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 Obstructive sleep apnea (OSA), a very common sleep disorder remains as an 

underdiagnosed root cause for several cardiovascular and cerebrovascular 

diseases. In this paper, we propose an efficient and accurate system that 

utilizes a single sensor for effective screening of OSA using machine 

learning algorithms. The automatic screening system involves a 

photoplethysmogram (PPG) signal, a novel algorithm to detect and remove 

the corrupted part of the signal, a feature extraction module to extract several 

features from the PPG waveform and a classifier module which helps in 

screening for OSA. The elemental idea behind this work is that there is a 

characteristic relationship between the shape of the PPG waveform and the 

oxygen desaturation in the apnea patients. The method as described was 

tested on 285 subjects, inclusive of both normal and apnea patients, and the 

results were obtained after 10-fold-cross validation of the different machine 

learning techniques viz., univariate regression, multivariate regression, 

support vector machine and random forest. The best results in screening OSA 

were obtained from random forest algorithm with the highest performance 

(Acc: 98.0%, Sen: 98.6%, Spec: 99.3%) for all the combined features. The 

proposed work is an effective system for automatic screening of OSA from a 

single PPG sensor, thereby reducing the need for a very expensive and 

overnight polysomnography sleep study. 

Keywords: 

Multivariate regression 

Obstructive sleep apnea 

Photoplethysmogram 

Random forest 

Support vector machine 

Univariate regression 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Jude Hemanth 

Department of Electronics and Communication Engineering 

Karunya Institute of Technology and Sceinces 

Karunya Nagar, Coimbatore, 641114, Tamilnadu, India 

Email: judehemanth@karunya.edu 

 

 

1. INTRODUCTION 

Sleep disorders has now become a very common health condition affecting about 2 to 4% of the 

adult population and have effect on several aspects of life. Among the sixty different sleep disorders 

identified by the International Classification of Sleep Disorders [1], obstructive sleep apnea (OSA) is one of 

the most common one, characterized by episodes of complete, intermittent or partial obstruction and 

repetitive collapse of the upper airway during sleep. Research reports on the prevalence of the syndrome 

among the adult population estimates that it is much higher i.e. about 50% in patients with cardiovascular and 

cerebrovascular diseases [2]. Obstructive sleep apnea is currently diagnosed using polysomnography (PSG) 

and is considered as the gold standard. PSG is usually performed in sleep labs as an overnight sleep study. 

https://creativecommons.org/licenses/by-sa/4.0/
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Due to the limitation of sleep labs in hospitals and clinics and due to complexity of the above diagnostic 

technique, the procedure is quite expensive and cumbersome to use [3]. Therefore, the need for an 

alternative, simple and robust screening of OSA is justified by the size of the population affected. 

Several approaches alternative to PSG have been proposed which aids in the day time monitoring of 

OSA using individual signals viz., respiratory, electrocardiography (ECG), photoplethysmography (PPG), 

EEG, snoring loudness, SpO2 or combination of two or more signals. As a replacement to these methods and 

to the overnight PSG studies, this work proposes the use of a non-invasive, low-cost device such as 

photoplethysmography (PPG) that can be effortlessly applied even to outpatients. Ucar et al. [4] describes an 

approach towards determining the connection between the respiratory arrests and PPG signal of OSA patients 

and has depicted significant association in using PPG signal for diagnosis of OSA [4]. This signal can easily 

assess the tactile arterial palpation on the finger’s capillaries by virtue of the differences in light absorption [5]. 

Precisely, a simple and robust non-invasive device that can provide real time screening for OSA is the subject 

of interest due to its easy availability and less discomfort to the patients [6]. 

An approach for automated recognition of OSA from ECG recordings shows false negative results 

when patients with a history of cardiovascular diseases were included [7]. Most recent research approach on 

automated OSA detection using cardiopulmonary signal that utilizes both heart rate signal and respiration 

rate signal demonstrates a reduced sensitivity and specificity for subject-specific cross validation in spite of 

its complex instrumentation and calibration procedures [8]. Another study that makes use of cardiorespiratory 

model-based data-driven approach for OSA detection combines measurement signals from various sensor 

modalities with the mathematical model of cardiorespiratory system in the context of improving the detection 

performance of OSA. A limitation of this method is that the time delay and threshold values of SpO2 vary 

from one individual to another. The difficulty lies in the fact that a generalized and subject-independent value 

could not be obtained [9]. A recent research perspective to accurately detect sleep apnea has put forward the 

significance of long short-term memory network based on RR interval signals. The main limitation of the 

work happens to be from the low hold validation accuracy of 81.30% and the insufficient window size 

chosen to extract the RR intervals [10]. 

 

 

2. BACKGROUND 

It is important to understand the physiological factors that support the theoretical estimation of OSA 

characteristics from the PPG signal. The following session describes the relation between these physiological 

factors and the signal processing techniques used to extract the features relevant to changes in PPG due to 

OSA. The hemodynamics and the cardiovascular activity of an OSA patient sway between ventilatory and 

apneic periods, due to recurrent apneas. The consequences of repetitive surges curb the normal heart rate and 

blood pressure and thus contribute to the adverse effects on the cardiovascular activity. Hypoxia-a condition 

where oxygen supply to the tissues are reduced, magnified negative intra-thoracic pressure prompted due to 

obstructed pharynx and sleep arousals are the main pathophysiological features of OSA. The variability in 

heart rate may differ among individuals and it depends on the hypoxia severity and intrinsic hypoxic chemo 

sensitivity.  

 

2.1.  Pathophysiology of OSA syndrome 

Obesity, thickened pharyngeal walls, reduced muscle tone of naso-pharynx during sleep; 

hypertension and other pathologies contribute to OSA [11]. It also affects the general hemodynamics and the 

state of the autonomous system and it is related to the individual’s demographic and morphologic  

parameters [12]. Thus, measurement of parameters like age, sex, weight, and height and body mass index 

remains a pre-requisite. 

 

2.2.  OSA and blood viscosity 

Blood viscosity is the internal resistance offered by the blood against shear forces and is determined 

by the viscosity of plasma, hematocrit and the biomechanical properties of red blood cells [13]. Changes in 

the rheological properties of blood and plasma leads to an increase in blood clotting and perhaps remains to 

be a vital factor in triggering cardiovascular complications due to OSA [14]. There is strong evidence that the 

blood viscosity and the plasma viscosity are abnormally high in OSA patients [15]. The fluctuations in the 

blood pressure adversely affect the response of blood vessel wall and thereby modify the vessel  

compliance [16]. The effect of blood viscosity and blood vessel compliance are reflected on the shape of PPG 

waveform.  
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2.3.  OSA and heart rate variability 

The association between severity of OSA and heart rate variability has been studied extensively by 

doing time domain and frequency domain analysis of heart rate variability (HRV), sleep arousals, oxygen 

desaturation and other sleep parameters. The frequency domain indices tend to yield a better result when 

compared to time domain indices [17]. Henceforth, the variability in the heart rate due to OSA is reflected in 

the power spectrum of the heart rate.  

 

2.4.  OSA and baroreflexes 

This relates the heart rate and the blood pressure. The fact underlying is that, an increase in blood 

pressure activates the carotid sinus and aortic arch baroreceptors which inhibits the sympathetic outflow and 

reduces the heart rate. The opposite effect is experienced due to a decrease in blood pressure [18].  

Solaro et al. [19] describe the spectral properties of heart rate variability and its relation to blood pressure 

levels. Fazan Jr et al. [20] have investigated the relation between heart rate variability and human 

baroreflexes.  

 

2.5.  OSA and breathing rate 

It has been made clear through several studies that the respiratory frequency has effects on blood 

pressure levels [21]. Signal processing techniques to extract the low frequency components of PPG signal 

help in measuring the respiration rate. Due to the well-known fact of high non-linearity and non-stationary 

properties of biosignals, empirical mode decomposition (EMD) algorithm is best suited and is capable of 

accurately estimating the respiratory rate from PPG signal. This provides an alternative to using a separate 

sensor module for monitoring respiration rate.  

 

 

3. METHODOLOGY  

A detailed account of the materials and methodologies used in the various modules of the proposed 

system are described in this session. In contrast to the above discussed methods the approach proposed in this 

paper measures the difference in the transit time between the successive PPG waveform and also measures the 

repercussions of physiological alterations inflicted on the shape of the PPG waveform and on the heart rate.  

The proposed system is organized into three modules as depicted in the flow diagram shown in 

Figure 1. The PPG waveform obtained from a simple fingertip PPG sensor moves through a clean signal 

detector module that eliminates corrupted unclean signals which set foot in due to artifacts and finger 

movements. This module ensures that the system does not require any re-calibration with change in 

individuals or change over time. Uncorrupted and consecutively recorded 4000 samples are processed using 

moving average algorithm to further smoothen the signal. The signal processing and feature extraction 

module processes the signal to extract several related features from the clean PPG waveform. Finally, a 

classifier module makes a decision between the normal and abnormal values of the variables with the help of 

the extracted features fed to it. 

 

 

 
 

Figure 1. Block diagram of the automatic OSA screening system 
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The training and testing of the system was carried out with 285 subjects encompassing individuals 

from varied age groups, healthy, individuals with hypertension and cardiovascular disease, and OSA patients. 

The input PPG signal recorded with the help of a fingertip pulse oximeter device (German sensor) and the 

reference apnea signals obtained from the apnea database from Physionet were used for training the system. 

The database includes 169 male and 116 female subjects, aged between 20 to 85 years. The database widely 

incorporates young healthy individuals, diabetic patients, blood pressure patients and sleep apnea patients 

with a focus to correlate the symptoms common to sleep apnea, blood sugar and blood pressure. Real time 

digitalized PPG signals recorded using a universal serial bus (USB) finger-tip pulse oximeter sensor, are 

obtained as a sequence, having a sampling rate of 1000 samples per second. The PPG signal is given as input 

to the clean signal detection module which identifies a clean and uncorrupted signal X(T) incorporated with 

several segments/frames having a frame length of 4000 consecutively recorded samples. Time duration of 

two minute was selected so as to accommodate sufficient samples for estimation of heart rate and respiratory 

rate from the PPG signal. The output of the clean signal detector is fed to the signal processing module, 

whose output vector XF containing a set of features are fed to the machine learning module. 

 

3.1.  Clean signal detection module 

The ultimate aim of the clean signal detector is to eliminate the corrupted signal length as shown in 

Figure 2 and to select the frame that has clean signal as depicted in Figure 3. The PPG signal recorded at the 

fingertip is usually vulnerable to spurious peaks, noise generated due to movements, signal distortion due to 

initial transient irregularities, and signal saturation. The output of the clean signal detector is a vector 

consisting of ‘n’ number of frames with each frame holding 4000 clean data samples obtained from the PPG 

signal. Time required to acquire one frame of 4000 consecutive samples is 4s, which is capable of trapping 

several heart beats. Reducing the frame length below 4s might grasp very few heart beats resulting in an 

unreliable data. In order to discriminate between clean and corrupted signal, a set of morphological features 

are extracted from the time-domain PPG waveform, its first and second derivative. 

 

 

 
 

Figure 2. Corrupted PPG signal with initial irregularities 

 

 

 
 

Figure 3. Clean PPG signal after eliminating the corrupted signal length 

 

 

3.1.1. Set of morphological features 

The morphological features of interest extracted for feature vector were pulse height/systolic peak, 

diastolic peak, augmentation index, pulse interval, pulse width, pulse area, peak to peak interval, notch time, 

systolic peak time and diastolic peak time as shown in Figure 4. Pulse width i.e., the time between onset and 
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end of pulse wave clearly correlates with the vascular resistance which is due to prolonged increase in blood 

pressure. Table 1 defines the set of morphological parameters extracted. Pulse area is measured as the total 

area under the PPG curve, which is also used as an indicator of total peripheral resistance. The augmentation 

index quantifies the contribution made by the wave reflection on the systolic arterial pressure [22]. In 

addition to the above-mentioned morphological features which evaluate the cardiovascular functions, the 

maximum amplitude of the first derivative and second derivative of the PPG waveform is also incorporated 

in our study. The velocity of blood flow in the finger is represented by the first derivative and its second 

derivative speaks much about the arterial stiffness which is an evident symptom of OSA. The pulse transit 

time measurement (PTT) in OSA patients depicts that there is an increase in PTT due to arterial stiffness. The 

energy profile, TK x(t) and spectral power distribution of PPG signal, Spen of each frame were estimated 

using Teager-Kaiser energy operator and spectral entropy operator respectively [23], [24].  

 

 

 
 

Figure 4. Characteristic features derived from PPG waveform 

 

 

Table 1. Extracted features from the PPG waveform 
Feature Definition 

x (systolic peak) Maximum amplitude of the signal 
y (diastolic peak) Amplitude of the diastolic peak 

y/x (augmentation index) Amplitude of diastolic peak/amplitude of the signal 

tpi (pulse interval) Time taken for one complete PPG period 
tpp (peak to peak interval) Time elapsed between two successive peaks 

t1 (systolic peak time)  Time at which systolic peak occur 

t3 (diastolic peak time) Time at which diastolic peak occur 

Nt (Notch time) Time at which notch occur 

SD of amplitude Standard deviation of the amplitudes 

1st derivative_max amp Maximum amplitude of the first derivative 
2nd  derivative_max amp Maximum amplitude of the second derivative 

 

 

3.1.2. Classifier algorithm 

The feature vector Xn
(f) is thus constructed by clustering all the morphological features and energy 

levels of PPG signal contained in each frame of 4000 samples.  

 

Xn
(f) = [ x, y, y/x, tpi, tpi, t1, t3, Nt, SD, 1st derive max_amp, 2nd derive max_amp, TK x(t), Spen]T 

 

The classifier takes Xn
(f) as its input and distinguishes between good signal and bad signal based on noise and 

signal loss. A threshold-based classifier makes a classification decision based on a value of linear 

combination of all the above stated features. The thresholds initially were resolved by inspection from a set 

of examples and trained using a set of hand-labeled database.  The algorithm is designed in such a way to 

eliminate the incoming signals for the first 15 seconds so as to eliminate the spurious clicks and motion 

artifacts in the signal due to finger movements. The subjects were advised to be in a relaxed state at the time 

of recording the real time PPG signals using USB based finger-tip pulse oximeter, with a sampling rate of 
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1000 samples/sec. i.e., each data acquisition provides 1000 samples. Data samples obtained from 4 

consecutive acquisitions recorded for 4s, are stored in an array which forms one frame/segment having 4000 

samples altogether. The classifier works on the basis of certain ordained rules and functions written by hand 

after analyzing various signals and makes a decision between good and bad frame/segment. Once a clean 

signal of a minute or more consecutive samples were obtained, the acquisition stops and the signal proceeds 

to the signal processing module for feature extraction. The clinical parameters of the study group are shown 

in Table 2.  

 

 

Table 2. Clinical parameters of the study group 

Subjects Age 
Gender 

M/F 
Height 

cm 
Weight 

Kg 
Resp.Rate 

/min 
Heart 

Rate /min 
SpO2 

BGL 
mg/dl 

BP 
Sys/dia 

BMI 
Kg/m2 

Lung 
disorder 

S1 74 M 159 92 21 62 97 222 154/50 36.4 yes 

S2 44 F 150 85 16 84 98 107 122/82 37.8 no 

S3 40 M 138 77 17 111 99 358 138/73 40.4 no 
S4 48 M 161 69 16 101 99 478 128/85 26.6 no 

S5 52 F 146 71 17 82 99 120 106/49 33.3 no 

S6 63 F 153 89 12 90 99 128 149/87 38 no 
S7 42 F 159 73 14 88 99 143 116/85 28.9 no 

S8 70 M 156 65 18 71 98 96 121/82 26.4 no 
S9 52 M 145 76 19 75 97 125 118/76 34.2 yes 

S10 49 M 152 89 16 86 97 115 100/65 38.5 yes 

 

 

3.2.  Signal processing module 

This section summarizes the different signal processing algorithms used for computing features 

related to OSA from PPG signal. Signal duration of more than a minute comprising of at least 15 frames of 

consecutively recorded good signal is given as input to the signal processing module. The output of this 

module is a vector comprising of an aggregate of all the features and fed as input to the machine learning 

module. The length of the signal and the number of samples selected are sufficient enough to compute heart 

rate, respiration rate and their variability respectively.  

 

3.2.1. Estimation of respiratory rate 

Estimation of respiratory rate from PPG signal is an alternative method to using a separate  

sensor-amplifier unit. Several signal processing techniques which work by extracting the respiration trend 

embedded in the PPG waveform have been put forth [25], [26]. It is a well-known fact that the bio signals are 

highly non-linear and non-stationary, nevertheless, test results reveal that the empirical mode decomposition 

(EMD) algorithm is best suited for non-linear signals and is capable of accurately estimating the respiratory 

rate from PPG signal. As our aim is to develop a system which automatically screens for OSA patients, the 

measurements are associated to the individual’s hemodynamics and cardiovascular activity. Hence, efforts to 

accurately measure heart rate and respiratory rate from PPG signal have been carried out as they are the 

parameters closely associated with OSA and has been published in our previous work [27]. 

 

3.2.2. Heart rate variability and oxygen saturation 

Several studies proved that there is a strong evidential relation between OSA and heart rate 

variability which is recorded as the variation in the time interval between heartbeats. In this work, the 

variability in peak-to-peak interval of PPG signal has been computed using slope detection algorithm. The 

peaks were detected from the zero crossings of the signal, rather than measuring the signal peaks. Initially a 

band pass filter was used to attenuate the dichrotic notch effect and to remove the mean. This method was 

found to be accurate in measuring the time interval between the alternate zero crossings and the difference in 

the time interval gives the measure of heart rate variability. The mean value of the peripheral oxygen 

saturation range was directly given by the USB based finger-tip pulse oximeter over the entire recording 

duration. The feature vector was finally constructed by clustering all the above mentioned features, including 

physiological parameters, morphological parameter of the PPG waveform, Teager-Kaiser energy level, and 

entropy of the signal, heart rate, respiration rate, heart rate variability and oxygen saturation. The statistical 

features such as mean, M and standard deviation, SD were also calculated in order to capture the relationship 

between heart rate variability and OSA. The output of the signal processing module is fed as input to the 

classifier module, which is trained with all the features of the output vector as given below:  

 

XF = [A, W, BMI, BP, BGL, PTT, x, y, y/x, tpi, tpi, t1, t3, TK x(t), Spen, HR, RR, HRV, SpO2, 1st derive 

max_amp, 2nd derive max_amp,  M, SD]T 
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3.3.  Classifier module 

The machine learning module is supposed to infer a physiological function that relates the features 

extracted from the PPG signal and the desired target [28]. Literature clearly portrays that most of the work 

involved in the detection of OSA has used neural network-based classifier [29]. It is also understood that 

deep learning neural networks have always outperformed the shallow neural networks and convolutional 

neural network is the widely used classifier in the recent years [30], [31]. In one of the approaches to detect 

respiratory arrests in OSA patients using PPG signal, classifiers like k-nearest neighbours classification, 

radial basis function neural network, probabilistic neural network, multilayer feedforward neural network and 

ensemble classification have been compared by the authors and their results depict a testing accuracy rate of 

97.07% with multilayer feedforward neural network [4]. In our work three different machine learning 

algorithms were tested on the basis of flexibility, accuracy; smart enough to deal with noisy signals,  

non-requirement of repeated calibration and stability in terms of its performance. Moreover, the data type 

involved in our work is in the tabular form and it has facilitated easy implementation of the work using these 

algorithms. The structure of each classifier and method of training involved are described in this section.  

 

3.3.1.  Univariate regression (UR) 

Univaraite regression also known as linear regression is a supervised machine learning algorithm 

used for data analysis. The relationship between a scalar dependent variable and one or more than one 

explanatory variable can be modeled by simple linear regression and multiple linear regression approaches 

respectively. Linear predictor functions, also called as linear models are used in modeling the data and to 

estimate the unknown model parameters from a set of data points. It is a method used to fit the best straight 

line between a set of data points, and the obtained straight line is used as a model to predict the value of 

variable 𝑦 from an input variable 𝑥. The straight line represents the best estimate of the y value for every 

input of 𝑥. General form of linear regression classifier is given in (1). 

 

𝑦 = 𝑚𝑥 + 𝑏         (1) 

 

Where 𝑥 is the input value, 𝑚 is the slope of the best fit line and 𝑏 is the point where 𝑥 = 0 and 𝑦 intersects 

the 𝑦-axis. The slope of the line can be calculated using (2). 

 

𝑚 =
∑(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

∑(𝑥𝑖−�̅� )2          (2) 

 

Where �̅� and �̅� are the mean of independent variable and dependent variable respectively and 𝑥𝑖 and 𝑦𝑖  are 

the values of independent variable and dependent variable respectively. This attempt was made to model the 

correlation between the set of 24 features, both demographic and morphological features, extracted in the 

previous modules, which are taken to be the independent variables and the apnea-hypopnea index (AHI) as 

the dependent variable. From several researches it is made clear that the OSA severity can be defined based 

on AHI index and is recommended by the American Academy of sleep medicine. It varies from mild  

(5≤AHI≤15 events/hour), moderate (15≤AHI≤30 e/h) to severe (AHI≥30 e/h). Independent of the 

associated symptoms, OSA can be diagnosed in patients with a frequency of obstructive respiratory 

disturbances greater than 15 e/h.  

Linear regression serves to interpret the functional relationship between AHI and each of the 

features individually, and then predict the future value of the target variable, i.e., AHI in our case, based on 

the relationship interpreted. The algorithm for linear regression was implemented in matlab and the best fit 

straight-line equations relating various features with AHI were obtained from the linear regression plot. The 

relation between each of the features as mentioned in Table 1, with AHI was interpreted using linear 

regression model. Perhaps it was labour-intensive to predict the y value for each individual feature contained 

in the feature vector XF, from the signal processing module. The analysis of the observations revealed that 

few of the morphological features viz., systolic peak, diastolic peak, augmentation index, tpi, tpp extracted 

from the PPG signal had a close relationship with the target variable and had good prediction accuracy. The 

equations relating systolic peak (x) with AHI and augmentation index (y/x) with AHI obtained from the linear 

regression plot is given in (3) and (4) respectively. 

 

𝑦 = (1.1471) ∗ 𝑥 + (20.7108)       (3) 

 

𝑦 = ((68.0199) ∗
𝑦

𝑥
+ (27.7509))       (4) 
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The linear regression classifier was selected because of its simplicity in programming and ease of 

predicting numerical values. It was able to predict the severity of OSA over a wide range and the predicted 

values were close to the reference values with a highest error percentage of ±7 as shown in Table 3. The 

major disadvantage with such a linear predictor is that the inability to confirm the diagnosis of OSA in a 

patient on the basis of a single feature parameter. If required to include all the features, it would be a labour-

intensive and time-consuming process. 

 

 

Table 3. Predicted apnea-hypopnea index (AHI) from three features using linear regression 

Subject 
Ref. AHI 

e/h 

Systolic peak (x) Pulse interval (tpi) Peak to peak interval (tpp) 
Peak volt. 

(mv) 

Pred. AHI 

e/h 

Err. 

% 

tpi 

(sec) 

Pred. AHI 

e/h 

Err.% tpp 

(sec) 

Pred. AHI 

e/h 

Err.% 

S1 4 1.02 3.89 2.75 0.74 3.98 0.5 1.25 3.77 5.75 

S2 7 0.98 7.01 -0.14 0.76 6.987 0.18 1.19 6.97 0.42 

S3OSA 17 0.76 16.278 4.24 0.99 16.86 0.82 1.43 16 5.88 

S4 OSA 23 0.61 22.76 1.04 1.07 21.98 4.43 1.37 21.47 6.65 

S5 OSA 27 0.69 27.034 -0.12 1.38 26 3.7 1.40 26.84 0.6 

 

 

3.3.2. Multivariate regression (MR) 

In order to overcome this snag of predicting AHI index for each individual feature, we attempted to 

implement the statistical technique: multiple linear regression/multivariate regression, which use several 

independent/predictor variables. It creates a linear relationship in the form of a straight line that best 

approximates all the individual data points and also helps to determine the potential variables that can be 

important predictors for a given dependent variable, AHI in our case. The general model of multivariate 

regression for n variables is given by (5). 
 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ 𝑏𝑛𝑥𝑛 + 𝑐       (5) 
 

where b1 to bn are the regression coefficients representing the value at which the dependent variable changes 

when the independent variable changes. The equation relating systolic peak (x), peak to peak interval (tpp) 

and augmentation index (y/x) with AHI obtained from the multiple linear regression plot is given in 6.  
 

𝑦 = (1.1471) ∗ 𝑥 + (20.7108) ∗ 𝑡𝑝𝑝 + (13.1487) ∗
𝑦

𝑥
 + 1.098   (6) 

 

Combinations of morphological, spectral and statistical features were chosen on a trial-and-error 

basis and all possible combinations were practically implemented. As displayed in Table 4, respiration rate 

and heart rate combined with few morphological features of PPG depicted the least error percentage. Yet, the 

predicted apnea-hypopnea index for OSA patients showed lesser accuracy over a wide range. Apart from 

selecting the right combination of the features which was a labor-intensive process, the computational time 

required is less compared to other machine learning algorithms. 

 

 

Table 4. Predicted apnea-hypopnea index (AHI) combining five features using MR technique 
Subjects Ref. 

AHI e/h 
Systolic peak 

(x) mv 
Peak to peak 
interval(tpp) 

Resp. 
Rate/min 

Pulse 
Interval (tpi) 

Heart Rate 
beats/min 

Predicted 
AHI e/h 

% 
Error 

S1 4 1.38 0.77 15.8 0.75 74 3.93 1.75 

S2 5 1.09 0.83 15 0.73 76 4.89 2.2 

S3 7 1.03 0.98 15.6 0.81 81 6.74 0.86 
S4 9 0.92 0.89 13.3 0.79 78 8.57 4.77 

S5(OSA) 11 0.79 1.15 10.8 0.93 83 9.68 12 

S6(OSA) 17 0.77 1.19 10.2 0.98 71 15.04 11.52 
S7(OSA) 20 0.65 1.2 9.8 1.04 68 16.99 15.05 

S8(OSA) 24 0.71 1.18 6.5 1.25 64 20.38 15.08 

 

 

3.3.3. Support vector machines (SVM) 

A deep learning algorithm which performs supervised learning on a set of labeled training data is 

used [7], [26]. Based on the inference obtained from the training set, the algorithm constructs a set of hyper 

planes in a high dimensional space where the non-linear n-dimensional input vector is mapped into a  

K-dimensional feature space via a kernel trick. SVM uses a kernel function to transform the input data into a 

higher dimension space and then classify the data into two classes by constructing a separating hyper plane in 

the transformed space. The data vectors nearest to the hyper plane in the transformed space are the support 
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vectors. Each input data vector is mapped into a higher dimension feature space K via a non-linear mapping 

Φ(x). In (7) define the equation of the hyper plane separating the data into two different classes. 
 

𝑍(𝑥) = 𝑊𝑇𝛷(𝑥)         (7) 
 

𝑊𝑇𝛷(𝑥) =  ∑ 𝑤𝑗
𝐾
𝑗=1 𝛷𝑗(𝑥) + 𝑤0 = 0      (8) 

 

where W = [w0, w1, w2,….., wK] is the weight vector. Linear kernel and second-order polynomial kernel 

functions were experimented with different values of the regularization parameter C (C=0.1, 1, 5, 8) as 

shown in Table 5. The value of parameter C has been identified on the basis of lowest misclassification rate 

on the testing dataset and the best suited configuration for the polynomial kernel functions were established 

based on independent trials using the testing data. The algorithm was implemented using SVM toolbox for 

Matlab.  

 

 

Table 5. Predicted apnea-hypopnea index (AHI) using SVM (second-order polynomial kernel with C=10) 
Subject Ref. AHI e/h Respiratory Rate/min SpO2 Morphological Feature 

Resp.rate/min Pred. AHI e/h Err. % O2 satu. Pred. AHI e/h Err. % Pred. AHI e/h Err. % 

S1 3 16.56 3.25 -8.3 99 3.03 -1.0 3.57 -19.0 

S2 7 15.8 6.6 5.71 99 6.98 0.2 6.27 10.42 
S3OSA 14 10.2 12.8 8.57 97 13.56 3.0 12 14.28 

S4 OSA 21 8.3 20.6 1.90 96 20 4.0 22.76 -8.38 

S5 OSA 33 7.7 30 9.09 94 30.7 6.0 28.8 12.72 

 

 

As respiration rate and oxygen saturation features are closely associated with OSA, classification 

was done for these two features separately and a classification using all the morphological features combined 

was also executed. Table 5 shows the classifier results of respiratory rate, SpO2 and the combined feature set. 

The polynomial kernel depicted higher accuracy, sensitivity and specificity compared to the linear kernel 

classification. SpO2 had the highest sensitivity and accuracy while respiratory rate had the highest specificity. 

The performance of the classifier for separate feature had shown better results than the combined feature set. 

In general, the accuracy increased with increase in C value.  The highest performance (Acc: 96.5%,  

Sen: 98.0%, Spec: 99.3%) was achieved with the second-order polynomial with C=10 for SpO2. The 

classification of apneic and normal signals based on one single feature cannot be incorporated into automatic 

screening algorithms.  

 

3.3.4. Random forest (RF) 
RF is a supervised machine learning technique used for classification and regression. It operates by 

creating decision trees based on the feature parameters during the training process and acquire the prediction 

from each of the parameter [28]. The precision of the result increases with increase in the number of trees and 

also avoids over fitting of the model. The algorithm works in two stages, one is the construction of the forest 

which is completely a random process and the other is to make a prediction from the classifier formed in the 

first stage. Initially the algorithm randomly selects “m” features from a total of “n” features, where m<<n. 

Using the best split point, nodes and daughter nodes are formed among the randomly selected m features. 

Table 6 depicts the performance of random forest algorithm for morphological, statistical and combined 

features respectively using 20 decision trees.  

 

 

Table 6. Predicted apnea-hypopnea index (AHI) using random forest with 20 decision trees 
Subject Ref. AHI e/h Morphological features Statistical features Combined features 

 Pred. AHI e/h Err. %  Pred. AHI e/h Err.%  Pred. AHI e/h Err.% 

S1 4  3.78 5.5  3.48 13.0  3.97 0.7 

S2 7  6.41 8.0  5.7 18.0  6.77 3.2 

S3OSA 17  15.5 8.0  17.8 -4.0  16 5.0 
S4 OSA 23  21.3 7.0  20.5 10.0  22.8 0.8 

S5 OSA 27  25.7 4.0  26.4 2.0  26.6 1.48 

 

 

The random forest is constructed by repeating the above steps until the required number of nodes 

and trees are formed. The random forest algorithm predicts the output by analyzing the test features and the 

rules of each of the decision trees and stores the predicted output. After computing the votes for each of the 

predicted target, the algorithm identifies the target with the highest voting as the final predicted output. In the 
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proposed work, the input feature set includes a total of 24 features and 4000 data samples of PPG signal. The 

number of decision trees chosen initially was 10 and later 20. The performance of the algorithm was 

examined for morphological features separately, statistical and spectral features separately and finally for all 

the combined features. The highest performance (Acc: 98.0%, Sen: 98.6%, Spec: 99.3%) was portrayed for a 

random forest of 20 decision tress, trained with the entire feature vector. The output of the classifier is an 

aggregation of the outputs of all the decision trees of the forest, which reduces the variance and bias. The 

execution time of the algorithm was very high compared to other regression algorithms, as the classifier first 

performs selection of random samples from the given feature vector XF, followed by construction of a 

decision tree for every sample. Predicted results are obtained from each decision tree and the computation 

required here are merely comparisons of one feature at each node of the tree. By introducing complete 

randomness in the selection of the sample feature at every node of the decision tree, and as the classifier 

technique makes comparison between only one feature at each node, the system is more powerful in finding 

the correlations of the inputs without the need for input scaling. The performance of the algorithm was 

excellent with a low error rate. The algorithm was configured based on the number of features compared at 

each node of the tree and the number of decision trees and implemented through Matlab.  

 

 

4. RESULTS AND ANALYSIS  

The experimental work involved first of identifying the best classifier algorithm for the good signal 

detection module. Secondly, the selection of features that could maximize the performance of the machine 

learning algorithms was an important criterion. Though age, weight, body mass index were included in the 

feature vector, they were non-predictive parameters and were used only to improve the accuracy of the 

system. The overall efficiency of the classifier algorithms is defined based on its ability to distinguish the 

normal and the abnormal signals correctly. The sensitivity of the classifier is defined as the percentage of 

apneic signals correctly classified and specificity of the classifier is the percentage of normal signals 

correctly classified. 

Univariate and multivariate regression serve to interpret the functional relationship between AHI 

and each of the features individually and in groups respectively, and then predict the future value of the target 

variable. The former algorithm was selected for its simplicity and its predicting accuracy, with the highest 

error percentage of ±7. The predicted outputs for RR, tpp, tpi, HRV were very close to the target. The 

algorithm depicted consistency of the predicted outputs over a wide range of signals. The only disadvantage 

was that, to include all the morphological, statistical and spectral features was a labor-intensive process. This 

was overcome by using the multivariate regression as it served to interpret the functional relationship 

between AHI and several of the features added together, and then predict the future value of the target 

variable. The algorithm showed much non-linearity between normal and apneic signals and portrayed  

over-fitting for several normal PPG signals. 

Support vector machine worked relatively well compared to the above technique as in Table 7. 

Oxygen saturation features provided a clear margin of separation between the normal and the apneic signals. 

The highest performance (Acc: 96.5%, Sen: 98.0%, Spec: .3%) was achieved with the second-order 

polynomial with C=10 for SpO2. The second order polynomial kernel depicted higher accuracy, sensitivity 

and specificity compared to the linear kernel classifier. SpO2 had the highest sensitivity and accuracy while 

respiratory rate had the highest specificity. The performance of the classifier for separate feature had shown 

better results than the combined feature set. In general, the accuracy increased with increase in C value.   

The reliability and stability of the machine learning algorithms were examined by cross-validating 

their performance on the same database for multiple times. The entire dataset was shuffled randomly and was 

split into 10 groups and a 10 cross-fold validation was performed. The performance of the random forest 

algorithm examined all the combined features depicted excellent accuracy as seen in Table 8. The highest 

performance (Acc: 98.0%, Sen: 98.6%, Spec: 99.3%) was portrayed for a random forest of 20 decision tress, 

trained with the entire feature vector. Increase in the number of decision trees beyond 20 showed no 

enhancement in its performance. The performance was better (Acc: 96.8%, Sen: 95.9%, Spec: 95.9%) with 

10 decision trees for the morphological features only and the computation time taken was also very less, but 

again a decision cannot be made based on only few parameters. 

The computation time required was more for the combined feature vector model, but the prediction 

accuracy was also the highest. Out of sample testing and cross validation methodology was used for tuning 

the machine learning algorithms to improve their performance. As shown in Tables 7 and 8, the random 

forest algorithm gave better results compared to other techniques, with the perfect set of features used and with 

best structure devised. Random forest depicted very less variability indicating better stability of the method. The 

other machine learning algorithms showed much variability when used on the testing database again. 
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Table 7. Performance of machine learning algorithm: SVM 

Kernel C 
Respiratory Rate  SpO2 Combined Features 

Acc% Sen% Spec% Acc% Sen% Spec% Acc% Sen% Spec% 

Linear 0.1 80.0 78.0 90.2 93.3 87.6 95.2 85.7 86.8 87.9 

1 88.2 83.7 92.0 93.3 76.8 96.0 88.0 87.5 90.7 

5 88.5 84.3 92.0 94.5 80.2 87.6 89.4 80.4 84.9 
10 87.0 85.0 94.2 93.0 87.5 90.7 90.3 83.8 84.3 

Second-order Polynomial 0.1 95.5 86.6 97.5 94.5 97.0 97.8 94.0 90.6 95.0 

1 95.2 87.4 97.5 96.5 98.0 97.3 94.0 91.2 95.8 
5 96.8 88.0 97.5 96.5 98.0 98.3 94.0 93.3 97.0 

10 96.8 88.0 97.8 96.5 98.0 99.3 95.0 93.9 95.1 

 

 

Table 8. Performance of machine learning algorithm: random forest 

No. of decision trees 
Morphological Features  Statistical & Spectral Features All Features Combined 

Acc% Sen% Spec% Acc% Sen% Spec% Acc% Sen% Spec% 

10 96.8 95.9 95.9 94.0 87.6 89.5 92.1 90.8 90.9 

20 90.5 93.6 95.5 95.5 95.0 96.8 98.0 98.6 99.6 

30 94.3 95.7 97.0 93.8 94.3 96.0 96.8 95.5 95.5 

 

 

5. CONCLUSION  

This experimental study shows that it is possible to screen for OSA using PPG signals by taking in 

to account all the physiological variables that could be extracted from the PPG signal. The result of the 

system is very promising with better accuracy. The system does not require any calibration with change in 

subjects or over time. The system is also reliable even under extreme physiological conditions or 

hypoventilation and the response is linear with the parameters to be estimated. The system uses a single 

sensor and hence would provide a simple and robust screening of OSA, overcoming the discomfort of PSG 

which is an overnight sleep study. The complexity issue of the proposed approach counts on the 

computational resources required to implement the proposed algorithms, as it employs a standard PC 

programmed with a graphical programming tool, LabVIEW and Matlab. The computational time required for 

the system is widened in case of low PPG signal level, mainly due to hand movements to which the pulse 

oximeter is attached. We propose to further work on improving the accuracy of the system by training the 

algorithm with a greater range of OSA database, so that the system could be beneficial for extreme cases of 

OSA. Additionally, the system will be incorporated with state-of-the-art techniques to measure the 

physiological parameters which are exclusively related to OSA.  
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