
TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 19, No. 3, June 2021, pp. 762~769

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v19i3.18792 762

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

Particle swarm optimization for solving thesis defense

timetabling problem

Gilbert Christopher, Arya Wicaksana
Department of Informatics, Universitas Multimedia Nusantara, Indonesia

Article Info ABSTRACT

Article history:

Received Aug 13, 2020

Revised Nov 15, 2020

Accepted Nov 25, 2020

 The thesis defense timetabling problem is a fascinating and original NP-hard

optimization problem. The problem involves assigning the participants to

defense sessions, composing the relevant committees, satisfying the

constraints, and optimizing the objectives. This study defines the problem

formulation that applies to Universitas Multimedia Nusantara (UMN) and use

the particle swarm optimization (PSO) algorithm to solve it. As a

demonstration of concept and viability, the proposed method is implemented

in a web-based platform using Python and Flask. The implementation is tested

and evaluated using real-world instances. The results show that the fastest

timetable generation is 0.18 seconds, and the slowest is 21.88 minutes for 25

students and 18 department members, without any violation of the hard

constraints. The overall score of the EUCS evaluation for the application is 4.3

out of 6.

Keywords:

Optimization

Particle swarm optimization

Scheduling

Timetabling

This is an open access article under the CC BY-SA license.

Corresponding Author:

Arya Wicaksana

Department of Informatics

Universitas Multimedia Nusantara

Scientia Boulevard St., Gading Serpong, Tangerang-15810, Banten, Indonesia

Email: arya.wicaksana@umn.ac.id

1. INTRODUCTION

The thesis defense is a mandatory activity to be taken by students in Universitas Multimedia Nusantara

(UMN). Indonesian ministry of education and culture regulates Indonesian universities to have this activity in

their 4 years undergraduate curriculum (bachelor). In general, there exists at least three participants in a defense

session: the student, the supervisor, and the examiner. In UMN, specifically in the Department of Informatics,

there are four participants, including the moderator of the session. Thus, the size of the department and the

number of students determine the time needed to create the timetable for the thesis defense sessions. Related

work in [1] uses local search, integer programming (IP), and constraint programming (CP) for comparison in

solving the thesis defense timetabling problem that applies to some Italian universities. Based on the

experimental analysis, it is also found that the problem is solvable in NP-complete, and according to the

personnel involved, it has reduced the time spent in the overall procedure by several worker-days for each

graduation period.

In this work, the particle swarm optimization (PSO) algorithm introduced by J. Kennedy and

R. Eberhardt is used [2]. In the PSO algorithm, the population is called a swarm, and each individual is called

particle [3]. In [4, 5], the PSO algorithm successfully optimizes and solves the scheduling problems with

multiple constraints. The PSO algorithm has excellent robustness and useful in different application

environments with little modification [6]. The PSO algorithm also delivers the same optimal solution than other

algorithms with faster computing time and a faster convergence rate than other algorithms, such as the genetic

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control

Particle swarm optimization for solving thesis defense timetabling proble (Gilbert Christopher)

763

algorithm [7]. PSO algorithm also successfully implemented in some computer science problem, such as

knapsack problem [8, 9] and job-shop problem [10, 11] and some real-life cases, such as optimization of

reservoir operation [12], task scheduling in grid [13, 14] resource-constrained project scheduling [15], cloud

computing [7, 16, 17], and employee scheduling [18].

Scheduling is allocating resources in a specific time to produce or finish a task. The scheduling

problem is a complex combinatorial problem because there is more than one solution and is locally optimal.

Scheduling problem is classified as a non-deterministic polynomial-time hard (NP-Hard) problem. In

scheduling problem, there are two types of constraint: a hard constraint and soft constraint. The hard constraint

is a constraint that cannot be violated, and soft constraint is a constraint that can be violated. However, the

violation must be minimized to get the optimal solution [19].

This paper defines the problem formulation that applies to the Department of Informatics at

Universitas Multimedia Nusantara. The fitness functions tailored to the problem formulation are developed

with both hard and soft constraints. The goal is to try to optimize the timetabling process by minimizing the

soft constraints violations. The proposed approach is implemented in a web-based platform using the Python

programming language and the Flask framework. The application is tested using real-world instances and

evaluated using the end-user computing satisfaction (EUCS) with a 6-point Likert scale [20, 21]. The rest of

this paper is organized as follows; section 2 briefly describes the research method used for this study, including

problem formulation, particle swarm optimization (PSO), and the design and implementation work. Section 3

describes the results of the study and the performance evaluation. Section 4 concludes this paper with some

discussions on future work.

2. RESEARCH METHOD

2.1. Problem formulation

In Universitas Multimedia Nusantara (UMN), thesis defense sessions are allocated into two weeks

per batch. Within a single batch, the number of students going for their thesis defense is not limited by the

department. In the Department of Informatics at UMN, 18 department members are all eligible to be the

committee of the sessions. Sessions are meetings where students defend their thesis in front of a committee,

and some sessions might overlap in time [1]. Faculty members are characterized by their academic level and

research areas. Students are allowed to have at least one supervisor and at most two supervisors. The

department assigns the examiner and moderator of the sessions. Another consideration is the quota for each

department member to become a committee of a session. Department member that holds a position in the

university is limited to a lower number of sessions.

As customary, constraints are divided into hard and soft ones. The former must always be satisfied,

whereas the latter compose the objective function that is optimized (minimized) during each iteration in the

PSO. There is only one hard constraint that applies to all, which is the time availability of each participant.

There must not exist overlapping sessions for any of the participants. The soft constraints are:

− Quota: The maximum number of sessions that are allocated for each of the department members.

− Academic Level: The academic level of the department member that is regulated by the government.

− Experience: The previous experience in moderating the sessions.

− ResearchArea: The conformity of the examiner's research areas with the thesis.
The objective function is obtained by summing up the violations of all soft constraints. In practical

cases, the separation in hard and soft constraints can be modified by the user, who could relax some of the hard

constraints by turning them into soft ones and assigning them a weight. It is also possible to add weight for

each of the soft constraints chosen by the users. For the sake of simplicity, this work sticks to the classification

provided above.

2.2. Particle swarm optimization

In general, the particle swarm optimization (PSO) algorithm consists of three steps: first, to initialize

each particle’s position and velocity, second is to update the velocity, and third is to update the position. These

three steps are repeated until the stop condition is met, or the maximum iteration is reached. The initial position

and velocity of each particle are generated randomly using (1) and (2) where x represents position and v

represents velocity [22-25].

𝑥0
𝑖 = 𝑥𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) (1)

𝑣0
𝑖 = 𝑣𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛) (2)

The velocity is updated by using (3). The inertia factor (w), cognitive learning rate (c1 and c2), and random

numbers (r1 and r2) are the parameters that influence the update of the velocity [22].

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 762 - 769

764

𝑣𝑘+1
𝑖 = 𝑤 ∗ 𝑣𝑘

𝑖 + 𝑐1 + 𝑟1 ∗ (𝑝𝑖 − 𝑥𝑘
𝑖) + 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑘

𝑔
− 𝑥𝑘

𝑖) (3)

The final step in each iteration is to update each particle's position using (4) [22].

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 (4)

2.3. Design and implementation

Figure 1 shows the application workflow. First, the user must input the data that is used to the

application. After the data entered, the application will start scheduling using the PSO algorithm, beginning

with the schedule for the thesis defense, then the examiner, and the moderator of the thesis defense. After the

scheduling process is done, the optimized schedule will be shown by the application. There are three fitness

functions developed and used in this research. The first fitness function (fSupervisor) defined by (5) is to set

the initial schedule consisting of the student and the supervisor. The second fitness function (fExaminer)

defined by (6) is for scheduling the examiner. The third fitness function (fModerator) defined by (7) is for

scheduling the moderator. The goal is to find the global minimum for each of these fitness functions.

𝑓𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 = 𝑠1 + 𝑠2 (5)

− 𝑠1 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

− 𝑠2 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5 + 𝑒6 (6)

− 𝑒1 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑒2 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑟′𝑠 𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑒3 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑖𝑡, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑒4 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑟 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑡ℎ𝑒 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑒5 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑟′𝑠 𝑞𝑢𝑜𝑡𝑎 𝑖𝑠 𝑢𝑝, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑒6 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑟′𝑠 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑟𝑒𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑚1 + 𝑚2 + 𝑚3 + 𝑚4 + 𝑚5 + 𝑚6 + 𝑚7 (7)

− 𝑚1 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑚2 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟′𝑠 𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑚3 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 ℎ𝑎𝑠 𝑛𝑜 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑎𝑠 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑚4 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 ℎ𝑎𝑠 𝑎 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑖𝑡, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑚5 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑡ℎ𝑒 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑚6 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑡ℎ𝑒 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑟, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
− 𝑚7 ∈ {0,1} ∶ 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟′𝑠 𝑞𝑢𝑜𝑡𝑎 𝑖𝑠 𝑢𝑝, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Figure 1. Brief process of application workflow

Figure 2 shows the implementation flowchart of the PSO algorithm for the application. There are three

phases of the PSO module, as described in the implementation flowchart. The first PSO module is to initialize

the session consisting of student and supervisor. The second is to assign an examiner to the session, and the

last is to assign a moderator to the session. In this implementation, vmax is not limited to allow the particle to

fly through an excellent solution. In addition to that, the position is normalized to be in the range between 0

and 39. The normalization is to follow with the nature of the problem, where there are 40 time slots within two

TELKOMNIKA Telecommun Comput El Control

Particle swarm optimization for solving thesis defense timetabling proble (Gilbert Christopher)

765

weeks with five working days and eight hours a day. The maximum number of iteration for each fitness

function is set to 20 in this work, and the user can alter this. The implementation is targeted to run until it finds

the solution; it will restart the whole process when no solutions to be found. Violations on the hard constraint

is not allowed.

Figure 2. Implementation flowchart

2.4. End-user computing satisfaction (EUCS)

The dimension of EUCS are content, accuracy, format, ease of use, and timeliness. This model is

mainly based on the end-user’s computing satisfaction model of Doll and Torkzadeh. The model is shown in

Figure 3 [26].

Figure 3. The enriched end-user computing satisfaction model

3. RESULTS AND ANALYSIS

The application is tested using four test-cases specifics for the application. The variables for the test

are given in Table 1. Each of the test-cases is executed ten times to measure the overall performance of the

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 762 - 769

766

implementation. The first batch of thesis defense consists of two weeks that are in the teaching weeks. The

second batch is not during the teaching weeks.

The results of the first test-case are shown in Table 2. The results show that the average number of

iterations required to generate the schedule in this test is 160.6 ≅161 iterations. The average execution time for

test-case number one is 27.27 seconds with the fastest run on the eight iterations with 7.21 seconds, and the

latest is on the second iteration with 69.17 seconds. The average number of violations on the hard constraints

is 0, and on the soft constraints is 4.

Table 1. Test-cases and parameter configuration
Test-

case
No.

Number

of
students

Number of

department
members

Maximum quota

for lecturer with a
position

Maximum quota

for lecturer
without a position

Thesis

defense
batch

w c1 c2

1

25 18

5 10 first

0.6 1.5 1.5
2 5 10 second
3 4 9 first

4 4 9 second

Table 2. Results of test-case number one
Repetition no. Number of iterations Execution time (sec) Violated soft constraints

1 256 44.28 4

2 415 69.17 5
3 133 22.6 4

4 108 18.4 4

5 189 32.19 4
6 74 12.72 4

7 98 16.57 3

8 41 7.21 5
9 82 14.17 3

10 210 35.36 4

The results for test-case number two is shown in Table 3. The average number of iterations required

to generate the schedule is 18.2 ≅ 19 iterations. The average execution time is 3.19 secs with the fastest is 0.18

seconds on the first iteration, and the latest is 6.56 seconds on the seventh iteration. The average number of

violations on the soft constraints is 3.2 ≅ 4. The results for test-case number three is shown in Table 4. The

average number of iterations required to generate the schedule is 2,823.6 ≅ 2,824 iterations. The average

execution time is 450.19 secs with the fastest is on the ninth iteration with 41.04 secs, and the latest is on the

forth iteration with 1,312.97 seconds. The average number of violations on the soft constraints is 3.9 ≅ 4.

Table 3. Results of test-case number two
Repetition no. Number of iterations Execution time (sec) Violated soft constraints

1 1 0.18 3

2 25 4.14 4

3 34 5.57 2

4 23 3.86 4

5 8 1.45 3
6 6 1.15 4

7 37 6.56 3
8 32 5.77 3

9 7 1.44 3

10 9 1.79 3

The results for test-case number four is shown in Table 5. The average number of iterations required

to generate the schedule is 76 iterations. The average execution time is 18.69 seconds with the fastest is

4.47 seconds on the sixth iteration, and the latest is 36.94 seconds on the fifth iteration. The average number

of violations on the soft constraints is 3.6 ≅ 4. Based on the comparison of test-case number one and test-case

number two shown in Figure 4, the application's overall performance is best in the second batch. In this period,

the optimization process runs faster due to no overlapping sessions between thesis defense sessions and

department members' teaching schedules. This same characteristic is also embodied in another comparison

shown in Figure 5, where the application performs less in test-case number 3 compare to test-case number 4.

TELKOMNIKA Telecommun Comput El Control

Particle swarm optimization for solving thesis defense timetabling proble (Gilbert Christopher)

767

The evaluation of the application is measured using EUCS in an interview with the end-user of this

application. The EUCS questionnaire aims to measure the content, accuracy, format, ease of use, and application

timeliness. Figure 6 displays the EUCS result with the overall score is 4.3 out of 6. The highest score is 5 out of 6

for the ease of use factor. Content scores the lowest with 3.8 out of 6. The content could be improved in future work

to add more explanation and information regarding the application and the whole process.

Table 4. Results of test-case number three
Repetition no. Number of iterations Execution time (sec) Violated soft constraints

1 349 54.97 3
2 1,128 176.46 6

3 5,736 915.2 4

4 8,144 1,312.97 4
5 2,544 403.94 4

6 4,600 733.36 4

7 948 150.19 3
8 1,071 169.42 4

9 259 41.04 3

10 3,454 543.87 4

Table 5. Results of test-case number four
Repetition no. Number of iterations Execution time (sec) Violated soft constraints

1 110 21.91 3

2 62 14.18 4

3 38 10.63 3
4 159 36.09 3

5 160 36.94 4

6 11 4.47 4
7 72 16.3 4

8 57 19.75 4

9 57 14.6 3

10 34 7.53 4

Figure 4. Comparison of test-case number one and number two

Figure 5. Comparison of test-case number three and number four

 ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 3, June 2021: 762 - 769

768

Figure 6. End-user computing satisfaction evaluation result

4. CONCLUSION

This work has successfully demonstrated the use of PSO for the thesis defense timetabling problem.

The implementation successfully schedules 25 thesis defense exams without violating the hard constraint under

different test-cases. The optimal inertia factor value is 0.6 for this application. The application is currently in

use in the Informatics Department in UMN. The personnel involved have reduced the time spent in the overall

procedure by several staff-hours for each graduation period (which consists of 4-6 thesis defense batch a year).

In addition to that, the system has improved the solution's fairness in terms of the department members' multiple

duties. The overall score of the EUCS evaluation for the application is 4.3 out of 6.

In the future, different fitness functions and linear decreasing inertia could be studied to yield better

performance. Additional work on the user interface consists of adding a new menu that provides guidance and

information on how-to-use the application. Features for sorting the application's data are also needed to increase

the application's ease-of-use aspect further. In addition to the reporting menu, it is easier to archive schedules

that have been made and modify the schedule in the thesis trial scheduling application. Another feature to be

added is to allow constraints modification by end-user. This feature will allow end-user to add and to remove

additional constraints.

REFERENCES
[1] M. Battistutta, S. Ceschia, F. De Cesco, L. Di Gaspero, and A. Schaerf, “Modelling and solving the thesis defense

timetabling problem∗,” J. Oper. Res. Soc., vol. 70, no. 7, 2019.

[2] B. Chopard and M. Tomassini, “Particle swarm optimization,” in: An Introduction to Metaheuristics for Optimization.

Natural Computing Series. Springer, Cham, 2018.

[3] X. Cai and Z. Cui, “Hungry particle swarm optimization,” ICIC Express Lett., vol. 4, no. 3, 2010.

[4] S. M. Elsayed, R. A. Sarker, and E. Mezura-Montes, “Self-adaptive mix of particle swarm methodologies for

constrained optimization,” Information Sciences, 2014.

[5] K. E. Parsopoulos and M. N. Vrahatis, “Particle Swarm Optimization Method for Constrained Optimization

Problems,” Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 214-220, 2002.

[6] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft Comput., vol. 22,

pp. 387-408, 2018.

[7] F. Nzanywayingoma and Y. Yang, “Analysis of Particle Swarm Optimization and Genetic Algorithm based on Task

Scheduling in Cloud Computing Environment,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 1, pp. 19-25, 2017.

[8] X. Ma, Y. Yan and Q. Liu, "A multi-objective particle swarm optimization for multiple knapsack problem with strong

constraints," 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, 2018,

pp. 1201-1205, doi: 10.1109/ICIEA.2018.8397892.

[9] F. Hembecker, H. S. Lopes, and W. Godoy, “Particle swarm optimization for the multidimensional knapsack

problem,” International Conference on Adaptive and Natural Computing Algorithms, 2007.

[10] L. Gao, C. Peng, C. Zhou, and P. Li, “Solving flexible job-shop scheduling problem using general particle swarm

optimization,” The 36th CIE Conference on Computers & Industrial Engineering, 2006.

[11] P. S. Srinivas, R. V. Ramachandra, and C. S. Rao, “Particle Swarm Optimization Approach for Scheduling of Flexible

Job Shops,” International Journal of Engineering Research & Technology (IJERT), vol. 1, no. 5, pp. 1-6, 2012.

[12] K. Saber Chenari, H. Abghari, and H. Tabari, “Application of PSO algorithm in short-term optimization of reservoir

operation,” Environ. Monit. Assess., vol. 188, 2016.

[13] T. Chen, B. Zhang, X. Hao, and Y. Dai, “Task scheduling in grid based on particle swarm optimization,” 2006 Fifth

International Symposium on Parallel and Distributed Computing, 2006.

[14] L. Zhang, Y. Chen, R. Sun, and B. Yang, “A Task Scheduling Algorithm Based on PSO for Grid Computing,” Int. J.

Comput. Intell. Res., vol. 4, no. 1, pp. 37-43, 2008.

[15] H. Zhang, H. Li, and C. M. Tam, “Particle swarm optimization for resource-constrained project scheduling,” Int. J.

Proj. Manag., vol. 25, pp. 948-954, 2006.

TELKOMNIKA Telecommun Comput El Control

Particle swarm optimization for solving thesis defense timetabling proble (Gilbert Christopher)

769

[16] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for scheduling workflow

applications in cloud computing environments,” 2010 24th IEEE International Conference on Advanced Information

Networking and Applications, 2010.

[17] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling based on load balancing ant colony

optimization,” Proc. - 2011 6th Annu. ChinaGrid Conf. ChinaGrid 2011, 2011.

[18] S. Y., “Employee Scheduling based on Particle Swarm Optimization Algorithm and its Variation,” Int. J. Comput.

Appl., 2016, doi: 10.5120/ijca2016910809.

[19] H. M. Sani and M. M. Yabo, “Solving Timetabling problems using Genetic Algorithm Technique,” Int. J. Comput.

Appl., 2016.

[20] S. Wijaya and A. Wicaksana, “JACOB voice chatbot application using wit. Ai for providing information in UMN,”

Int. J. Eng. Adv. Technol., vol. 8, no. 6, 2019.

[21] K. Filbert and S. Hansun, “Ticketing & CS system development for industrial needs,” Int. J. Sci. Technol. Res., 2019.

[22] M. A. El-Shorbagy and A. E. Hassanien, “Particle Swarm Optimization from Theory to Applications,” Int. J. Rough

Sets Data Anal., vol. 5, no. 2, 2018.

[23] F. Marini and B. Walczak, “Particle swarm optimization (PSO). A tutorial,” Chemom. Intell. Lab. Syst., vol. 149,

pp. 153-165, 2015.

[24] M. Clerc, “Particle Swarm Optimization,” 2010. [Online]. Available:

https://kamenpenkov.files.wordpress.com/2016/01/pso-m-clerc-2006.pdf

[25] M. E. H. Pedersen and A. J. Chipperfield, “Simplifying Particle Swarm Optimization,” Appl. Soft Comput. J., vol. 10,

no. 2, pp. 618-628, 2010,

[26] V. P. Aggelidis and P. D. Chatzoglou, “Hospital information systems: Measuring end user computing satisfaction

(EUCS),” J. Biomed. Inform., vol. 45, no. 3, pp. 566-579, 2012.

BIOGRAPHIES OF AUTHORS

Gilbert Christopher is graduated from the Department of Informatics at UMN. He is currently

working as Software Development Engineer at Garasi.id since 2019. His research interest is

artificial intelligence, specifically optimization and scheduling.

Arya Wicaksana is a lecturer at the Department of Informatics at UMN. He received Master

Degree in VLSI Engineering from Universitas Tunku Abdul Rahman. He successfully

demonstrated the UTAR first-time success ASIC design methodology on a multi-processor

system-on-chip project using 0.18um processing technology in 2015. His main research interests

are quantum computing, hardware/software co-development, and computational intelligence.

He has recently been working on a human-like voice chatbot system called Jacob and

post-quantum cryptography for blockchain applications. He is affiliated with ACM and IEEE

as a professional member. In IJNMT and IFERP, he has served as an invited reviewer and an

invited author in IntechOpen and other scientific publications.

