
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 19, No. 5, October 2021, pp. 1507~1516
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v19i5.19278  1507

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

Measure extendibility/extensibility quality attribute using object
oriented design metric

Taghreed Riyadh Alreffaee, Marwah M. A. Dabdawb, Dujan B. Taha
Department of Software, College of Computer science and Mathematics, University of Mosul, Mosul, Iraq

Article Info ABSTRACT
Article history:

Received Dec 31, 2020
Revised Mar 16, 2021
Accepted Mar 30, 2021

 Software design is one of the very important phases of the software
engineering. The costs of software can be minimized if improvements or
corrections made during this stage. Several of the current computer aided
software engineering (CASE) tools like enterprise architect (EA) v12 do not
have the capability to improve the design. This work aims to develop an
algorithm that helps the software engineers evaluating the design quality
utilizing one of the object-oriented (OO) design models namely quality
metrics for object-oriented design (QMOOD) which represents as
hierarchical model that describes the relationship between quality attributes
such as reusability, extendibility and properties of the design of OO design.
This algorithm describesed how the assessment of the extendibility/
extensibility using the software metrics has been done and the impact of the
involved metrics in the extendibility value. Results obtained demonstrate the
effect of OO design metrics such as inheritance, polymorphism, abstraction
and coupling in quality characteristics like extensibility. The results show
that lower values of abstraction and coupling, obtain higher value of
extendibility which means the class diagram is ready to accept additional
improvements. The proposed algorithm has been tested on two different
systems (test cases) that vary in their class diagrams, functionalities, and
complexities.

Keywords:

EA
Extensibility
Metrics
OO
QMOOD
Quality assurance
UML
XMI
XML

This is an open access article under the CC BY-SA license.

Corresponding Author:

Taghreed Riyadh Alreffaee
Department of Software
University of Mosul
Mosul, Iraq
Email: taghreed_reyad@uomosul.edu.iq

1. INTRODUCTION

Quality management system deals with organizational structure, procedures, responsibility,
compatibilities, activities and resources that together seek to ensure that software product will meet its
intendant purpose [1]. Often, quality engineering and management is misunderstood. This is due to the fact
that the term ‘quality’ is ambiguous. This confusion can be a result of several reasons like:
− Quality is a wide concept rather than a single idea.
− There can be several levels of interpretations for quality because any concept carries levels of abstraction.
− Quality is used in daily language so there is a difference between popular and professional uses.

After all, a general definition for quality can be set as “the degree to which a system, component, or
process meets a customer or user’s needs or expectations” [2]. For saving effort and avoid extra work,
software quality should be predicted in the early stage of software development process and taking into

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 5, October 2021: 1507 - 1516

1508

consideration this predicted quality must be as good as desired. So, whenever the prediction of software
quality is done earlier, we got rid of working on the same software again and again [1].

The quality of software extremely depends on its design. In software building, the design stage is
considered to be one of the most important stages and should be focused because when design is prepared,
modifications on it will be difficult and expensive [1]. Recently, object-oriented design became common
concept in software development environment. It is used to divide the problem into multi small objects which
is more capable for modifications and much easier to understand in addition of benefits in decomposition,
reliability, adaptability and reusability of a problem [3].

To assess software quality through the early phases of software development process, software
metrics have been used. These metrics are measurements that can be used to explore the design quality. It is
time to examine object-oriented metrics with regard to software quality because as mentioned before,
object-oriented design methodologies acquired wide publicity. Many metrics have been proposed in the past
for the object-oriented (OO) design, code and constructs which can help software companies in development
their software within intendant quality [1].

Many research papers have been introduced in the object-oriented design metrics field. The
difference in the gained outcomes is the result of utilizing a various methodology in each of these articles.
To cover most of the previous work presented in this field, a glance is made back to 2013, when
Hoffmann et al. [4] showed that it is possible to improve a robotics application in a continuous manner at
run-time by integrating the object-oriented software framework specifically "the Java based robotics API",
into "the dynamic module system OSGi".

Vir et al. [1] proposed in 2014 a hybrid approach for investigating the extendibility of classes in
object-oriented design in the early stage of software development. This hybridization composed of subset of
Chidamber and Kemerer (CK) metric suite and mood metric suite, then the proposed model has been
analyzed using fuzzy logic approach. In the same year, Winn [5] pursued to measure the extensibility and
changeability of aspect-oriented software (AO) where implemented in AspectJ. The analysis covered in this
topic is based on mobile media and AspectJ projects by using self-organizing map (SOM). Also, in Yadav [6]
described an improved analysis view of software attribute dependency relations for the assessment of
high-level design quality attributes in object-oriented designs. It characterizes relations and dependencies of
quality attributes such as reusability, flexibility, understandability, functionality, extendibility, effectiveness.
The relations, or links, from properties of the design to attributes of the quality are weighted in accordance
with their effect and significance.

Other researchers proposed some new metrics instead of traditional software metrics. In this context,
Cossentino et al. [7] estimated modularity and extensibility of "holonic multi agent systems (HMAS)" which
is used for the development of software systems that are frequently designed in order to realize complex
dynamical behavior for solving complicated problems. Pölzlbauer et al. [8] addressed message ID
assignment, in a manner that the system can be extensible. In the beginning, they gave an assessment metric
that provides a deep insight view of the extensibility of a given ID assignment. After that, they developed an
effective ID-assignment policy which in turn will maximize the extensibility.

Couto et al. [9] suggested semiautomatic software restructuring method based on the attributes of
the quality. This paper depends on the measurements of the quality metrics for object-oriented design
(QMOOD) for recommending move method refactorings that improve the quality of the software. Another
study was performed by Kim et al. [10] in 2018, proposed the extensibility metric for software architecture
(EMSA), which adopts the architecture of the system in order to determine its extensibility.

Abdullah et al. [11] in 2019 recommended an investigation structure for extensibility estimation
process and did a comprehensive survey on object-oriented extensibility. The researchers recommended a
model by creating the relationship in the middle of design properties. Researchers justified the model
attachment with the help of statistical measures, which showed that coupling, cohesion, inheritance,
polymorphism are significantly affected with extensibility.

This work aims to design and implement an algorithm to measure the extendibility of a software
system during its architectural design stage using QMOOD model metrics. The extendibility attribute
depends on 4 metrics, each of these metrics has its mathematical equation based on the class diagram of the
software to measure and calculate them. These four metrics constructs the mathematical equation which is
considered the basic form to determine if the software extendible or not. This model has been applied for two
software as will be explained later. Tested software must be follows the object-oriented principles, written in
jave or any other object-oriented language.

The remainder of this paper is organized as follows: section 2 identifies object-oriented design
metrics. Section 3 demonstrates extensibility quality attributes model. Section 4 exhibits the proposed
methodology. Experimental tests and results are found is section 5. The paper is concluded in section 6.

TELKOMNIKA Telecommun Comput El Control 

Measure extendibility/extensibility quality attribute using … (Taghreed Riyadh Alreffaee)

1509

2. OBJECT ORIENTED DESIGN METRICS
Although the term “metric” is used mutually with term “measurement” and indicates wide range of

it, there is a delicate difference between them. In software engineering situation, a measure supply a
quantitative indication of the amount, dimensions, capacity or size of some attribute of a process or
product [12]. So, we can say that measurement is the action of locating a measure, while metric had been defined
by The Institute for Electrical and Electronics Engineers Academic & Science (IEEE) as” a quantitative measure of
the degree to which a system, component, or process possesses a given attribute” [12].

Metrics provide the software developer with a deep insight that is necessary to access the quality
and consider critical source of information to make the right decision about designing the wanted software
before building it and make changes. This will reduce complexity and improve the quality of the product in
early phases. Some metrics may be converted to serve their purpose in a new environment [13].

In summary, it can be said that prediction of software processes depends on software metrics. Object
oriented (OO) metrics are generally used for quality estimation. Relying on OO concepts, those metrics are
regarding to measurement of some design features like encapsulation, message passing, information hiding
and inheritance [14]. The researchers have proposed many metrics for OO software. These metrics are used
in multi potential contexts like quality indicators, complexity measure and reliability measure [15]. Object
oriented metrics are based on the objects and their characteristics. A lot of object-oriented metrics existed for
the object-oriented software development process. These metrics are [3]:
− Chen.
− Lorenz and Kidd .
− Morris.
− Metrics for object-oriented software engineering (MOOSE) .
− Extended metrics for object-oriented software engineering (EMOOSE) .
− MOOD.
− QMOOD.
− Goal Question.
− Software assurance technology center (SATC) for object oriented .
− LI.
In this proposed work, only QMOOD metrics set are considered and for other metrics could be referred from
other paper [16].

2.1. QMOOD model metric

The QMOOD is a global quality model that founds an obviously defined and empirically validated
model to appreciate object oriented design quality attributes and relates it with structural object-oriented
design properties through mathematical formulas [17]. This model extends from Dromey's quality framework
which is based on 3 principles: product properties that effect quality, a group of quality attributes and a
means of linking them [18]. QMOOD quality model defines the way to measure the quality attributes in
terms of properties of the design through a group of mathematical formulas [19]. Design properties can be
measured or observed using functionality, relationship and structure of design components [20]. QMOOD
model consists of six OOD quality attributes and they are: (reusability, flexibility, understandability,
functionality, extendibility, and effectiveness). These attributes had a relationship with eleven design
properties; each calculated quality attribute serves as a parameter to provide a notion of the current quality of
the software [17]. Table 1 show the design properties and the metrics utilized for these properties of the
QMOOD model [17].

Table 1. QMOOD model
Design Property Metrics used for Design Property Design Property Metrics used for Design Property

Design Size design size in classes (DSC) Cohesion Cohesion Among Methods of Classes (CAM)
Hierarchies Number of Hierarchies (NOH) Composition Measure of Aggregation (MOA)
Abstraction Average Number of Ancestors (ANA) Inheritance Measure of Functional Abstraction (MFA)

Encapsulation Data Access Metric (DAM) Polymorphism Number of Polymorphic Methods (NOP)
Coupling Direct Class Coupling (DCC) Messaging Class Interface Size (CIS)

 Complexity Number of Methods (NOM)

3. EXTENSIBILITY QUALITY ATTRIBUTE
We initially investigate the meaning of “software extensibility”. In ISO/IEC-25010 standard,

characterizes the extensibility of the software as "the relative exertion to expand the ability or performance of
the software by enhancing current functions or by including new functions or data". IEEE-1219 standard
does not characterize extensibility, however, characterizes a comparable quality attribute \”maintainability”\

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 5, October 2021: 1507 - 1516

1510

as the exertion for adjusting the product of the software in accordance with the modification in the
requirements or environment [10]. Ciraci and Broek [21] characterized another comparable quality attribute\
evolvability" which is the ability to adjust to the new environment to maintain a service. Usually, these
attributes are referring to modifies in the current system of the software that are made to satisfy a new
environment or a new requirement [10].

Saeed et al. [22], the authors characterized extensibility which is the existence and utilize of features
in the existing design that permits integration with the new requirements. When designing the system of the
software and has not taken into account the extensibility and evolution elements, usually, may well become
prey to the phenomenon known as “code rot” or “design rot” and may as a result of this phenomenon be
abandoned as the system becomes too difficult to expand and maintain. Changing a system for new features,
repairing old features, cleaning up obsolete features or even a customer supply with a particular product is all
expensive work, and it may become even more expensive when each change may lead new problems in the
form of errors and violations in the design of the system [23].

In ISO 9126, attributes: “functionality”, “reliability”, “efficiency”, “usability”, “maintainability”,
and “portability”- were chosen in QMOOD model as the first set of quality attributes. The “portability” term
in the context of software quality implementation is more appropriate and was exchanged with
“extendibility” which reflects this characteristic better in design [24]. To measure extendibility attribute, four
QMOOD metrics must be computed first, as the following [25]:
− ANA: is computed by specifying the ratio between the classes number on all paths from the root class

(number of ancestors) to all classes in the structure (number of total classes), which means ANA metric
measured as the following equation:

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐴𝐴𝑜𝑜𝑁𝑁𝐴𝐴)
𝑇𝑇𝑜𝑜𝐴𝐴𝑇𝑇𝑇𝑇 𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴

 (1)

The property of abstraction (ANA) is for classes that have one or more successors [24].
− DCC: It is a measure of the other objects number which an object must access normally. This means

determine a different number of message passing in a method or attribute of each class that a class is
directly related to, as in (2).

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝑁𝑁𝑆𝑆𝐴𝐴𝑁𝑁 𝑇𝑇𝐴𝐴𝑎𝑎 𝑃𝑃𝑇𝑇𝑁𝑁𝑇𝑇𝑆𝑆𝑁𝑁𝐴𝐴𝑁𝑁𝑁𝑁)
𝑇𝑇𝑜𝑜𝐴𝐴𝑇𝑇𝑇𝑇 𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴

 (2)

− MFA: It is the ratio of the numbers of methods inherited by a class to the all methods accessible to

member methods of the class [24]. In (3) is depicted as follows:

𝑀𝑀𝑀𝑀𝐴𝐴 =
𝑆𝑆𝑆𝑆𝑆𝑆 �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ

𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜 � 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴

𝑇𝑇𝑜𝑜𝐴𝐴𝑇𝑇𝑇𝑇 𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴
 (3)

where; NumMethodInh: refers to the number of methods inherited by a class,

AllMethods: refers to all methods accessible (inherited + class’s methods) to the class member.
− NOP: This metric is measured by determining the number of the methods which have polymorphic

behavior. This is done by (4) [3].

𝐴𝐴𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑜𝑜𝑇𝑇𝑃𝑃𝑃𝑃𝑜𝑜𝑁𝑁𝑃𝑃ℎ𝐴𝐴𝐴𝐴𝑃𝑃𝑁𝑁𝐴𝐴ℎ𝑜𝑜𝑎𝑎)
𝑇𝑇𝑜𝑜𝐴𝐴𝑇𝑇𝑇𝑇 𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴

 (4)

According to Bansiya and Davis [24], an extendibility attribute is a combination of four property of

the design as mentioned above, this attribute measured according to the formula given by [24] and shown in
the following equation:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 0.5 × 𝐴𝐴𝐴𝐴𝐴𝐴− 0.5 × 𝐷𝐷𝐷𝐷𝐷𝐷 + 0.5 × 𝑀𝑀𝑀𝑀𝐴𝐴+ 0.5 × 𝐴𝐴𝑁𝑁𝑁𝑁 (5)

where; ANA : Abstraction metric.

DCC : Coupling metric.
MFA : Inheritance metric.
NOP : Polymorphism metric

4. THE PROPOSED ALGORITHM FOR EXTENSIBILITY QUALITY ATTRIBUTE

The overall work of the proposed algorithm can be depicted as shown in Figure 1. It consists of the
following steps:

TELKOMNIKA Telecommun Comput El Control 

Measure extendibility/extensibility quality attribute using … (Taghreed Riyadh Alreffaee)

1511

Step1: Drawing test cases as unified modeling language (UML) class diagram which is a design of software
system using enterprise architect (EA) computer aided software engineering (CASE) tool.

Step2: Exporting UML class diagrams from the enterprise architect. This will generate XMI (XML
(extensible markup language) metadata interchange) document where the information is stored as
XMI files.

Step3: Passing XMI document to the XMI parser where the required information will be extracted from XMI
document such as operations, classes and attributes of a class diagrams.

Step4: Computing the design metrics as it was clarified in section 3 previously and according to (1)-(4).
Step5: Calculating extendibility quality attributes according to the formula (5) in section 3.
In the following sections each of the above steps will be described in more details.

Figure 1. Extendibility attribute flowchart

4.1. UML class diagram and EA

In this work, UML class diagrams (for the test cases, automated teller machine (ATM) machine and
online exam systems) have been drawn using one of the famous CASE tools, enterprise architect (EA) which
supports a comprehensive modeling of UML and uses for building and designing software systems. It covers
all sides of the software development life cycle with full traceability. Usually, this tool does not support
design metrics of the software systems.

Each system has been drawn (as will be mentioned later in section 5) depending on its function; the
first test case is ATM system. The main function of this device is to enables customers to achieve financial
transactions, like deposits, cash withdrawals, and funds transfers, at any time without the need for direct
interaction with the staff of the bank. The second test case is the online exam system where examinations are
given online to evaluate the student effectively. The fundamental goal of this system is to reduces the
required time and obtain accurate results in a fast way. QMOOD model metrics and extendibility quality
attribute have been computed for each of these systems, each one gives different result according to its
design. This will be mentioned later in Table 2.

4.2. XMI

After the class diagrams were drawn for each system at the design stage and clarified the basic
functions for each of them using classes and the relationship between them, each diagram has been exported
to (XMI document). It is an open standard format of the file which enables interchange the model
information between tools and models. XMI is a way of saving the diagrams of UML (class diagram in this
work) in details such as the name, attributes, operations of each class, and relationships.

XMI document has a large set of tags as depicted in Figure 2, some are important but others are not
such as the class style, and date of creation. The aim of exporting class diagrams to XMI file is to use these
files as input to the parser which will extract all necessary information used to calculate metrics such as no.
of classes and no. of operation of each class.

4.3. XMI parser

XMI parser is utilized to extract data from XMI document; XMI parser will store all values of XMI
document tags in lists which contain all information about the class diagram. JAVA Eclipse programming
language is used for implementation and document object model (DOM) for manipulating XMI document.
Document object model (DOM) is an application programming interface which manipulating XMI document
and providing a tree structural representation of the document tags. XML documents have an informational

https://en.wikipedia.org/wiki/Financial_transaction
https://en.wikipedia.org/wiki/Financial_transaction

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 5, October 2021: 1507 - 1516

1512

unit hierarchy called nodes. DOM describing those nodes and the relationships between them. Figure 3,
depicts the use of DOM parser to manipulate XML document of the class diagrams as will be mentioned later
using java eclipse.

Figure 2. XMI format

Figure 3. Manipulate XML using DOM parser

4.4. Compute (ANA, DCC, MFA, NOP) metrics
In this step, these four metrics must be computed. To do so, metrics explained in section 3 (1)-(4)

have been implemented. These metrics considered as a prerequisite to compute the extendibility quality
attributes.

TELKOMNIKA Telecommun Comput El Control 

Measure extendibility/extensibility quality attribute using … (Taghreed Riyadh Alreffaee)

1513

4.5. Compute extendibility quality attributes
The final step is to compute the extendibility quality attribute. After computing the four metrics

(ANA, DCC, MFA and NOP). In (5) mentioned in section 3 has been implemented to find the final value.

5. EXPERIMENTAL TESTS AND RESULTS

For the purpose of executing the algorithm, test cases must be used and analyzed. Two test cases
were used on two different class diagrams. Then, clarified the QMOOD extendibility assessment results.

5.1. First example

The first example represents the implementation of ATM system. Each metrics value needed will
calculated from the class diagram of the system. Figure 4 shows the class diagram of ATM system.

Figure 4. Simple class diagram for ATM machine

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 5, October 2021: 1507 - 1516

1514

5.2. Second example
The second case study represents the implementation of online exam system. The class diagram is

shown in Figure 5. Figure 4 and Figure 5 show object-oriented design for ATM Machine and online exam
system. Table 2 shows the values of metrics.

Figure 5. Simple class diagram for online exam system

Table 2. Extendibility metrics and its value for ATM and online exam systems
Property Metric ATM Machine Online Exam

Abstraction (ANA) 0.4 0.375
Coupling (DCC) 1 0

Inheritance (MFA) 0.24 0.12
Polymorphism (NOP) 0 0

Extendibility= 0.5×ANA-0.5×DCC+0.5×MFA+0.5×NOP -0.18 0.24

Table 2 shows the calculated values of the extendibility/extensibility quality attribute for the two

systems based on the values of the four metrics in property column. After export each diagram (online exam
and ATM machine) to XMI document, the parser extracts the necessary information from these documents
for measuring the metrics later as explained in Figure 1. After these steps, mathematical (1)-(4) were applied
to measure the four metrics of the QMOOD model (ANA, DCC, MFA, NOP) depending on the information
extracted from the class diagram using DOM parser. Finally, to know if these systems are
extendible/extensible or not, (5) was applied. It can be noted from Table 2, the value of the metrics
(abstraction, and coupling) is inversely proportional to the extendibility quality attribute value. In the other
words, If the values of abstraction and coupling are minimized, then class diagram is ready to accept
additional improvements. So, when abstraction and coupling in online exam system are less than in ATM

TELKOMNIKA Telecommun Comput El Control 

Measure extendibility/extensibility quality attribute using … (Taghreed Riyadh Alreffaee)

1515

machine system, then the value of extendibility for the online system was better than ATM and it is ready to
accept additional refinement.

6. CONCLUSION
The important contribution of this work is to propose an algorithm for measuring the extendibility of

the class diagrams in the design phase and the impact of the involved metrics in the extendibility value. We
have conducted experimental study on two test cases to see the influence of the (ANA, DCC, NOP, and
MFA) values on the extendibility attribute. The proposed algorithm consists of five steps, each one has
explained in details. The experimental results demonstrated that if the value of abstraction and coupling
metrics decreased, the extendibility value is increases and vice versa. Hence when the equation of
extendibility was applied on the two test cases (ATM machine and online exam systems), the value of
extendibility for the online exam system was greater than the extendibility value for the ATM machine
system, which means that the system of the online exam is more extensible than the other system and it is
ready to accept any additional improvements. This gives a judgment to software engineers about the ability to
expand the software in early phases of software development. The future work may include applying the
algorithm to a variety of object-oriented design quality attributes like reusability, flexibility,
understandability, functionality and effectiveness, and providing a comprehensive experimental study of the
effect of each metrics values on these attributes.

ACNOWLEDGMENT

We are grateful to the University of Mosul for all the support and for making this work achieved.
We also would like to thank the department of Software for providing us with all the possible support in
performing this research.

REFERENCES
[1] R. Vir, P. Dhillon, and J. Dhillon “ Fuzzy Logic Approach to Forecast the Extendibility/Extensibility in Object

Oriented Design using an Integrated Model,” International Journal of Computer Applications, vol. 94,
no. 9, May 2014, doi: 10.5120/16371-5811.

[2] L. Alzubaidy and K. A. Ibrahim, “Constructing an Add-in Tool for Enterprise Architect v7.5 To Measure the
Quality of Object Oriented Design (Class Diagram),” International Journal of Computer Science and Information
Security, vol. 13, no. 7, pp. 72-85, July 2018.

[3] P. K. Goyal and G. Joshi, “QMOOD metric sets to assess quality of Java program,” International Conference on
Issues and Challenges in Intelligent Computing Techniques (ICICT), IEEE, 2014,
doi: 10.1109/icicict.2014.6781337.

[4] A. Hoffmann, A. Angerer, A. Schierl, M. Vistein, and W. Reif, “ Managing Extensibility and Maintainability of
Industrial Robotics Software,” 16th International Conference on Advanced Robotics (ICAR) © 2013 IEEE,
doi: 10.1109/icar.2013.6766561.

[5] K. Z. N. Winn, “Quantifying and Validation of Changeability and Extensibility for Aspect-Oriented Software,”
InProc. Int. Conf. Advances in Engineering and Technology, Mar. 2014, doi: 10.15242/iie.e0314075.

[6] V. Yadav, “Software Quality Analyser,” Matrix Academic International Online Journal of Engineering and
Technology, vol. 2, no. 2, pp. 21-28, Oct. 2014.

[7] M. Cossentino, C. Lodato, S. Lopes, P Ribino, and V. Palermo, “Metrics for Evaluating Modularity and
Extensibility in HMAS Systems,” In Proceedings of the 2015 International Conference on Autonomous Agents and
Multiagent Systems, May 2015.

[8] F. Pölzlbauer, R. I. Davis, and I. Bate, “A practical message ID assignment policy for Controller Area Network that
maximizes extensibility,” In Proceedings of the 24th International Conference on Real-Time Networks and
Systems, pp. 45-54. 2016, doi: 10.1145/2997465.2997484.

[9] C. M. S. Couto, H. Rocha, and R. Terra, "Quality-oriented Move Method Refactoring," BENEVOL 2017-16th
BElgian-NEtherlands software eVOLution symposium, 2017.

[10] J. Kim, S. Kang, J. Ahn, and S. Lee, “EMSA: Extensibility Metric for Software Architecture”, International
Journal of Software Engineering and Knowledge Engineering, vol. 28, no. 3, pp. 371–405, 2018,
doi: 10.1142/s0218194018500134.

[11] D. Abdullah, H. Mahfuzul, and Y. Hagos, “A Methodology to Evaluate Extensibility of Object Oriented Design: A
Product Transition Perspective,” International Journal of Advanced Research in Computer and Communication
Engineering, vol. 8, no. 10, Oct. 2019, doi: 10.17148/ijarcce.2019.81001.

[12] N. S. A. A. Bakar, “The Analysis of Object-Oriented Metrics in C++ Programs,” Lecture Notes on Software
Engineering, vol. 4, no. 1, Feb. 2016, doi: 10.7763/lnse.2016.v4.222.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 5, October 2021: 1507 - 1516

1516

[13] S. K. Punia, “A Review of Software Quality Metrics for Object-Oriented Design,” International Journal of
Advanced Research in Computer Science and Software Engineering, vol. 6, no. 8, Aug. 2016 .

[14] B. Kochar, S. S. Gaur, and D. K. Bhardwaj, “Identification, Analysis & Empirical Validation (IAV) of Object
Oriented Design (OO) Metrics as Quality Indicators,” International Journal on Recent and Innovation Trends in
Computing and Communication, vol. 5, no. 8, pp. 31-40, 2017.

[15] A. Singh, R. Bhatia, and A. Singhrova, “Taxonomy of machine learning algorithms in software fault prediction
using object oriented metrics,” International Conference on Computational Intelligence and Data Science,
vol. 132, pp. 993-1001, 2018, doi: 10.1016/j.procs.2018.05.115.

[16] A. Sharma and S. K. Dubey, “Comparison of Software Quality Metrics for Object-Oriented System,” International
Journal of Computer Science & Management Studies, Special Issue of vol. 12, pp. 12-24, June 2012.

[17] Z. C. Ani, S. Basri, and A. Sarlan, “A Reusability Assessment of UCP-Based Effort Estimation Framework using
Object-Oriented Approach,” Journal of Telecommunication, Electronic and Computer Engineering, vol. 9, no. 3-5,
2017.

[18] C. Singh et al. "Toward Software Measurement and Quality Analysis of MARF and GIPSY Case Studies, a Team 8
SOEN6611-S14 Project Report," arXiv preprint arXiv:1407.1328, 2014.

[19] S. Jain, P. Shantanu, and S. Raghuraj, "Predictive Object Points (POP) Sizing Metric: A Good Predictor of Quality
of OO Software," Indian Journal of Science and Technology, vol. 11, no. 20, pp. 1-8, 2018,
doi: 10.17485/ijst/2018/v11i20/48215.

[20] A. Shaheen, U. Qamar, A. Nazir, R. Bibi, M. Ansar, and I. Zafar, "Oocqm: object-oriented code quality
meter," International Conference on Computational Science/Intelligence & Applied Informatics, Jan. 2020,
pp. 149-163, doi: 10.1007/978-3-030-25225-0_11.

[21] S. Ciraci and P. v. d. Broek, ”Evolvability as a quality attribute of software architectures,” The International
ERCIM Workshop on Software Evolution, 2006.

[22] M. G. Saeed, M. T. Alasaady, F. L. Malallah, and K. H. Faraj, “Three Levels Quality Analysis Tool for Object
Oriented Programming,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 11,
2018, doi: 10.14569/ijacsa.2018.091173.

[23] N. Johansson, A. Löfgren, and C. Olsson, “Designing for extensibility: An action research study of maximising
extensibility by means of design principles,” Bachelor of Applied Information Technology Thesis, University of
Gothenburg, 2009.

[24] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality assessment," IEEE
Transactions on software engineering, vol 28, no.1, Jan. 2002. doi:10.1109/32.979986.

[25] D. Rizk, “Software Quality Attribute Measurement and Analysis Based on Class Diagram Metrics,” Theses and
Dissertations The American University in Cairo, 2009.

https://www.sciencedirect.com/science/journal/18770509/132/supp/C
https://doi.org/10.17485/ijst/2018/v11i20/48215
https://doi.org/10.17485/ijst/2018/v11i20/48215
https://doi.org/10.17485/ijst/2018/v11i20/48215
https://doi.org/10.17485/ijst/2018/v11i20/48215

