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ABSTRACT

In the last years, computer vision systems for the detection of skin cancer have been
proposed, especially using machine learning techniques for the classification of the
disease and features based on the ABCD dermatology criterion, which gives infor-
mation on the status of the skin lesion based on static properties such as geometry,
color, and texture, making it an appropriate criterion for medical diagnosis systems
that work through images. This paper proposes a novel skin cancer classification sys-
tem that works on images taken from a standard camera and studies the impact on
the results of the smoothed bootstrapping, which was used to augment the original
dataset. Eight classifiers with different topologies (KNN, ANN, and SVM) were com-
pared, with and without data augmentation, showing that the classifier with the highest
performance as well as the most balanced one was the ANN with data augmentation,
achieving an AUC of 87.1%, which saw an improvement from an AUC of 84.3% of
the ANN trained with the original dataset.
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1. INTRODUCTION
The high level of sun exposure, low use of sunscreens by people, and some environmental factors

lead to an increase in the number of disorders and skin diseases, including cancer. There are three main types
of skin cancer: basal cell carcinoma, squamous cell carcinoma, and melanoma, being melanoma the most
lethal one [1]. Rural populations in the tropics, especially in mountainous areas are particularly affected by
this disease due to the exposition to solar radiation products of their lifestyles, skin color, and geographical
location, since the UV radiation increases between 10% and 12% for each kilometer of altitude [2]. Also, as
the COVID-19 pandemic has caused limited physical access to health-care providers, this can generate further
delay treatment of melanoma producing devastating consequences for the patients [3]. For this reason, the
adoption of computational tools in medicine is arising [4].

Melanoma has been an illness of public concern due to the rapid increase of 25.9 % between 2006
and 2016 [2] and the World Health Organization predicts that in the next two decades, the number of people
diagnosed with skin cancer will be double [5]. So that, it can be appreciated the usefulness of an algorithm
that identifies malignant lesion patterns and suggests that the person go immediately to a specialist, because,
if it is diagnosed early, the chance of surviving is about 95% [6]. Besides, automatic diagnosis has shown
to overcome dermatologists when recognizing either malignant and benignant lesions or a particular type of
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lesion [7]. Marco Albrecht et al. studied different computer methods for diagnosis and modeling of melanoma
showing the helpfulness of the melanoma pattern recognition systems in order to start early treatment.

In the recent years, systems oriented to the automated diagnosis of skin cancer through images have
been proposed [1], [7]-[17]. Variations depends especially on the type of image that is used as input and the
architecture of the system. Firstly, there are overall three types of images used for this purpose. Macroscopic
images that are lesions taken from standard cameras, dermatoscopic images where the images are taken using
a device called dermatoscope which magnifies the skin lesion making malignant patterns more visible for the
dermatologist [5] and finally the least used Histo-pathological images, which are photos of the disease using
microscopic examination of a biopsy [18]. So that, while a system that works on macroscopic images may be
more useful for common people, the amount of images in datasets of macroscopic lesions is very limited. The
opposite happens with dermatoscopic images where there are many publicly available datasets with an amount
of samples of the order of thousand images. With regards to the architecture, it is used traditional machine
learning with hand-crafted features or deep learning where the features are calculated automatically.

In this paper an algorithm for detecting malignant patterns in a skin mole using traditional machine
learning and hand-crafted features is proposed, counting with a pre-processing which reduces the shadows in
the image produced by the circularity of some parts of the body. Secondly, the skin mole is segmented using
the algorithm of unsupervised learning: Gaussian Mixture Model. After that, 70 features based on a dermato-
logical criterion, which is used to diagnose melanoma skin cancer, are calculated, and finally, a classification
is performed. The main contributions of this paper are: (i) The implementation of a novel malignant pattern
recognition system that works on macroscopic skin lesions images. (ii) The comparison of the performance
of the Gaussian mixture model to segment different types of skin lesions. (iii) A study on the impact of the
Smoothed Bootstrap data augmentation method on the performance of different topologies of classifiers. (iv)
A comparison of various state-of-the-art systems with different architectures and type of input images.

2. RESEARCH METHOD
To detect malignant patterns on skin lesions, the system is based on a medical criterion called the

ABCD rule, this is one of the most used methods whose acronym refers to the four parameters used in the clini-
cal dermatological diagnosis. These are Asymmetry, Border, Color, and structural differences [6]. Asymmetry
(A): It is generated by the uncontrolled growth of the lesion, because of higher levels of melanin in different
regions and tends to have an irregular shape. Borders (B): Melanocytic lesions have irregular borders. In
contrast, benign lesions tend to have borders that fade smoothly and are symmetric. Color (C): It is related
to the excess melanin under the surface of the lesion, causing a different pigmentation in a specific region.
Dermoscopic structures (D): It refers to the generation of holes, points, cells, and inhomogeneity (texture)
that indicates more melanin in a given region. The ABCD rule has been tested in multiple studies, which have
documented its successful diagnostic accuracy in clinical practice. Also, has been confirmed with digital im-
age analysis [19]. However, it is a medical criterion that only can be applied to pigmented lesions, which are
lesions that look like spots. So that, the ABCD rule can not be applied to basal cell carcinoma nor squamous
cell carcinoma [1]. For this reason, the system uses the ABCD rule aiming to recognize only benignant lesions
and melanoma.

In the implementation, it was used the Dermatology Education atlas [20], which contains 173 images
of macroscopic skin lesions of two types, melanoma (84) and benignant (89), with sizes from 154 by 186 to
1129 by 1241. This dataset was used to train the system. However, it is clear that it is not as large to ensure
statistical significance, however, since datasets of macroscopic images tend to be small, previous works have
had to deal with these situations with methods such as data augmentation [8]-[11]. In Figure 1 the block
diagram of the proposed system is shown. The entire system was implemented in Python, using the OpenCV
library for the pre-processing step as well as for the feature extraction. On the other hand, for the classification,
it was used Scikit-learn and Tensorflow 2 libraries. Each block of the diagram of Figure 1 is explained below.

2.1. Pre-processing
In this block, the shadows, caused by the curvature of some body parts, that can affect the system

performance are attenuated. Since there could be shadows that resemble the color of the skin mole, making a
nonrecognition between shades and mole, Figure 2. To correct this problem, another image, obtained from the
regression of the values near the corners of the original image, is created.
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Figure 1. Block diagram of the system

Figure 2. Inaccurate segmentation caused by shadows

To use this method of attenuation of shadows, there are two assumptions. The shadows change
smoothly and the mole is located in the center of the image. The first assumption ensures that a two poly-
nomial degree adequately fits the shadows of the image. On the other hand, the second assumption ensures that
samples can be taken at the corners of the image without touching the mole, samples that are subsequently used
in the regression. The data taken for the regression is obtained from the channel V (Value) of the HSV color
space and the two-degree polynomial is presented as shown in (1):

z (x, y) = p1x
2 + p2y

2 + p3xy + p4x+ p5y + p6 (1)

The six constants that minimize the squared error given as shown in (2) have to be found, where (i, j)
are the indexes of all samples in the corners ’S’; Shown in Figure 3, V is the value channel of the space HSV
and Z is the quadratic function that will be found. The result is shown in Figure 4.

lε =
∑
j∈S

∑
i∈S

[V (j, i)− z (xj , yi)]2 (2)

Figure 3. Samples are taken from the corners used in the regression

(a) (b)

Figure 4. These figures are; (a) value component of the HSV space; (b) image after regression

To attenuate the shadows, the value component of the HSV space obtained above is divided by the
quadratic polynomial found and is multiplied by the ratio of the average of the V values with the average of the
values of V / z function as shown in (3). Finally, after changing the channel V of the original image in the HSV
space for the new one found, it is passed to the RGB color space, Figure 5.

A machine learning approach for the recognition of melanoma skin cancer on ... (Jairo Hurtado)
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Vnew (x, y) =
µV
µV/Z

V (x, y)

z (x, y)
(3)

(a) (b)

Figure 5. These figures are; (a) original image; (b) pre-processed image

2.2. Segmentation
The purpose of this step is to detect the skin mole automatically based on the color distribution of

the image. Because images of skin lesions have near two clusters, light and dark colors, equivalent to back-
ground and skin lesion respectively, the Gaussians mixture model (GMM) can adequately describe the color
distribution of the image and get the parameters of each of the two clusters in order to perform a pixel-wise
classification. Also, GMM has shown to be capable of recognizing skin diseases with satisfactory efficiency
[21].

Another reason to choose the Gaussian Mixture Model is that color-based clustering has been com-
pared to other methods such as Graph-Cut Segmentation and Otsu, showing the best classification accuracy
[2]. Besides, Pedro Pereira et al. [3] has compared the performance of 39 segmentation methods across three
different large datasets concluding that these methods: Local Binary Patterns Clustering, Wu Quantifier, and
Color Based Clustering had the best overall performance.

After finding the two clusters, the one with the largest area is classified as background and the other one
as the lesion. So that, the pixels of each cluster are labeled as 0 and 1 respectively, generating the segmentation
mask, shown in Figure 6 (a), which after filling blackheads and dilate the image show in Figure 6 (b), Figure
6 (c) is generated, which gives shape information, and Figure 6 (d) is obtained by multiplying the mask by the
original image. The first is useful for evaluating the asymmetry of the mole and the second it can be evaluated,
borders, variation in color, and texture presence.

(a) (b) (c) (d)

Figure 6. These figures are; (a) GMM Clustering, (b) Filling holes, (c) Dilated mask, (d) Skin mole segmented

To measure the accuracy of the proposed segmentation method on a different type of skin lesions that
apparently would be difficult for the system to recognize, such as lesions with high color variation (nevus spilus,
nevus repigmented, and some melanomas), Café-au-lait macule, which tends to have blurred shape, and lesions
containing hair, see Figure 7, the Border Error (BE), shown in (4), which has been used in previous works
to compare the segmentation efficiency [22], is calculated. Where SM is the segmentation mask, calculated
automatically through GMM, and GT is the ground-truth which was hand-labeled from the dataset. So that, the
BE measures the percentage of the non-overlapping area between the segmentation mask and the ground-truth.

lBE (SM,GT ) =
Area (SM ⊕GT )

Area (GT )
(4)
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(a) (b) (c) (d)

Figure 7. These figures are; (a) Café-au-lait macule; (b) Lesion with color variation; (c) Containing hair; (d)
Lesion with color uniformity and sharp borders

Table 1 shows the average BE for the four different lesions of Figure 7, where the lower the Border
Error the more accurate the segmentation is. Therefore, it suggests that the Café-au-lait macule is the type of
lesion that the segmentation system works better with. On the other hand, images that contain hairs are not
correctly segmented, due to the similarity in color between the skin lesion and hair. For this reason, nine haired
samples were removed from the original dataset. So that, the classifiers were trained with 164 samples, 85
benignant lesions and 79 malignant.

Table 1. Border Error (BE) for different type of lesions
Measure Café-au-lait macule Containing hair With color variation With color uniformity
BE(%) 31.1 770.2 67.1 49.0

2.3. Features based on the ABCD criterion
The skin lesion characterization is made using the criterion of the ABCD, as it gives information on

the state of pigmented skin lesions using static parameters. The process to obtain these features is shown below.

2.3.1. Features based on asymmetry
To quantify the mole asymmetry, it is considered Figure 6 (c), and compared to other geometric

figures, Figure 8, as the ellipse; in purple(proposed in this paper), as if the contour or shape of the mole
resembles an ellipse is less likely to be malignant. A comparison with the bounding box is also made; in red,
to have the dimensions of the lesion, and the Convex Hull; blue dotted. Besides, the area of the quadrants of
the mole must be the same if the mole is completely symmetrical.

Figure 8. Geometric parameters of the skin lesion

The parameters used are, bp and ap; minor and major axes. Ap, Ac, Ab and Ae; areas of the lesion,
convex hull, bounding box and ellipse, respectively, and Pp, P, Ab and Pe; perimeter of the lesion, convex
hull, Bounding Box, and ellipse respectively. On the other hand,A1 andA2 represent the areas of each division
of the axis ap. Similar to B1 and B2 for the axis bp. The asymmetry features are presented in Table 2. For the
features not to depend on the size and resolution of the image, those having units of area were divided by the
area of the Bounding Box Ab and with length units were divided by its perimeter Pb.
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Table 2. Features of asymmetry
Lesion area Solidity Equivalent diameter Convex Hull Area

Ap
Ap

Ac

√
4Ap

π
Ac

Circularity Lesion perimeter Aspect ratio Convex Hull perimeter
4πAp

Pp
2 Pp

bp
ap

Pc

Aspect ratio Elliptic area rate Elliptic rate Rate of areas bp
bb
ab

Ap

Ae

Pp

Pe

(B1−B2)
Ap

Rate of areas ap Rate form bp Rate form ap
(A1−A2)

Ap

B1
B2

A1
A2

2.3.2. Texture variation, darkness and color information image
For features based on borders, color uniformity, and dermoscopic structures, a new image (IN ), with

three channels, obtained from the original image is created 4. The first channel provides information on the
texture variation, the second on the skin darkness, and the third, information on the color variation, IiN (i =

1, 2, 3). In order to calculate the texture variation channel (I1
N
), the brightness image L is obtained from as

shown in (5), where the three channels of the original image IC are averaged.

lL (x, y) =

∑3
i=1 I

C
i

3
(5)

The texture τ(x, y, σ) is defined by as shown in (6) where S (x, y, σ) = L (x, y) ∗G(σ) is the bright-
ness smoothed by a Gaussian filter with standard deviation σ.

lτ (x, y, σ) =
L(x, y)

S(x, y, σ)
− L (x, y) (6)

The texture image τ(x, y, σ) is calculated for different values of σ = (σ1, . . . , σN ), and it is selected
for each pixel the highest texture among all scales, this is shown in (7). For this paper, the standard deviation
was chosen as σ =

(
1, 117 , . . . ,

43
7

)
with a window of 7σ by 7σ. The values of this parameter were suggested

by Cavalcanti et al. [10] due to the average size of the images in the dataset [5].

τ (x, y) = maxσ [τ (x, y, σ)] (7)

The texture variation channel will be obtained from the normalization of τ (x, y), shown in (8), where
the minimum among all values is subtracted from the texture image, and then divided by the difference between
the maximum and minimum, causing that all data is in the interval [0, 1]. The original image as shown in Figure
9 (a) and the result of I1N is shown in Figure 9 (b).

IN1 =
τ (x, y)− τmin
τmax − τmin

(8)

For the darkness information image (I2
N
), since healthy skin tends to be reddish, when the red chan-

nel of the original image is brighter means that it is part of the fund and if it is darker injury. So that, the
darkness is given by the complement of the red channel of the original image, as shown in (9). The result of
I2
N is shown in Figure 9 (c).

lIN2 = 1− IC1 (9)

In the color information channel (I3
N
), the three color channels of the original image IC are repre-

sented in a single channel I3N using PCA (Principal Components Analysis), and the absolute value is taken
creating the image C (x, y). which is then normalized as shown in (10). The result of I3N is shown in Figure
9 (d).

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 4, August 2021 : 1357 – 1368



TELKOMNIKA Telecommun Comput El Control r 1363

IN3 =
C (x, y)− Cmin
Cmax − Cmin

(10)

(a) (b) (c) (d)

Figure 9. These figures are; (a) original image, (b) texture variation, (c) darkness information, (d) color
information

2.3.3. Features based on borders
To quantify the variation of the intensity in the borders of the lesion, the magnitude of the gradient

vector has to be calculated, as it measures if the border is sharp or soft. First, the border is obtained by
subtracting the mask contracted from the mask dilated, it is important that the border is thik enough to ensure
that it contains the change from lesion to the background. Then the gradient it is calculated for the values on
the border B. So that, the features containing information of the intensity variation of the image in the borders
are calculated from the mean and variance of the values of the gradient magnitude, as shown in (11) and (12).

lµ =
1

N

∑
(x,y)∈B

|∇I (x, y) (11)

σ2 =
1

N

∑
(x,y)∈B

(|∇I (x, y) | − µ)2 (12)

Where ∇I (x, y) is the gradient vector for the scalar field I (x, y). Due to the dependency of the
gradient vector magnitude on the skin color of the original image, the value of the magnitude would be less
if the skin color was darker. For this reason, the previously found channels I1N , I2N and I3

N are used,
due to the less dependency on this parameter. To approximate the gradient of the image, the Sobel operator is
calculated, Figure 10. The color information channel is also divided into eight pieces, whose principal axes are
oriented in the direction of the mole, this is ensured by using the eigenvectors, and the average and variance of
the mean of the gradients are obtained in each fragment that belongs to the border of the lesion, thus obtaining
two new features for each channel. This idea is similar to the proposed in Figure 11. The features based on the
borders of the skin mole are shown in Table 3.

Figure 10. Borders and Sobel operator for I1N , I2N e I3
N

Figure 11. Pieces of the color information channel
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Table 3. Features based on borders
Name Notation Quantity
Average gradient for each channel. µ∇IiN 3
Gradient variance for each channel. σ∇IiN 3
Average mean gradient for the eight fragments per channel. avg(µ∇INi

) 3

Variance of average gradient for the eight fragments per channel. var(µ∇IiN ) 3

2.3.4. Features based on color uniformity
Color features are obtained from the images of the segmented lesion, shown in Figure 6 (d), and the

color information channel shown in Figure 9 (d). In order to remove color noise, both images are smoothed
using a Gaussian filter. Table 4 is also used where the tones of interest are shown. These tones are the most
common colors found in different types of lesions and allow the system to recognize particular color patterns.
So that, six counters (C) that are increased depending on the Euclidean distance of a given pixel color to the
tones in Table 4 are proposed. Thus, if the color of a given pixel is the closest to one of the tones of interest,
the respective tone counter is incremented. Also, it is proposed in this paper, adding the mean and variance of
a new image obtained by calculating the Euclidean distance between the color of the original image for each
pixel and the tones of interest. These new parameters give information on how far the colors of interest are on
average and how much they deviate from the values of the original image.

Table 4. Tones of interest in skin lesions. Alcon et al. [23]
Colour Counter (C) Red channel Green channel Blue channel
White (W) cW 1 1 1
Red (R) cR 0.8 0.2 0.2
Light brown (LB) cLB 0.6 0.4 0
Dark Brown (DB) cDB 0.2 0 0
blue-gray (BG) cBG 0.2 0.6 0.6
Black (BBL) cBL 0 0 0

In order to have information about the non-uniformity of the mole distribution color, features that
depend on the location of the given color distribution in the image are proposed. For this, the channel of color
information I3N is divided into eight pieces, shown in Figure 11, whose main axes are oriented in the mole
direction (this is ensured by using the eigenvectors) and the average of the mean of the values of intensity in
each fragment belonging to the lesion and its variance are calculated.

So that, in Table 5, the features that give information on the color distribution and uniformity of the
skin mole are shown. Being R, G, and B the color channels of the original image whose pixels are part of the
lesion. Likewise, for I3N , there will be taken only the values belonging to the lesion. On the other hand, the
mean and variance of the data are represented with the symbols µ and σ respectively.

Table 5. Color distribution features
max(R) max(G) max(B) min(R) min(G) min(B)

µ(R) µ(G) µ(W ) σ(R) σ(G) σ(B)

µ(|Ic −W |) µ(|Ic −R|) µ(|Ic − LB|) font− size : 14pxµ(|Ic −DB|) µ(|Ic −BG|) µ(|Ic − LB|)
σ(|Ic −W |) σ(|Ic −R|) σ(|Ic − LB|) font− size : 14pxσ(|Ic −DB|) σ(|Ic −BG|) σ(|Ic − LB|)
max(I3

N ) µ(IN3 ) σ(IN3 ) µ (R) /µ(G) µ (R) /µ(B) µ (G) /µ(B)
cLB cR cDB cBG cBL cW

µ(IN3,µ,8) σ(IN3,µ,8)

2.3.5. Features based on dermoscopic structures
Although dermoscopic structures can only be measurable using a dermatoscope, which is a device that

enables dermatologists to have a closer view of the skin lesion, differences between benignant and malignant
skin moles can be measured through macroscopic images using features based on the skin mole texture [4]. For
this reason, the texture channel I1N , Figure 9 (b),which gives information of the mole rugosity (Holes, points
and inhomogeneity), is used in order to obtain four more features which are the maximum, minimum, mean,
and variance of the texture variation channel calculated inside the lesion. These features are shown in Table 6.
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Table 6. Texture Features
Feature Description
min(I1

N ) Minimum texture
max(I1

N ) Maximum texture
mean(I1

N ) Average texture
var(I1

N ) Variance of the texture channel

2.4. Data Augmentation
In the above processes, 70 features based on the medical criterion of the ABCD were calculated. With

this, the system has enough information related to the status of the skin mole to perform a classification with
labels (cancer, not cancer). However, as the dataset used for training and testing only has 164 samples, there
is not supported statistical significance. For this reason, the smoothed bootstrap data cloning is used. This
(re)sampling technique is based on the idea that new data samples can be added if these samples are distributed
according to the same probability density as the real data set, resulting in a greater statistical significance
[24]. In order to clone data through the smoothed bootstrapping method, a Gaussian distribution is a reason-
able assumption [10]. This is adding to each sample a Gaussian error with zero mean and standard deviation
ten times smaller than the deviation of each feature. Each new sample is given by as shown in (13), where
−→
Y k,n,

−→
Xn,
−→
Gk ∈ R70 and

−→
Gk is a random vector with normal distribution,

−→
Y k,n is the new sample which is

obtained from adding Gaussian noise to the current sample
−→
Xn.

−→
Y k,n =

−→
Xn +

−→
Gk (13)

This data augmentation technique has been used previously by Cavalcanty et al. [4]. However, in
their work the entire dataset was augmented five times, making that there was always in the test partition
a similar sample in the training partition. This would make k-nearest neighbors the classifier with the best
accuracy, nevertheless, those results would be biased due to the extended dataset. To avoid this situation, only
the training partition is augmented two times and it is tested on the remaining samples. Also, the results of this
method for different classifiers as well as the results without data augmentation are studied.

2.5. Classification system
For this research area, there are specially three classifiers used, K-nearest neighbors (KNN), artificial

neural network (ANN), and support vectors machine (SVM). These classifiers have been used in previous
works showing a dermatologist level accuracy [2], [4], [6], [7], for this reason, the performance of the three
said classifiers, both with and without data augmentation, are compared in order to see how the behavior of
these classifiers change with the Smoothed Bootstrapping Data Cloning.

3. RESULTS AND DISCUSSION
Performance metrics of the classification systems are presented in Table 7. These results are generated

using a 10-fold cross-validation, showing the accuracy; which is the overall system performance, specificity;
ability to recognize malignant lesions and sensitivity, ability to recognize benign lesions. Specificity becomes
the most important parameter to consider because if the system does not suggest to visit a specialist, since the
image is a malignant lesion, it can endanger the patient. Therefore, specificity should be the highest possible.
On the other hand, it is better if the sensitivity has a high value, however, it does not represent an imminent
danger to the patient.

Table 7. Comparison of the performance measures of different classification systems
Classifier Specificity (%) Sensitivity (%) Accuracy (%)
SVM with kernel grade 5 15.9 100 70.6
SVM with kernel grade 5 augmented 15.9 100 70.6
KNN, Euclidean distance, k=2 37.6 83.1 66.7
KNN, Euclidean distance, k=2 augmented 56.3 76.7 66.7
KNN, Mahalanobis distance, k=2 47.4 90 72.5
KNN, Mahalanobis distance, k=2 augmented 71.7 87 80.4
ANN 200-180-150-100-50-20-1 80.2 94.4 88.2
ANN 200-180-150-100-50-20-1 augmented 86.9 87.8 86.3

A machine learning approach for the recognition of melanoma skin cancer on ... (Jairo Hurtado)
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Table 7 shows that the neural network has the best accuracy and with the original dataset the system
achieves a high sensitivity level. In contrast, when the dataset is augmented the sensitivity decreases while the
specificity increases making it a more balanced classifier. The problem with the measures taken in Table 7 is
that while it gives an estimate of the classifier performance in one (specificity, sensitivity) point, it is better
to compare the entire curve. This method to measure the performance is called the ROC curve, which stands
for Receiver Operating Characteristic Curve and shows the dependence between sensitivity and specificity for
each classifier, making possible a comparison not only for one point but for the entire spectrum of values of
sensitivity and specificity. To compare the performance of the classifier using the ROC curve, the AUC is used,
which is the area under the ROC curve, and measures the ability of the system to recognize benignant lesions
as benignant and malignant lesions as malignant. So that, the closer the AUC to 100% the more accurate the
system is.

The ROC curve and AUC for the three topologies compared (SVM, KNN, and ANN) are shown in
Figure 12, which suggests that the overall performance of the neural network and SVM increases with data
augmentation. However, being consistent with Table 7, the neural network has the best performance among the
topologies compared. On the other hand, both Table 7 and Figure 12 show that the KNN tends to work better
with the Mahalanobis distance than the Euclidean distance for this specific task. This is important because most
approaches to skin cancer classification that use KNN are based on the Euclidean distance while they could
increase their performance using a Mahalanobis distance-based KNN. On the other hand, Figure 12 makes clear
that when the KNN with Mahalanobis distance is based on augmented data, the overall performance drops, the
sensitivity increases and the specificity decreases.

Figure 12. ROC Curves for the three toplogies: ANN, KNN and, SVM

On the other hand, over the years traditional machine learning and deep learning systems have been
proposed. However, while It is not possible to have a direct comparison of these systems’ performance, since
they are trained on different datasets, comparing the accuracy with previous systems gives information on
whether the proposed approach is viable or not. Also, makes it possible to recognize patterns present among
different systems, datasets, arquitectures, and types of images. So that, a comparison of different state-of-the-art
systems is shown in Table 8. With regards to traditional machine learning usually counting with pre-processing,
segmentation, feature extraction, and classification. Yuheng et al. [9] in 2019 proposed a system based on an
SVM classifier and 143 macroscopic images using polarization speckle imaging which allowed the system to
increase performance. Another interesting approach was made by Verosha et al. [8] in 2019. Their system used
170 macroscopic images of skin lesions for training and testing and implemented both the KNN with k=5 and
SVM classifiers. Also, traditional machine learning has been used in histo-pathological images, for example,
Takruri et al. [12] implemented a PSO-SVM hybrid system that optimizes SVM parameters and then performs
a classification. On the other hand, deep learning systems working on the recognition of skin cancer have seen
important improvements over the years. Pacheco et al. [1] proposed that the input of a convolutional neural
network (CNN) was not only the image of the skin lesion but also clinical information such as age, location
of the lesion and if it had bled, improving the average accuracy in over 7%. Maron et al. made a comparison
between 112 dermatologists and a deep learning system, showing that the convolutional neural network was
more accurate in both binary class problem (Melanoma, benignant) and multiclass (Type of skin disease). Table
8 shows the results obtained by the 112 dermatologists in order to have a reference to compare the systems.
Adegun et al. [15] proposed an encoder-decoder architecture which gave the system the possibility of extracting
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strong and robust features. Finally, one very interesting approach is made by Almaraz-Damian et al. [17] who
combined both hand-crafted features based on the ABCD rule and deep learning features.

Table 8. Comparison of results with the literature
System Specificity (%) Sensitivity (%) Accuracy (%) Type of image
(ANN) Proposed 86.9 87.8 { 86.3 Macroscopic
(SVM) Verosha et al. (2019) [2] 76 74.3 75.3 Macroscopic
(KNN, k=5) Verosha et al. (2019)[2] 86 58.6 74.7 Macroscopic
(SVM) Yuheng et al. (2019) [4] 85.7 87.6 86.3 Macroscopic
(PSO-SVM) Mmahmoud et al. (2019) [6] 80.2 94.1 87.1 Histopathological
(CNN-SVM) Almaraz-Damian et al. (2020) [7] 90 86.4 89.7 Dermatoscopic
(CNN) Pacheco et al. (2020) [8] 76.4 77.9 76.4 Macroscopic
(CNN) Maron et al. (2019) [9] 84 90 86.9 Dermatoscopic
(CNN) Jianu et al. (2019) [10] 89 72 81 Dermatoscopic
(CNN) Adegun et al. (2020)[11] 96 97 95 Dermatoscopic
112 Average dermatologists accuracy [6] 74 60 67 Desmatoscopic
Average for macroscopic images 82.2 77.2 79.8
Average for dematoscopic images 86.6 81.1 83.9

From Table 8 it can be noticed that the proposed system has an overall accuracy above the average,
proving the feasibility of the algorithm. Moreover, all the systems compared have an specificity, sensitivity
and accuracy that outperforms the overall dermatologist accuracy obtained in [7] and the performance measure
given in [25]. Besides, It is known that dermatologist accuracy may be reduced from (75-97)% for dermato-
scopic images to (65-80)% for macroscopic images [12]. Table 8 suggests that the same applies to machine
learning and deep learning systems where the average performance of the classifiers that work on dermato-
scopic images is higher than the results with macroscopic images.

4. CONCLUSIONS
Firstly, it is deduced that the system is a reliable tool because it has an 86.3% accuracy which exceeds

the average performance of an expert dermatologist. With regards to the data augmentation, it is concluded
that this technique has a different impact depending on the classifier topology, decreasing the performance of
the KNN classifier but increasing it in SVMs or ANNs. Nevertheless, it is shown that the data augmentation
tends to balance the classifier specificity and sensitivity. Likewise, data cloning through Smoothed Bootstrap
may be preferable to repeat images in the dataset with color and spatial transformations, since the computing
cost of the first is relatively slow because it works directly on the feature vector. Another important aspect from
the results is that even if the cassifier with the best results in this paper is the ANN, the KNN classifier with
Mahalanobis distance works fairly well for this task since it tends to recognize more effectively the clusters
present in the data than the Euclidean distance and improves its results.
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