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 A phosphor structure with SiO2 nanoparticles is proposed to achieve the 
enhancement in the correlated color temperature (CCT) homogeneity and the 
luminescence performance for white light-emitting diodes (WLEDs). As 
SiO2 is integrated into the phosphorus compound, the scattering effect of this 
material contributes to better blue-light utilization. Thus, this innovative 
packaging design results in a significant increased lumen efficiency, more 
than 12%, in comparison with that of conventional dispensing ones. 
Meanwhile, the angular CCT deviation also decreases considerably, from 
522 K to 7 K, between the angles of -70 and 700. Moreover, this reduction 
leads to the diminishment of yellow ring phenomenon effect. In addition, the 
measurement of haze demonstrates that there is a strong scattering in the 
visible spectrum when SiO2 is added into the silicone film. Besides that, 
when increasing the driving current, SiO2 stabilizes the chromaticity 
coordinate shift, which is a vital requirement for indoor lighting applications. 
Furthermore, SiO2 nanoparticles own excellent optical features, cost 
efficiency, and simple production will probably turn this material into a 
potential material in advancing the optical performance of WLEDs. 
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1. INTRODUCTION 

In modern lighting applications market, light-emitting diodes (LEDs) have risen quickly as a 
potential and effective solid-state lighting source, which is on account of their cost efficiency, long lifespan, 
environmental friendliness, and higher durability [1]-[5]. LEDs are applied for both outdoor and indoor 
lightings, for example, street lighting, billboard lighting, museum and display lightings [5]-[8]. Especially, 
when it comes to indoor illumination aspect, traditional light bulbs applications have been reduced 
significantly as LEDs have taken over [9]. The packaging design that has been widely used for LED 
fabrication is structured from the combination of blue LED chips and a yellow phosphor (Y3Al5O12:Ce3+ or 
YAG) layer. However, the color rendering index (CRI) quality from this method is very low, which leads to 
the concern of advancing the packaging structure of LEDs to get better optical outcomes [10]-[12]. In order 
to address the problem of low CRI, researchers introduced several advanced structures regarding the 
integration of red phosphor particles into the package. Besides that, structures with multiple lateral quantum 
wells (QWs) and facets that yielded various emission spectra and enhanced the white light quality for LED 
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devices have also been mentioned [13]-[15]. Researchers also have come up with techniques that can 
minimize the charge separation in InGaN QWs, for instance, large overlap QWs and the surface plasmon, for 
achieving the improvement of the IQE in green/yellow/red spectral zones; and such enhancements are crucial 
to the quality of the tricolor InGaN QW LEDs. When it comes to cost-saving and simple white light-emitting 
diode (WLED) fabrication, freely dispensing technique is the most suitable one [16]. However, the lumen 
output and the correlated color temperature (CCT) homogeneity of this method require significant 
developments to match demands from advanced lighting applications [17]. The solution for a better lumen 
efficacy is to increase light extraction efficiency, or in other words, increase the amount of photons going 
through the phosphor layers in the LED packages. Many methods aiming to the light extraction improvement 
have been introduced and experimented, and one of them is the dual-encapsulation layer structure which 
arranges the phosphor layers based on their refractive index (RI). Besides that, the phosphor-on-top design 
was utilized by Luo’s group to advance the phosphor performance. Based on the concept of remote phosphor 
packaging, the phosphor layer was appropriately separated from the blue LED chips to avoid the 
backscattering effect to occur to emitted light from phosphor particles [18]-[22]. Together with luminous 
efficacy, chromatic homogeneity greatly contributes to the quality of WLEDs. Thus, enhancing the color 
uniformity is one of the major concerns in WLED production. A previous research pointed out the cause of 
this problem is the unequal proportion between the emissions of blue and yellow lights, which leads to the 
non-uniformity of the angular CCT. From this, the yellow ring phenomenon that causes a discomfort to 
human eyes occurs [23], [24]. Therefore, it is essential to eliminate such negative impact on LED devices, 
especially in large-scale applications. In an attempt to reduce the CCT deviation, solutions including remote 
phosphor design, applied by Kuo et al., conformal-phosphor structure, advanced silicone lens, and shape 
modification for the surface of phosphor layers in LED packages were demonstrated. Besides these methods, 
patterned sapphire substrate was applied to optimize the LED packaging structure to achieve the homogenous 
angular CCT. Researchers also reported the efficiency of the graded-refractive-index multi- encapsulation 
layer configuration by getting nanoparticles integrated into the packaging materials. As a result, the optical 
path in the package is affected due to the strong scattering effect of these nanoparticles, causing the CCT 
deviation to change at different angles. Though this structure could enhance the color uniformity, it results in 
low luminous efficiency [25]-[27]. Hence, having a structure that can give enhancement to both lumen output 
and chromatic homogeneity simultaneously is still a difficult but provocative question for researchers. This 
study incorporates SiO2 into the phosphor layer to simultaneously achieve high lumen efficacy and CCT 
uniformity for WLED packages. With the presence of SiO2 nanoparticles, the scattering effect of phosphor 
package is enhanced, which activates the advanced blue-light utilization. Thus, the lumen output is improved 
significantly. At the same time, this enhancement in scattering ability by SiO2 reduces the angular CCT 
deviations, leading to a better color homogeneity. 
 
 
2. SIMULATION AND COMPUTATION  
2.1   MC-WLED simulation 

In the traditional package, the encapsulation layer contains only two materials: the silicone and the 
yellow phosphor which are mixed uniformly. To integrate SiO2 nanoparticles into the packaging of WLEDs, 
the dispensing technique was modified (moretech precision technology). Figure 1 shows an actual WLED 
and the schematic diagram simulated SiO2-doped WLED model. The experimented model was fabricated by 
initially attached a GaN-based blue chip having 50 nm emission wavelength to the lead frame; and then SiO2 
nanoparticles are evenly blended together with YAG yellow phosphor (Intematix) and the silicone. After that, 
this mixed encapsulation layer is dispensed in the package. The full width at half maximum (FWHM) of 
YAG phosphor emission is about 100 nm. The used blue chip has an output power of 120 mW at 120 mA 
driving current. Additionally, SiO2 particles are added into the encapsulant with various weight percentages 
to analyze how SiO2 affect the performance of lumen output and CCT uniformity. The diameter of YAG and 
SiO2 particles are set at around 10 mm and 300 nm, respectively. 
 
 

  
(a) (b) 

 
Figure 1. (a) Photograph of a WLED sample, (b) The simulated WLED model 
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2.2.  Scattering computation 
The computation of scattering coefficient μsca(λ), anisotropy factor g(λ), and reduced scattering 

coefficient δsca(λ) based on the Mie theory is expressed as [25]-[27]: 
 

 (1) 
  

 
(2) 

  

 

(3) 
 
In which, N(r) indicates the distribution density of diffusional particles (mm3), Csca means the scattering cross 
sections (mm2), λ is the symbol of light wavelength (nm), r is the diameter of diffusional particles (µm), 
p(θ,λ,r) presents the phase function, θ is the scattering angle (°C), and f(r) represents the size distribution 
function of the diffusor in the phosphor layer. In addition, f(r) is computed by: 
 

 (4) 
  

 
(5) 

 
As can be seen in (5), N(r) is comprised of Ndif(r) and Nphos(r), both of which are the diffusive particle density 
and the phosphor particle density, respectively. fdif(r) and fphos(r) indicate the size distribution function data of 
the diffusor and phosphor particle, while KN shows the number of the diffusor unit for one diffusor 
concentration and can be computed by: 
 

 (6) 
 
Here, M(r) indicates the mass distribution of the diffusive particles, demonstrated as: 
 

 
(7) 

 
with ρdiff(r) and ρphos(r) are the density of diffusor and phosphor crystal.  

According to the application of Mie theory, calculating Csca can be carried out via: 
 

 
(8) 

 
In this Csca calculation, k = 2π/λ. Meanwhile, parameters an and bn can be attained with below formulas: 
 

 
(9) 

  

 
(10) 

 
Here, x = k.r, m is the refractive index, while ψn (x) and ξn (x) are the Riccati-Bessel function.  

Accordingly, the relative refractive indices of diffusor and phosphor, indicated by mdif and mphos, 
respectively, in the silicone are possibly obtained via: mdif = ndif/nsil and mphos = nphos/nsil, and the phase 
function is calculated by: 

 

 
(11) 

 
where β(θ, λ, r), S1(θ) and S2(θ) are the angular scattering amplitudes obtained from these equations: 
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(12) 

  

 
(13) 

  

 
(14) 

 
 
3. RESULTS AND DISCUSSION 

Figure 2 illustrates the lumen output influenced by the concentration of SiO2 in the LED package. 
When the concentration of SiO2 in the experimented model is 1%, the photoluminescence is 12% greater than 
that of the conventional structure with the same concentration for the yellow phosphor. This result can be 
explained by the higher amount of yellow lights in the nanoparticles incorporated encapsulant package due to 
the better conversion of the blue lights from the LED chips. Specifically, SiO2 scattering ability helps to 
prolong the blue-light optical path by preventing the Lambertian blue ray from directly going through the 
silicone encapsulant, resulting in stronger excitation of the yellow phosphor. Then, there are more and more 
yellow photons generated, and this finally causes the lumen efficiency to increase. Next, the angular CCT 
deviations of the SiO2 embedded package are shown in Figure 3. The results were recorded with different 
SiO2 concentrations. The CCT uniformity in general can be demonstrated by the subtraction of the maximum 
and minimum CCT values. When SiO2 is not blended into the encapsulation layer, the CCT deviation is high 
(approximately 5,319 K), implying the high volume of extracted blue lights. Meanwhile, with SiO2 in the 
encapsulant, the CCT variations between 00 and 700 seems to be eliminated, owing to the higher ratio of 
yellow conversion caused by the strong scattering effect of SiO2 layer. Moreover, as the concentration of 
SiO2 increases to 10%, the CCT deviation significantly declines to 7 K while it is 522 K when the 
concentration of SiO2 is 0%. 

 
 

  
  

Figure 2. Luminous fluxes of SiO2 particles with 
different diameters 

Figure 3. CCT deviations of SiO2 particles with 
different diameters 

 
 

To further analyze the characteristics of SiO2-doped layer in WLEDs, we conducted experiments on 
the SiO2-phosphor-silicone encapsulation layer, and these experiments include transmission-absorption and 
haze. The results shows that the absorption of SiO2-doped structure is higher than that of the non-SiO2 one, 
which increased from around 32% to approximately 42% at the wavelength of 460 nm, see Figure 4 and  
Figure 5. Then, this increase generates more yellow light portions in the SiO2-integrated layer, leading to 
higher lumen efficacy. In these experiments, the change in concentration greatly impacts the effect of  
SiO2-incorporated sample, which can be demonstrated through the refractive index (RI) of the layer. The RI 
equation of the encapsulation layer comprised of silicone, phosphor, and SiO2 nanoparticles is as follow: 

 
RI = V1RI1 + V2RI2 + V3RI3       (15) 

 
In which V1, V2 and V3 indicate the material concentrations, which are determined by the weight percentages 
of the materials. Noted that the refractive indexes of silicone, phosphor, and SiO2 nanoparticles are 1.4, 1.8 
and 2.23, in turn, at the wavelength of 460 nm. The size of SiO2 nanoparticles is 300 nm. The concentrations 
of SiO2 nanoparticle mixed into the phosphor-silicone film are 1 wt% and 3 wt%, respectively. After 
calculating, the RIs of the encapsulation layer with each SiO2 concentration are 1.428 and 1.445. 
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In addition, the TFCalc32 simulation is applied to determine the effect of these layers. Different from 
the traditional structure, the light extractions of these two SiO2-doped designs are nearly equal to each other 
because the difference between the refractive index of 1% SiO2 layer and that of 3% SiO2 one is very small. 
Therefore, it can be concluded that the only factor that affects the improvement of lumen output is the SiO2 

scattering effect which can be evaluated by applying the Mie-scattering theory. Moreover, the experimented 
results present that structure with lower concentration of SiO2 exhibits the haze intensity of approximately 100% 
before reaching the wavelength of 500 nm. However, when the wavelength is longer than 50 nm, this value 
tends to decline slowly. Besides that, when the concentration of SiO2 increases, the values of haze intensity are 
relatively the same in the wavelength range of 300-700 nm, see Figure 6 and Figure 7. 
 
 

  
  

Figure 4. Scattering coefficients of SiO2 particles at 
450 and 550 nm 

Figure 5. The phase function of SiO2 particles at  
450 and 550 nm 

 
 

  
  

Figure 6. The reduced scattering coefficient of SiO2 
particles at 450 and 550 nm 

Figure 7. The scattering cross section of SiO2 
particles at 450 and 550 nm 

 
 
4. CONCLUSION 

In summary, this study demonstrated the influence of SiO2 on the lighting performances of WLEDs 
when being integrated into the phosphor-silicone encapsulation layer. The results indicate that the luminous 
efficiency can be 12% better when 1% SiO2 is added. The enhancement in lumen output is attributed to the 
strong scattering effect of SiO2 and the improvement in the blue-light utilization. The CCT uniformity of 
WLED devices is also benefited from SiO2 content. With 10% SiO2 in the encapsulation layer, the CCT 
deviation drop to 7 K from 522 K. Especially, this SiO2-doped design do not cause any considerable 
disadvantage to the lumen output as the SiO2 concentration increases. According the result from the haze 
computations, the haze intensity is in direct proportion to the concentration of doped SiO2. In other words, haze 
intensity can reach 100% if the content of SiO2 nanoparticles keep increasing. Thus, SiO2 nanoparticles can be a 
great solution to simultaneously enhance angular CCT homogeneity and luminous flux of WLED devices. 
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