kappa Coefficient on the method that we use is equal to 

92.92% and 0.9069. 
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1. INTRODUCTION 

Urban areas are now a type of land cover that is changing very rapidly, even though these areas only 

meet a low percentage of the entire land surface globally [1, 2]. The urban environment is also dynamic and 

experiences rapid physical and socio-economic changes [3]. Urban area planning requires information from 

various phenomena and spatial characteristics such as roof materials, urban structures, and building resilience 

[4]. Built-up land monitoring in more detail about land use will describe the development of the city area [5]. 

Built-up land monitoring to detail the type of roof material can also describe in more detail the economic 

level of the community. Knowledge of roof materials types also makes it possible to establish quantification 

monitoring of pollutant emissions from hazardous materials [6]. Roof materials type information also needed 

for the development of photovoltaic potential, used to build a micro weather model simulator, and is needed 

for the military to determine the type of air attack, urban planning, and disaster assessment [7-9] 

Monitoring urban areas is one of the most relevant issues related to evaluating the impact humans 

have on the environment. In current remote sensing, imagery has many benefits, one of which can produce 

the latest geographic data for needs such as land use mapping, emergency response management, roof 
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locations with high and low emissivity, a better understanding of greening initiatives, and sustainable city 

development [10]. Remote sensing technology is increasingly being used in a variety of applications 

including mapping and modeling of urban areas. Driven by technological advancements and community 

needs, remote sensing in urban areas is increasingly becoming a new arena of geospatial technology and has 

the application of benefits in all socio-economic sectors [11]. The spatial resolution used for identification 

greatly influences the output produced. So far, remote sensing data that are widely used in land and urban 

observations still use medium resolution image data such as Sentinel-2 [12] and Landsat-8 [13], where 

Sentinel-2 and Landsat-8 have a resolution of around 10m and 30m. This results in inaccurate identification 

because urban areas are so varied and dynamic that higher image resolution is needed. This is reinforced by 

the existence of new facts or paradigms that very high-resolution data needs to be adopted to produce 

satisfactory image analysis [14]. 

The identification method used in this paper is spectroscopy - the study of electromagnetic radiation. 

Imaging spectroscopy has many names in the remote sensing community, including imaging spectrometry, 

hyperspectral, and ultra-spectral imaging. Spectroscopy is a technique for obtaining spectrum or wavelengths 

at each position from various spatial data so that images can be recognized based on their respective spectral 

wavelengths. The picture can be a rock in a laboratory, a field study on an airplane, or an entire planet from a 

spacecraft or an Earth-based telescope. By analyzing spectral features, and thus specific chemical bonds in a 

material, one can map where those bonds occur, and thus map the material [15]. The purpose of this paper is 

to classify the types of materials based on their spectral responses, as a basis for the identification of roof 

materials. Our contribution is the use of Pleiades data, very high-resolution satellite data with a multispectral 

resolution that has not been used by current conditions. 

 

 

2. RESEARCH MATERIALS AND METHOD 

2.1. Literature study 

Previous research on the collection of spectral libraries for the detection of urban material has been 

discussed in several papers such as, in [3] they were combining spectral and spatial attributes, classification is 

done in two ways namely per-pixel (guided classification) and object-based (oriented object), in [2] which 

compares the ability of different sensors to detect material cover in urban areas by evaluating and also adding 

hyperspectral sensor values to map urban areas. A new approach has also been taken to determine and 

evaluate strong spectral features against spectral overlaps between material classes and class variability. The 

robustness of interactively determined spectral features was evaluated by separation analysis. This method is 

done based on the confusion matrix for each material that is calculated from each classification result [16]. 

DAIS (digital aerial imaging spectrometers) Hyperspectral data and ROSIS (reflective optical system 

imaging spectrometers) have been used for data extraction with several approaches for urban areas (spatial 

information) and non-urban areas (spectral information) [17]. Research in [18] has developed automated 

methods for hyperspectral image analysis that can exploit spectral and spatial information content thoroughly 

from data to distinguish types of urban surface coverings using mathematical models that can reduce the 

value so that it will be possible endmember combinations for each pixel by introducing pure spectral 

seedlings and registering possible endmember combinations for adjacent pixels in the unmixing procedure. 

Research conducted in [6] creates a super spectral sensor design for the classification of urban 

material, band selection is carried out to identify the most optimal subset of bands to classify urban maps in 

the context of super spectra sensor design by collecting spectral categories for urban material from seven 

spectral libraries (using hyperspectral data and ground truth). The invariant formula for spectral images of 

natural objects retains spectral information and does not differ from highlights, shadows, surface geometry, 

and lighting intensity and also proves that conventional spectral invariant techniques can be applied to metals 

other than dielectric objects [19]. The combined performance of data mining (DM) and object-based image 

analysis (OBIA) develops procedures that contribute to automatic knowledge discovery and mapping of 

urban surface material from images of large hyperspectral space features with an accuracy of 88% [20]. 

Research in [21] has built a spectral library of urban materials and uses them to analyze urban environments 

with a comprehensive collection of spectral reflectance of various urban materials, resulting in an accuracy of 

73% using maximum likelihood. Then, from studies conducted by [22], spectrometers and VNIR (visible and 

almost infrared) cameras produce different spectral reflectance values even though the targets are the same. 

Figure 1 shows the spectral profile of the roof and surface material, and Figure 2 shows the surface reflection 

of a selective urban surface material recorded by the Hyperspectral HyMap sensor as a reference for  

this study.  
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Figure 1. Spectral profiles of roof and surface materials [23] 

 

 

 
 

Figure 2. At surface reflectance of selective urban surface materials recorded by the hyperspectral HyMap 

sensor [24] 

 

 

2.2. Location and data 

The research area is located at the Remote Sensing Technology and Data Center, National Institute 

of Aeronautics and Space, East Jakarta. Roof sampling is carried out in the Remote Sensing Technology and 

Data Center building which has a variety of materials including aluminum roof, asbestos, ceramic tile, 

concrete, and sand metal tile. Figure 3 shows the image we used in this study. The noise could affect data 

quality [25, 26, 27, 28, 29], especially image quality in this research. Instead of discussing low-quality 

images, we choose high-resolution images. Therefore, the data used for this study is cloud-free image data 

from the Pleiades satellite obtained on 1 May 2018. Representative spatial and temporal resolution sensors 

for the satellite are described in Table 1. 

 

 

Table 1. Representative spatial and temporal resolution sensors [30] 
Sensor Band Type Spatial Resolution Global Revisit Cycle Operational Period Access 

Pleiades Panchromatic 
Multispectral 

50 cm 
2 m 

Daily 2011-present (Pleiades-1A) 
2012-present (Pleiades-1B) 

Commercial 
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Figure 3. Study area 

 

 

2.3. Method 

The method that we propose was carried out as follows. First, we obtained the data used in this 

study, Pleiades satellite imagery. We filter data to 0% cloud cover with an angle of view that less than 20°. 

The data then processed into a pan-sharpened multispectral (PMS) using the Ehlers method [31]. The next 

step of our method is to get training data by selecting pixels from the data. Training data is selected by cluster 

sampling method and sampling with a harmonious system where each sample has pixel spaces. Cluster 

sampling is used to categorize material types while systematic sampling is used to take the representation of 

adjacent pixels. We selected training data for each type of roof material, namely aluminum roof, asbestos, 

ceramic tile, concrete, and sand metal tile. Clustering was done using a multi-core cluster, the use of the 

cluster is automatic in these functions. The library that we used is particularly useful to speed up 

computations in functions like predict, interpolate, and perhaps calc [32]. 

The next stage is the selection of features by extracting the reflectance value of each pixel of the 

image. At this stage, the value of each pixel (range 16 pixels 0-65535) of the data obtained is read to 

calculate the emission and reflection values using formula (3) and (4). After data collection and feature 

selection, next is the classification using the support vector machine (SVM) classification method - a 

machine learning (ML)-based classifier which is established based on the statistical learning theory [33]. In 

this study, we used SVM since SVM is rarely used for remote sensing image classification. For the SVM ML 

models, we adapt the models from random forest ML from [34], we take the species distribution modeling to 

apply it using SVM for ML. We use C-classification (multi-class classification) for the SVM-type, the SVM 

kernel is radial basis function [35, 36, 37]. The C-classification and SVM-kernel (radial basis function) 

formulas are expressed in the (1) and (2). 

C-classification: 

 

min
𝛼

        
1

2
𝛼⊤ 𝐐𝛼 −  𝑒⊤𝛼 

 

𝑠. 𝑡.         0 ≤ 𝛼𝑖 ≤ 𝐶, I =  1, … , 𝑙,  (1) 

 

𝑦⊤𝛼 = 0 , 

 

where e is the unit vector, C is the upper bound, Q is an l by l positive semidefinite matrix, Qij ≡ yiyj K ( xi , xj 

), and K ( xi , xj ) ≡ ϕ(xi)⊤ ϕ(xj) is the kernel [38]. SVM-Kernel, radial basis function [39]: 

 

𝐾(𝑥1, 𝑥2) = exp(−𝛾‖𝑥1 − 𝑥2‖2) (2) 
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We classify our data into five classes of types of roof materials, namely aluminum roof, asbestos, ceramic 

tile, concrete, and sand metal tile. Finally, the evaluation was done by visually comparing the results of the 

classification with satellite images. The whole study method is illustrated in the diagram in Figure 4. 

 

 

 
 

Figure 4. Research diagram 

 

 

2.3.1.  PMS Process 

PMS was done with the following steps: 

− Input data that contain panchromatic data level sensor primary, multispectral data level sensor primary, 

and digital elevation model (DEM) data of the area of interest (AOI) region with the same resolution as 

panchromatic resolution or higher.  

− The orthorectification process uses DEM data. 

− Pansharpening process between panchromatic and multispectral.  

The pansharpening method used was the University of New Brunswick’s which was developed by 

Dr. Yun Zhang. This method can produce images with good consistent quality for all sensors. This has been 

evaluated and analyzed with nine comparison algorithms [40]. 

− Convert Digital Count to Top of Atmosphere (TOA) Radiance.  

For a respective band (b), the conversion of the Digital Count of a pixel DC(p) to TOA radiance 

Lb(p) (in W·sr−1·m−2·μm−1) is done by the absolute radiometric calibration coefficients GAIN and  BIAS 

[41]: 

 

Lb(p) = 
𝐷𝐶(𝑝)

𝐺𝐴𝐼𝑁(𝑏)
 + BIAS(b)  (3) 

 

− TOA Radiance to TOA Reflectance process 

The Top Of Atmosphere (TOA) spectral reflectance is the ratio of the TOA radiance normalized by 

the incoming solar irradiance [41]. The output data is a pan-sharpened multispectral data level ortho standard. 

 

ρb(p) = 
𝜋 .  𝐿𝑏(𝑝)

𝐸𝑜(𝑏) .  cos (𝛳𝑠)
  (4) 

 

 

3. RESULTS AND ANALYSIS 

First, we obtained 734 training data from Pleiades images, as shown in Figure 5. The number of 

detailed training data per material is shown in Table 2. The training data that we use was the area that was 

directly exposed to the sun caught in the satellite data. For the features used in the classification, spectral data 

were obtained for 5 (five) types of roof material from high-resolution satellite imagery, i.e. aluminum roof, 

asbestos, ceramic tile, concrete, and sand metal tile. The measurement of the roof shows a unique spectral 

sign which can be seen in Table 3. For better understanding, we analyze the spectral response line graphs as 

shown in Figure 6 (a). Reflectance is used in the analysis since reflectance is a property of the target material 

itself. It measures how much energy (as a percent) a surface reflects at a specific wavelength [42]. Many 

surfaces reflect a different amount of energy in different portions of the spectrum. These differences in 

reflectance make it possible to identify different earth surface features or materials by analyzing their spectral 

reflectance signatures [43]. Spectral reflectance values are also easier to read and understand as a 

classification because they have a range value of 0-1. 

From the scatter plot in Figure 6 (b), it can be seen that the spectral values we calculated are quite 

narrow for each band except for the spectral response of NIR bands that have a large enough standard 

deviation. It shows that the spectral response in the red band is generally lower than the other bands and 

increases significantly in the NIR band. The scatter plot result between the bands also shows that the overall 

band shows a significant distribution to the NIR band, especially the red band that has the most dominant 

result when facing the NIR band. This behavior seems to be unique in every material and therefore can be 

used as a feature to distinguish between one material and another. 
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After that, we proceed with the classification using SVM. Using the training data, we obtained a 

classification model with an accuracy of 94.01% and a Kappa coefficient of 0.9165. Then this SVM Model is 

used to classify Pleiades data that is used comprehensively, the results of which are shown in Figure 6 (c). 

Pleiades data used were successfully classified into five classes, where classes 1, 2, 3, 4, and 5 each 

represented aluminum roof, asbestos, ceramic tile, concrete, and sand metal tile. We perform SVM confusion 

matrix calculations to show the results of machine learning in identifying roof material (Table 4). It can be 

seen in the table that SVM detects differences in training data with ML results on asbestos and sand metal tile 

materials. We also provide SVM statistics per class and SVM receiver operating characteristic (ROC) class 

as shown in Table 5 and Figure 7. In general, the classification correctly identifies the material around the 

study area described in Figure 8. 

 

 

 
 

Figure 5. Training data collected from the image 

 

 

Table 2. Details of training data used 
Materials Pleiades training data 

Aluminum Roof 114 

Asbestos 119 

Ceramic Tile 143 

Concrete 42 

Sand Metal Tile 316 

 

 

Table 3. Unique spectral signs of each material 
Materials Band Reflectance Value 

Blue Green Red NIR 

Aluminum Roof 0.322 0.299 0.276 0.334 

Asbestos 0.234 0.204 0.183 0.237 
Ceramic Tile 0.215 0.184 0.192 0.260 

Concrete 0.317 0.275 0.253 0.390 

Sand Metal Tile 0.220 0.187 0.167 0.222 

 

 

Table 4. SVM confusion matrix 

Prediction 
Actual 

Aluminum Asbestos Ceramic tile Concrete Sand metal tile 

Aluminum 114 0 0 0 0 

Asbestos 0 90 0 0 15 
Ceramic Tile 0 0 143 0 0 

Concrete 0 0 0 42 0 
Sand metal tile 0 29 0 0 301 

 

 

Table 5. SVM statistics by class 
Class: Aluminum Asbestos Ceramic tile Concrete Sand metal tile 

Sensitivity 1.0000 0.7563 1.0000 1.00000 0.9525 
Specificity 1.0000 0.9756 1.0000 1.00000 0.9306 

Pos Pred Value 1.0000 0.8571 1.0000 1.00000 0.9121 

Neg Pred Value 1.0000 0.9539 1.0000 1.00000 0.9629 
Prevalence 0.1553 0.1621 0.1948 0.05722 0.4305 

Detection Rate 0.1553 0.1226 0.1948 0.05722 0.4101 

Detection Prevalence 0.1553 0.1431 0.1948 0.05722 0.4496 
Balanced Accuracy 1.0000 0.8660 1.0000 1.00000 0.9416 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 6. (a) Spectral reflectance profile from the Pleiades, (b) Scatter plot of spectral features, 

(c) Classification result 

 



TELKOMNIKA Telecommun Comput El Control   

 

Roof materials identification based on pleiades spectral responses using supervised… (Ayom Widipaminto) 

697 

From Figure 8, we can see that the results are largely difficult to distinguish between sand metal tile, 

concrete, and vegetation. This is caused by several factors, among others; atmospheric correction that has not 

been applied, Pleiades imagery that only uses 4 (four), spectral bands, also spectral responses of sand metal 

tile and vegetation that have the same range. From the factors above, we tried to extract the Normalized 

Difference Vegetation Index (NDVI) value on the AOI used. We compare the results of NDVI (Figure 9 (a)) 

with our classification results, from there it is found that the vegetation areas that have not been separated 

from urban material are mostly detected as concrete or sand metal tiles. From these results, we do have a plan 

to do masking vegetation using the spectral index from NDVI for the next works. We also compared our 

findings with some spectral response references. For sand metal tile, we use a spectral response reference 

from sand because the material used on the roof is sand coated metal (Figure 9 (b)). As for concrete and 

vegetation we use the spectral response reference available on the ECOsystem Spaceborne Thermal 

Radiometer Experiment on Space Station (ECOSTRESS) spectral library website by NASA/JPL  

(Figures 9 (c), (d), (e)). 

 

 

 
 

Figure 7. SVM ROC curve 
 
 

 
 

Figure 8. Visual comparison of classification results with satellite image data  

(red for model train data, and cyan for other objects that have been successfully detected) 
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(a) 

 

 
(b) 

 

  
(c) (d) 

 

 
(e) 

 

Figure 9. (a) NDVI result, (b) Sand spectral response, coating material for sand metal [44],  

(c) Concrete spectral response, (d) Spectral response of grass, (e) trees [45] 
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From the spectral response reference that we have, it appears that the responses produced by sand 

metal tile, concrete, and vegetation do have similarities, especially in the wavelength range of 750-1500 nm. 

This reinforces the reasons why the method we use is difficult to distinguish between sand metal tile, 

concrete, and vegetation in R, G, B, NIR bands. To overcome this shortcoming, we plan further research 

using the formulation of index values, from existing spectral values, which have greater differences between 

each other, data assimilation, and multilevel classification methods. For further verification, we have tried to 

use the method in different regions as a representative for much wider areas and variations, namely 

Purwokerto and Semarang. The data used for Purwokerto is cloud-free image data from the Pleiades satellite 

obtained on 30 January 2019, the detailed location is at Terminal Bulupitu. Meanwhile, the data used for 

Semarang is obtained on 3 May 2018, a detailed location is at State Polytechnic of Semarang. The results is 

shown in Table 6. 

Figure 10 (a) and 10 (b) show SVM data and spectral reflectance profile from the Purwokerto 

region. Figures 11 (a) and 11 (b) show SVM data and spectral reflectance profile from the Semarang region. 

From the visual results and values generated by the SVM program, it appears that the method we proposed 

can classify aluminum roof, asbestos, ceramic tile, concrete, and sand metal tile materials. However, the 

spectral reflectance results also show a slightly different pattern from the results from the Jakarta area. In 

Table 7 it can be seen that there are significant results, especially in the asbestos material in Semarang. Based 

on Table 8, the overall accuracy and Kappa coefficient value on the method that we use are equal to 92.92% 

and 0.9069, this result is better if compared to previous studies that obtained an overall accuracy value of 

83% and Kappa coefficient 0.76 to do roof detection using WorldView-2 satellite that has 8 (eight) 

multispectral bands [46]. Our result shows that field surveys are still needed in the Purwokerto and Semarang 

areas to ensure the type of roof materials available. The classification we did is also limited to just 5 (five) 

materials, so other unknown materials are identified as them instead. In future works, we plan to do the 

exhaustive field surveys, TOA bidirectional reflectance distribution function (BRDF), and vegetation 

masking, so that the identification can be upgraded into a better result with only urban roof material as a 

study area. 

 

 

 
(a) 

 

 
(b) 

 

Figure 10. (a) SVM data of Purwokerto region; (b) Spectral reflectance profile of Purwokerto region 
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(a) 

 

 
(b) 

 

Figure 11. (a) SVM data of Semarang region, (b) Spectral reflectance profile of Semarang region 

 

 

Table 6. Compared reflectance  

value at 3 regions 
Materials Band Reflectance Value 

Blue Green Red NIR 

Aluminum 
Roof 

    

Jakarta 0.322 0.299 0.276 0.334 

Purwokerto 0.367 0.306 0.245 0.410 
Semarang 0.186 0.182 0.181 0.192 

Asbestos     

Jakarta 0.234 0.204 0.183 0.237 
Purwokerto 1.332 1.479 1.622 1.801 

Semarang 0.162 0.149 0.135 0.141 

Ceramic Tile     
Jakarta 0.215 0.184 0.192 0.260 

Purwokerto 0.327 0.253 0.190 0.359 

Semarang 0.111 0.094 0.102 0.146 
Concrete     

Jakarta 0.317 0.275 0.253 0.390 

Purwokerto 0.524 0.504 0.484 0.673 
Semarang 0.162 0.153 0.140 0.146 

Sand Metal 

Tile 

    

Jakarta 0.220 0.187 0.167 0.222 

Purwokerto 0.356 0.295 0.281 0.342 

Semarang 0.128 0.110 0.092 0.096 
 

Table 7. Compared value of material types  

for some parameters at 3 regions 

Parameters Sensitivity Specificity 
Detection 

Rate 

Balanced 

Accuracy 

Aluminum 
Roof 

    

Jakarta 1 1 0.1553 1 

Purwokerto 0.9779 0.9955 0.2277 0.9867 
Semarang 0.9450 1 0.2077 0.9725 

Asbestos     

Jakarta 0.7563 0.9756 0.1226 0.8660 
Purwokerto 1 1 0.137 1 

Semarang 0 1 0 0.5000 

Ceramic Tile     
Jakarta 1 1 0.1948 1 

Purwokerto 0.9800 0.9938 0.1678 0.9869 
Semarang 1 1 0.2198 1 

Concrete     

Jakarta 0.9525 0.9306 0.4101 0.9416 
Purwokerto 1 1 0.2329 1 

Semarang 0.9500 0.8296 0.2088 0.8898 

Sand Metal 
Tile 

    

Jakarta 0.9525 0.9306 0.4101 0.9416 

Purwokerto 1 1 0.226 1 
Semarang 1 0.9859 0.2198 0.9930 
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Table 8. Compared value of overall accuracy and kappa coefficient at 3 regions 
Parameters Overall Accuracy (%) Kappa Coefficient 

Jakarta 94.01 0.9165 

Purwokerto 99.14 0.9892 
Semarang 85.60 0.8150 

Mean 92.92 0.9069 

 
 

4. CONCLUSION 

The identification of roof materials has been carried out using the spectral response from the 

Pleiades data as the basis. The results show us that the classification successfully identified most of the 

materials in the study area. The overall accuracy and Kappa coefficient value on the method that we use are 

equal to 92.92% and 0.9069. However, our method has difficulty distinguishing sand metal tile, concrete, and 

vegetation. The cause is a similar spectral response range between sand metal tile, concrete, and vegetation. 

In future work, we will overcome this problem by formulating index values from existing spectral values 

which have greater differences between each other, vegetation masking, assimilation, multilevel, and 

multitemporal classification methods. 
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