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ABSTRACT

A radial radio labeling ℸ of a connected graph G = (V,E) with radius rad(G) is a
mapping from V (G) to N ∪ {0} satisfying |ℸ(u)−ℸ(w)|+ d(u,w) ≥ 1 + rad(G),
∀ u, v ∈ V (G). The span of a radial radio labeling ℸ, denoted by rr(ℸ) is the greatest
number in the range of ℸ. The minimum span taken over all radial radio labelings ℸ of
G is called the radial radio nmber of G and it is denoted by rr(G). In this article, we
have investigated the upper bounds for rr(G) of chess board graphs and king’s graph.
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1. INTRODUCTION
In today’s digital age, our world has been transformed into a higher dimension by digital technology,

especially in the field of communication technology. In the beginning of the 21st century, Chartrand et al.
[1] were motivated by the maximum channel allocation in a fixed spectrum introduced the concept of radio
k-chromatic number in graph theory. For any k lies between 1 and the diameter of G, the radio k− chromatic
number is defined as follows: Let G = (V,E) be connected graph and d be its diameter, then a radio k -
coloring ℸ of graph G is an assignment of V (G) to non-negative integers such that |ℸ(u)−ℸ(w)|+ d(u,w) ≥
1+k, ∀ u,w ∈ V (G), where d(u,w) is the distance between u and w in G. The span of a radio k− chromatic
number of h denoted by rck(ℸ) is the largest number in the range of ℸ. The radio k− chromatic number of
G is the minimum value taken over all such radio k -chromatic number of ℸ. For different k values, different
names were given to the radio k− chromatic number by the researchers in the recent research articles. Namely,
when the k values 1 and 2, then the problem is called the chromatic number and L(2, 1) labeling number
respectively. Chang and Kue [2] introduced the L(2, 1)−labeling of graphs. Hasunuma et al. [3] derived a
linear time algorithm for L(2, 1) labeling of trees. Yenoke et al. [4], [5] determined the upper bound for the
L(2, 1) problem of slim tree, comb graph, double comb graph and Christmas tree, silicate and oxide networks
as 8, 6, 7, 8, 10 and 8 respectively. Prajapati and Patel [6] obtained the L(2, 1) labeling number of crown graph
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and line graph of armed crown graph. Smitha and Thirusangu [7] determined the L(2, 1) labeling of cycle
related graphs. Besides, L(2, 1) labeling of unigraph was computed by Calamoneri and Petreschi [8].

If we vary the value of k as 3, then the problem is named as L(3, 2, 1) labelling. Xavier et al. [9]
obtained the bounds for the L(3, 2, 1) labelling number of for both n-star graph S(n, r) and n-star-wheel graph
SW (n, r) as 2r + 2n + 1 and n-wheel star graph WS(n, r) as 3r + 2n. Kim et al. [10] solved the L(3, 2, 1)

labeling problem the product of Cn and Kn. Moreover, Amanathulla and Pal [11] studied the same on interval
graphs. Further, when k reaches the maximum value d, this problem insistence the assigning of channels to
FM radio stations called radio labeling problem which was introduced by Chartrand [12]. Rajan et al. [13]
and Rajan and Yenoke [14] obtained the lower bound for the radio number of any connected graph and also
investigated the exact radio number of wheel graph Wn+1, double fan graph DFn, fan graph Fn, windmill
graph Km

n , star graph Sn+1 and uniform r -cyclic split graph KC(r) as n + 2, n + 3, n + 2,m(n − 1) + 2,
n+ 3 and nkr + 3n− 2 respectively.

Vaidya and Bantva [15] attained the exact radio number of the total graph of path Pn for n = 2k and
n = 2k + 1 as 4k(k − 1) + 2 and 4k2 + 3 respectively. Recently, Yenoke and Kaabar [16] investigated the
bounds for the Nanostar tree dendrimer Tn,p(n, p > 2) as rn(Tn,p) ≤ n+(2n−1)p+1+Σn−1

l=1 (2l−1)p((p−
1)n−l−1)(p− 2)+ (2l− 1)p(p)n−l−1 − 1, whenever p ≥ 2n− 3 and p( (p−1)n−1

p−2 )+n+(Σn−1
i=1 2(2n− (2n−

i))p(p − 1)n−i−1) respectively. In addition, when k = d − 1, it was named as antipodal radio number by
[17], [18]. William and Kenneth [19] investigated the bounds for the antipodal radio number of lobster graph
as an(L(m, r, k)) ≤ 24r + 20k − 7. Saha and Panigrahi [20] studied the same problem for some powers of
cycles. Avadayappan et al. [21] were introduced the radial radio labeling by fixing the k value as the radius of
the graph.

A radial radio labeling ℸ of a connected graph G = (V,E) with radius rad(G) is a mapping from
V (G) to N ∪ {0} satisfying |ℸ(u) − ℸ(w)|+ d(u,w) ≥ 1 + rad(G), ∀ u, v ∈ V (G). The span of a radial
radio labeling ℸ, denoted by rr(ℸ) is the greatest number in the range of ℸ. The minimum span taken over all
radial radio labelings ℸ of G is called the radial radio nmber of G and it is denoted by rr(G). This problem
is very helpful in dividing a network into sub networks and to apply the radio labeling conditions in assigning
the channels for a particular divided geographical area. Especially, if there is a need of partitioning the existing
network into two sub networks, this labeling technique can be applied without affecting the optimal channel
assignment.

Hence this method is either used to increase the number of channels or can be used for the same
frequency allocation in different geographical area. Since this problem was recently introduced in 2019, only
few research articles were published. Avadayappan et al. [21], [22] were proved the following significant
results: (i) For any simple connected graph G, rr(G) ≥ ω(G). (ii) For any graph G with m ≥ 1, there is a graph
G with ω = 3 and rr(G) = m+ω (iii) For any graph G with ω ≥ 4, there exists a graph G with rr(G) = ω+1.

(iv) For any self centered graph rr(G) ≥ n, where n = V (G). Yenoke [23] investigated rr(G) of certain
uniform cyclic and wheel split graphs as rr(KDW (r)) ≤ 3(r+2n), n > 4, rr(HW (r)) ≤ 2(r+n)+2, n > 3

rr(SW (r)) ≤ 2r + 3n, n > 1, r(KC(r))) = mr + 2n− 2,m > 1 and rr(KW (r)) ≤ 2r+ 4(n− 1), n > 1.

Recently, Jose and Giridharan [24] proved that rr(MT (n)) ≤ 2n+1 and rr(D(n)) ≤ 2n+2, where
MT (n) and D(n) are Mongolian tent and diamond graphs respectively. In this paper we have estimated the
bounds for the radial radio number of certain interconnection networks such as chess board graphs and King’s
graph.

2. DEFINITIONS AND TERMINOLOGY
In this section we have listed few definitions and results which will be used for proving the theorems.

Let u be a vertex of a connected graph G, then the eccentricity of u denoted e(u) is the farthest vertex from u to
any other vertex v in G. That is, e(v) = max{d(u, v)∀v ∈ V (G)}. The radius of the graph G is the minimum
eccentricity of the vertices of G and it is denoted by rad(G). Pardalos et al. [25] defined the following chess
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board and its related graphs.
An m × n chessboard graph denoted by CB(m, n) is defined as the Cartesian product Pm × Pn of

paths on m and n vertices respectively. In the literature it is also denoted by m × n mesh. The mn vertices
in CB(m,n) are named as {(k, l)\l = 1, 2 . . .m, k = 1, 2 . . . n}. If m = n, then the radius of CB(m,n) is
2
⌊
n
2

⌋
. A 2 × n chessboard graph with 2n vertices is also called a ladder graph denoted by Ln. The radius of

Ln is
⌊
n
2

⌋
+ 1. An m× n King’s graph denoted by KG(m,n) is a graph which is obtained by all legal moves

of the king chess piece on a m × n chessboard CB(m,n). More specifically, it is constructed by the strong
product of the paths Pm and Pn. The radius of KG(m,n) is

⌊
n
2

⌋
.

3. MAIN RESULTS
In this section we have obtained the bounds the radial radio number of 2 × n and n× n chessboard

graph separately. Further, we have determined the bounds for the radial radio number of n× n king’s graph.

a) Theorem 1: Let Ln be a ladder graph with 2n vertices, then the radial radio number of Ln satisfies

rr (Ln) ≤

{
n(n+2)

4 + 1, if n is even
(n2−1)

2 , if n is odd

Proof: We prove this theorem using two cases based on the value of n, odd or even. Define a
radial radio labeling from the vertex set of Ln to the non-negative integers separately for odd and even
cases as follows:

1) Case 1: n is even.

Define a labeling from the vertex set of Ln to the non-negative integers as follows:
ℸ(0, i) = 2(i− 1)r − (i− 1), i = 1, 2 . . . n

2 + 1

ℸ(1, i) = (2i− 1)r − (i− 1), i = 1, 2 . . . n
2 + 1

ℸ
(
0, n

2 + i
)
= (2i− 1)r − (i− 1), i = 1, 2 . . . n

2 − 1

ℸ
(
1, n

2 + i
)
= 2(i− 1)r − (i− 1), i = 1, 2 . . . n

2 − 1.

See the Figure 1.

Figure 1. A radial radio labeling of ladder graph Ln (n even) which attains the bound

Claim: ℸ is a valid radial radio labeling.

Since n is even, the radius of Ln is n
2 +1. Therefore, we must prove that |ℸ(u)−ℸ(w)|+d(u,w) ≥

n
2 + 2 for all u,w ∈ V (Ln)

1.1) Case 1.1: Suppose u ̸= w belongs to the upper row of Ln, then the following three sub cases
can arise.

– Case 1.1.1: If u = (0, j) and w = (0, k), 1 ≤ j ̸= k ≤ n
2 + 1, then 7(u) = 2(j − 1)r−

(j − 1) and ℸ(w) = 2(k − 1)r − (k − 1). Also, d(u,w) ≥ 1.
Hence, |ℸ(u)− ℸ(w)|+ d(u,w) ≥ 1 + |2(j − k)r| ≥ 2n

2 + 1 ≥ n
2 + 2, since j ̸= k and

r = n
2 + 1

Radial radio number of chess board ... (Kulandaivel Maruthamuthu Paramasivam)
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– Case 1.1.2: If u = (0, j) and w = (0, k), n
2 + 2 ≤ j ̸= k ≤ n, then 7(u) = (2j − 1)r−

(j − 1) and ℸ(w) = (2k− 1)r− (k− 1). Also, d(u,w) ≥ 1 and |ℸ(u)−ℸ(w)| ≥| (2j−
1) r−(2k−1)r| ≥ |2r |, since j ̸= k. Hence |ℸ(u)−ℸ(w)|+d(u,w) ≥ 1+2

(
n
2 + 1

)
>

n
2 + 2

– Case 1.1.3: If u = (0, j), 1 ≤ j ≤ n
2 + 2 and w = (0, k), n

2 + 2 ≤ k ≤ n, then
ℸ(u) = 2(j − 1)r − (j − 1) and ℸ(w) = (2k − 1)r − (k − 1). Here d(u,w) ranges
from 1 to n − 1. Hence the required condition becomes, |ℸ(u) − ℸ(w)|+ d(u,w) ≥
1 + |2(j − 1)r − (j − 1)− ((2k − 1)r − (k − 1))| ≥ 1 + r = n

2 + 2

1.2) Case 1.2: Suppose u ̸= w belongs to the lower row of Ln, then we will arrive the same three
subcases as in Case 1.1, because the labeling in the first half of the upper row is same as the
second half of the lower row and vice versa.

1.3) Case 1.3: Let u be a vertex on the upper row and w be a vertex on the lower row.

– Case 1.3.1: If u = (0, j) and w = (1, k), 1 ≤ j, k ≤ n
2 +1, then 7(u) = 2(j−1)r−(j−1)

and ℸ(w) = (2k − 1)r − (k − 1). Since the function values are same, as in Case 1.1.3,

|ℸ(u)− ℸ(w)|+ d(u,w) ≥ n
2 + 2.

– Case 1.3.2: Suppose u = (0, j), 1 ≤ j ≤ n
2 + 1 and w = (1, k), n

2 + 2 ≤ k ≤ n, then
ℸ(u) = 2(j − 1)r − (j − 1) and ℸ(w) = 2(k − 1)r − (k − 1).
If j = k, then the distance between them is exactly n

2 + 2, and hence the condition is
proved. If j ̸= k, then |ℸ(u)−ℸ(w)| ≥ |2(j−1)r−(j−1)−(2(k−1)r−(k−1))| ≥| 2(j−
k ) r + (j − k) | and d(u,w) ≥ 1. Therefore, |ℸ(u) − ℸ(w)| + d(u,w) ≥ n

2 + 2, since
j ̸= k. The rest of the sub cases also follows the similar proof as that of the previous ones.
Hence ℸ is a valid radial radio labeling. Also, ℸ received the maximum value n(n+2)

4 + 1

at the vertex
(
1, n

2 + 1
)
. That is, ℸ

(
1, n

2 + 1
)
=

(
2
(
n
2 + 1

)
− 1

)
r −

(
n
2 + 1− 1

)
=

(n+ 1)
(
n
2 + 1

)
− n

2 = n(n+2)
4 + 1. Therefore rr (Ln) ≤ n(n+2)

4 + 1, when n is even.

2) Case 2: n is odd

Define a mapping ℸ : V (Ln) → N ∪ {0} as follows: ℸ(0, i) = (2r − 1)(i − 1), i =

1, 2 . . . +1
2

ℸ(1, i) = (2i− 1)r − (i− 1), i = 1, 2 . . . n+1
2

ℸ
(
0, n

2 + i
)
= (2i− 1)r − (i− 1), i = 1, 2 . . . n−1

2

ℸ
(
1, n

2 + i
)
= (2r − 1)(i− 1), i = 1, 2 . . . n−1

2

Figure 2 illustrates the proof of this case. Hence rr (Ln) ≤

{
n(n+2)

4 + 1, n even
(n2−1)

2 , n odd

Figure 2. A ladder graph Ln (n odd) and its mapping ℸ

b) Theorem 2: Let n > 2 be odd, then the radial radio number of n×n chessboard graph CB(n, n) satisfies

rr(CB(n, n)) ≤ (n2−1)(n+1)

4 .

Proof: First we partition the vertex set V (CB(n, n)) = {(i, j), j = 1, 2 . . . n, i = 1, 2 . . . n}
into 4 disjoint sets V1, V2, V3 and V4 as given below:
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V1 =
{
(i, j) : j = 1, 2 . . . n+1

2 , i = 1, 2 . . . n+1
2

}
,

V2 =
{(

i, n+1
2 + j

)
: j = 1, 2 . . . n−1

2 , i = 1, 2 . . . n+1
2

}
V3 =

{(
n+1
2 + i, j

)
: j = 1, 2 . . . n+1

2 , i = 1, 2 . . . n−1
2

}
,

V4 =
{(

n+1
2 + i, n+1

2 + j
)
: j = 1, 2 . . . n−1

2 , i = 1, 2 . . . n−1
2

}
. Clearly Vi ∩Vj = ∅. Next, we define

a mapping ℸ : V (CB(n, n)) → N ∪ {0} as follows:

ℸ((i, j)) = (n2+1)
2 (i− 1) + n(j − 1), j = 1, 2 . . . n+1

2 , i = 1, 2 . . . n+1
2

ℸ
((
i, n+1

2 + j,
))

= n(j − 1) +
(

n2+1
2

)
(i− 1) + n−1

2 , j = 1, 2 . . . n−1
2 , i = 1, 2 . . . n+1

2

ℸ
((

n+1
2 + i, j

))
= n(j − 1) +

(
n2+1

2

)
(i− 1) + n−1

2 , j = 1, 2 . . . n+1
2 , i = 1, 2 . . . n−1

2

ℸ
((

n+1
2 + i, n+1

2 + j
))

=
(n2+1)

2 (i− 1) + n(j − 1), j = 1, 2 . . . n−1
2 , i = 1, 2 . . . n−1

2 .

See Figure 3(a).

Now we claim that, the radial radio labeling condition is true for any pair of vertices in CB(n, n).
since n is odd, the radius of M(n, n) is n − 1. Hence, we must show that |ℸ(u) − ℸ(w)| + d(u,w) ≥
n∀u,w ∈ V (CB(n, n)). Let u and w be any two vertices in the chess board graph CB(n, n). Suppose
u and w lie in any one of the mutually disjoint sets, then u and w are labelled with a difference at least
n That is, |ℸ(u)− ℸ(w)| ≥ n. Therefore, there is nothing to verify the radial radio labeling condition in
these cases. Hence, we proceed to check the remaining cases.

1) Case 1: Let u ∈ V1 and w ∈ V2, then u = (l, k) and w =
(
s, n+1

2 + t
)
, 1 ≤ l, k, s ≤ n+1

2 , 1 ≤

t ≤ n−1
2 . Therefore, the corresponding labelings of u and w are (n2+1)

2 (l − 1) + n(k − 1) and

n(t− 1) +
(

n2+1
2

)
(s− 1) + n−1

2 respectively.

1.1) Case 1.1: If l = s and k = t, then the distance between them is exactly n+1
2 . Therefore |ℸ(u)−

ℸ(w)|+d(u,w) ≥ n+1
2 + |

(
(n2+1)

2 (l − 1) + n(k − 1)

)
−(n(t−1)+

(
n2+1

2

)
(s− 1) +

(
n−1
2

))
|=

n+1
2 + n−1

2 = n.

1.2) Case 1.2: If l = s and k = t+ 1, then d(u,w) = n−1
2 and |ℸ(u)− ℸ(w)| =|

(
(n2+1)

2 (l− 1)

+n(t+1−1))−
(
n(t− 1) +

(
n2+1

2

)
(s− 1) +

(
n−1
2

))
≥ n+1

2 . Therefore |ℸ(u)−ℸ(w)|+
d(u,w) ≥ n−1

2 + n−1
2 = n. Also, for the remaining possibilities in this case, the modulus

difference of ℸ(u) and ℸ(w) is at least n+
(
n−1
2

)
> n.

(a) (b)

Figure 3. A radial radio labeling of (a) CM(7,7) and (b) CM(8,8) which illustrates the mapping
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2) Case 2: Let u ∈ V1 and w ∈ V3, then u = (l, k) and w =
(
n+1
2 + s, t

)
, 1 ≤ l, k, t ≤ n+1

2 , 1 ≤

s ≤ n−1
2 . Therefore, ℸ(u) = (n2+1)

2 (l−1)+n(k−1) and ℸ(w) = n(t−1)+
(

n2+1
2

)
(s−1)+ n−1

2

respectively. The rest of the proof in this case is similar to Case 1.

3) Case 3: Suppose u ∈ V1 and w ∈ V4, then ℸ(u) = (n2+1)
2 (l− 1) + n(k− 1), 1 ≤ l, k,≤ n+1

2 and

ℸ(w) = (n2+1)
2 (s−1)+n(t−1), 1 ≤ s, t ≤ n−1

2 , where u = (l, k) and w =
(
n+1
2 + s, n+1

2 + t
)
.

3.1) Case 3.1: If l = s, then d(u,w) ≥ 1. Hence the radial radio labeling condition becomes,
|ℸ(u)− ℸ(w)|+ d(u,w) > n.

3.2) Case 3.2: If s = l + 1, then d(u,w) = n − 2 and |ℸ(u) − ℸ(w)| ≥ n+1
2 . Therefore |ℸ(u) −

ℸ(w)|+ d(u,w) > n.

3.3) Case 3.3: If l ̸= s and s ̸= l + 1, then d(u,w) ≥ 2 and |ℸ(u) − ℸ(w)| ≥ n. Hence |ℸ(u) −
ℸ(w)|+ d(u,w) > n.

4) Case 4: Let u ∈ V2 and w ∈ V3, then u =
(
l, n+1

2 + k
)

and w =
(
n+1
2 + s, t

)
, 1 ≤ l, t ≤ n+1

2 1 ≤
k, s ≤ n−1

2 . From the mapping, the values of ℸ(u) and ℸ(w) are n(k−1)+
(

n2+1
2

)
(l−1)+ n−1

2

and n(t− 1) +
(

n2+1
2

)
(s− 1) + n−1

2 respectively.

If we proceed in the same way as in Case 3, we can easily verify the radial radio labeling
condition satisfies for this case also. The remaining cases namely u ∈ V2, w ∈ V4 is similar to
case 2 and u ∈ V2, w ∈ V4 is similar to case 1. Thus, we have verified that |ℸ(u) − ℸ(w)| ≥
n∀u,w ∈ V (CB(n, n)). Also, the maximum value of h attains at the vertex

(
n+1
2 , n+1

2

)
. Hence,

we substitute the values of i and j as n+1
2 , we get rr(ℸ) = ℸ

(
n+1
2 , n+1

2

)
=

(n2+1)
2

(
n+1
2 − 1

)
+

n
(
n+1
2 − 1

)
=

(
n+1
2 − 1) (n+1)2

2 =
(n2−1)(n+1)

4 Thus, rr(G) ≤ (n2−1)(n+1)

4 .

c) Theorem 3: For n > 2, the radial radio number of n×n chessboard graph CB(n, n) satisfies rr(CB(n, n)) ≤
n2(n+3)

4 , whenever n is even.

Proof: Define ℸ : V (CB(n, n)) → N ∪ {0} as follows:
ℸ((i, j)) = n(n+1)

2 (i− 1) + n(j − 1), j = 1, 2 . . . n, i = 1, 2 . . . n
2

ℸ
((

n
2 + 1 + i, j

))
= n(n+1)

2 (i− 1) + n(j − 1) + n
2 + 1, j = 1, 2 . . . n, i = 1, 2 . . . n

2 − 1

ℸ
((

n
2 + 1, j

))
= n(j − 1) + n2(n+1)

4 , j = 1, 2 . . . n
2 + 1

ℸ
((

n
2 + 1, n+1

2 + j
))

= n(j − 1) + 1, j = 1, 2 . . . n
2 − 1. See Figure 3(b).

Since n is even, the radius of CB(n, n) is n. Hence as in Theorem 3, we can easily verify that
|ℸ(u)−ℸ(w)|+ d(u,w) ≥ n+ 1 holds for every pair of vertices u,w ∈ V (CB(n, n)) Also, the vertex(
n
2 + 1, n

2 + 1
)

attains the maximum value under the mapping ℸ. Therefore, ℸ
((

n
2 + 1, n

2 + 1
))

=

n
(
n
2 + 1− 1

)
+ n2(n+1)

4 = n2(n+3)
4 . Hence rr(CBM(n, n)) ≤ n2(n+3)

4 , whenever n is even.

d) Theorem 4: Let n be even. Then for the king’s graph KG(n, n) satisfies rr(KG(n, n)) ≤ n2

4 +(
n
2

) (
(n− 1)

(
n
2 − 1

)
+ 2

)
− 2, n > 2.

Proof: Define a mapping ℸ : V(KG(n, n)) → N ∪ {0} as follows:
ℸ(i, 1) = (i− 1)

(
n
2

)
, i = 1, 2, . . . , n

2 + 1,
ℸ(n2 + 1 + i, 1) = (i− 1)

(
n
2

)
, i = 1, 2, . . . , n

2 − 1,
ℸ(i, n

2 + 1) = i
(
n
2

)
− 1, i = 1, 2, . . . , n

2 + 1,
ℸ(n2 + 1 + i, n

2 + 1) = i
(
n
2

)
− 1, i = 1, 2, . . . , n

2 − 1,
ℸ(i, j + 1) = n2

4 +
(
n
2

)
((i− 1) + (n− 1)(j − 1)) + j, i = 1, 2, . . . , n, j = 1, 2, . . . , n

2 − 1,
ℸ(i, n

2 +j+1) = n2

4 +
(
n
2

)
((i− 1) + (n− 1)(j − 1) + 1)+j−1, i = 1, 2, . . . , n, j = 1, 2, . . . , n

2 −1.
See the Figure 4(a). As the radius of KG(n, n) is n

2 , we must verify the radial radio labeling condition
|ℸ(u)− ℸ(w)|+ d(u,w) ≥ 1 + n

2 ∀u,w ∈ V (KG(n, n))
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1) Case 1: Suppose that u and w are of the form
(
s, n

2 + 1
)

and
(
t, n

2 + 1
)

where 1 ≤ s ̸= t ≤
n
2 + 1. Then ℸ

(
s, n

2 + 1
)
=

(
n
2

)
s,ℸ

(
t, n

2 + 1
)
=

(
n
2

)
t and d(u,w) > 0. Consequently |ℸ(u)−

ℸ(w)|+ d(u,w) ≥
∣∣(n

2

)
(s− t)

∣∣+ 1 ≥ n
2 + 1

2) Case 2: Let us take u =
(
n
2 + s, n

2 + 1
)

and w =
(
n
2 + t, n

2 + 1
)
, then ℸ(u) =

(
n
2

)
s and

ℸ(w) =
(
n
2

)
t, 1 ≤ s ̸= t ≤ n

2 + 1. As d(u,w) ≥ 1, |ℸ(u)− ℸ(w)|+ d(u,w) ≥ n
2 + 1.

3) Case 3: Suppose u = (k, l + 1) and w = (s, t + 1), 1 ≤ k, s ≤ n, 1 ≤ l, t ≤ n
2 − 1, then

|ℸ(u)−ℸ(w)| =|
(

n2

4 +
(
n
2

)
((k − 1) + (n− 1)(l − 1)) + l

)
−
(

n2

4 +
(
n
2

)
((s− 1)+ (n−1)(t−

1)) + t) |.

3.1) Case 3.1: Allowing k ̸= s, we get d(u,w) ≥ 1 and |ℸ(u) − ℸ(w)| ≥ n
2 , which confirm the

result.

3.2) Case 3.2: If l ̸= t, then |ℸ(u) − ℸ(w)| ≥
(
n
2

)
(n − 1) and d(u,w) > 0 which verifies

|ℸ(u)− ℸ(w)|+ d(u,w) ≥ n
2 + 1, since n > 2.

4) Case 4: Let u =
(
k, n

2 + l + 1
)

and w =
(
s, n

2 + t+ 1
)
, 1 ≤ k, s ≤ n, 1 ≤ l, t ≤ n

2 − 1 If k ̸= s,

then |ℸ(u)− ℸ(w)| =|
(

n2

4 +
(
n
2

)
((k − 1) + (n− 1)(l − 1) + 1) + l − 1

)
−(

n2

4 +
(
n
2

)
((s− 1) + (n− 1)(t− 1) + 1) + t− 1

)
|≥ n

2 Again, l ̸= t implies that |ℸ(u) −
ℸ(w)| ≥

(
n
2

)
(n − 1). Since d(u,w) ≥ 1, whence in both the possibilities, the condition |ℸ(u) −

ℸ(w)|+ d(u,w) ≥ n
2 + 1 is verified.

5) Case 5: Suppose u = (k, 1) of
(
n
2 + 1 + s, 1

)
d u = (l, 1) or

(
n
2 + 1 + t, 1

)
, then either

|ℸ(u) − ℸ(w)| = 0 and d(u,w) ≥ n
2 + 1 or |ℸ(u) − ℸ(w)| = n

2 and d(u,w) ≥ 1. Hence in both
chances |ℸ(u)− ℸ(w)|+ d(u,w) ≥ n

2 + 1.

6) Case 6: Assume u = (i, 1) and w =
(
i, n

2 + 1
)
, 1 ≤ i ≤ n

2 + 1, then ℸ(u) = (i − 1)
(
n
2

)
ℸ(w) = i

(
n
2

)
− 1 and d(u,w) ≥ 1. Therefore, |ℸ(u)− ℸ(w)|+ d(u,w) ≥ n

2 + 1.

7) Case 7: If u = (i, j + 1) and w =
(
k, n

2 + l + 1
)
, then ℸ(u) = i

(
n
2

)
− 1 and ℸ(w) = n2

4 +(
n
2

)
((k − 1) + (n − 1)(l − 1) + 1) + l − 1, 1 ≤ i, l ≤ n

2 − 1, 1 ≤ j, k ≤ n. Therefore,
|ℸ(u)− ℸ(w)|+ d(u,w) > n

2 + 1.

Similarly, we can verify the radial radio condition for the rest of the cases. Thus, ℸ is a valid radial
radio labeling and which attains the maximum label n2

4 +
(
n
2

)
((n− 1)+ (n− 1)

(
n
2 − 2

)
+ 1

)
+

n
2 − 1 = n2

4 +
(
n
2

) (
(n− 1)

(
n
2 − 1

)
+ 2

)
− 2 for the vertex (n, n). Thus rr(KG(n, n)) ≤

n2/4 + (n/2)((n− 1)(n/2− 1) + 2)− 2, n > 2.

e) Theorem 5: Let n be odd. Then the radial radio number of KG(n, n) satisfies rr(KG(n, n)) ≤⌊
n
2

⌋ ([
n
2

]
− 1

)
+
∣∣n
2

∣∣ ((n− 1)
∣∣n
2

∣∣+ 1
)
, n > 2.

Proof: Define a mapping ℸ : V (KG(n, n)) → N ∪ {0} as follows:
ℸ(i, 1) = (i− 1)⌊n

2 ⌋, i = 1, 2, . . . , ⌈n
2 ⌉,

ℸ
(
⌊n
2 ⌋+ i, 1

)
= (i− 1)⌊n

2 ⌋, i = 1, 2, . . . , ⌊n
2 ⌋,

ℸ
(
i, ⌈n

2 ⌉+ 1
)
= i⌊n

2 ⌋ − 1, i = 1, 2, . . . , ⌈n
2 ⌉,

ℸ
(
⌈n
2 ⌉+ i, ⌈n

2 ⌉+ 1
)
= i⌊n

2 ⌋ − 1, i = 1, 2, . . . , ⌊n
2 ⌋,

ℸ(i, j+1) = ⌊n
2 ⌋

(
⌈n
2 ⌉ − 1

)
+ ⌊n

2 ⌋ ((i− 1) + (n− 1)(j − 1))+ j, i = 1, 2, . . . , n, j = 1, 2, . . . , ⌊n
2 ⌋,

ℸ
(
i, n

2 + j + 1
)
=

⌊
n
2

⌋ (⌈
n
2

⌉
− 1

)
+

⌊
n
2

⌋
((i − 1) + (n − 1)(j − 1) + 1) + j, i = 1, 2, . . . , n, j =

1, 2, . . . , ⌊n
2 ⌋ − 1.
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See the Figure 4(b). The rest of the proof is omitted.

(a)

(b)

Figure 4. A radial radio labeling of KG(n,n) for (a) n = 6 and (b) n = 7 which illustrates the mapping

4. CONCLUSION
The upper bounds for the radial radio number of chess board graphs CB(m,n) for m = 2, n and the

King’s graph KG(m,n) for m = n (n > 2) has been investigated in this research work. For m ̸= n (n > 2),
CB(m,n) and KG(m,n) is still an open problem. Future this research can be extended to identify higher
dimensional networks and study the same radial radio number problem due to its application to telecommuni-
cation networks.
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