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 Drug named entity recognition (DNER) becomes the prerequisite of other 

medical relation extraction systems. Existing approaches to automatically 

recognize drug names includes rule-based, machine learning (ML) and deep 

learning (DL) techniques. DL techniques have been verified to be the state-

of-the-art as it is independent of handcrafted features. The previous DL 

methods based on word embedding input representation uses the same vector 

representation for an entity irrespective of its context in different sentences 

and hence could not capture the context properly. Also, identification of the 

n-gram entity is a challenge. In this paper, a novel architecture is proposed 

that includes a sentence embedding layer that works on the entire sentence to 

efficiently capture the context of an entity. A hybrid model that comprises a 

stacked bidirectional long short-term memory (Bi-LSTM) with residual 

LSTM has been designed to overcome the limitations and to upgrade the 

performance of the model. We have contrasted the achievement of our 

proposed approach with other DNER models and the percentage of 

improvements of the proposed model over LSTM-conditional random field 

(CRF), LIU and WBI with respect to micro-average F1-score are 11.17, 8.8 

and 17.64 respectively. The proposed model has also shown promising result 

in recognizing 2- and 3-gram entities. 
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1. INTRODUCTION 

Named entity recognition (NER) is an essential task of information extraction (IE), and is often 

utilized in natural language processing (NLP). The NER that defines and classifies the labels of drugs into 

predefined classes from unstructured medical texts is referred to as drug named entity recognition  

(DNER) [1]. The research on the DNER becomes prominent ever since the identification of drug-drug 

interactions (DDI) and adverse drug reaction (ADR) have become important in the branch of 

pharmacodynamics and pharmacokinetics. However, many studies [2]-[5] have shown that there is not much 

specific work for DNER in recent years. Techniques like rule-based framework, machine learning (ML) 

methods and deep learning (DL) techniques were employed for the DNER. The rule-based and ML 

techniques heavily depend on the field/subject knowledge of the human professionals to devise the features 

for designing the recognition model. DL uses more than one layer of artificial neural networks that 

recognizes the named entities [2], [6]–[8]. When compared to traditional approaches, DL is more 

https://creativecommons.org/licenses/by-sa/4.0/
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advantageous in automatically recognizing hidden features. The latest DL techniques do not require the 

intervention of the human experts in constructing the features from unstructured text. The most common DL 

model used is long short-term memory (LSTM) which helps to preserve the long-range dependency 

especially while dealing with sequential text. Bidirectional LSTM model (Bi-LSTM) which reads the text 

both in forward and reverse directions is used to capture the context of the word for better prediction. Word 

embedding models like Word2Vec, GloVe and FastText are usually used for word embedding in DL 

algorithms. We have observed that the major limitation of word embedding models is that they work with the 

same vector for all the mentions of an entity in the article and hence could not capture the context properly.  

The previous research works for DNER models based on DL have used word2vec [9] and  

Glove [10] word embedding and character embedding models to represent the input. It was found that the 

word embedding model could not capture the semantic feature of the words in the sentence completely. 

Because in word2vec, every unique word throughout the corpus will have the same vector in the vector 

space. Consider the following sentences:  

 Sentence 1: MAO inhibitors prolong and intensify the anticholinergic (drying) effects of antihistamines. 

(MAO – B-group, inhibitors – I-group).  

 Sentence 2:  In the absence of formal clinical drug interaction studies, caution should be exercised when 

administering TAXOL concomitantly with known substrates or inhibitors of the cytochrome P450 

isoenzymes CYP2C8 and CYP3A4.  

In sentence 1, the word “MAO inhibitors” is annotated as a class of drug ‘group’ and hence 

“inhibitors” is annotated with “I-group”. But in sentence 2, the word “inhibitors” does not refer to any class 

of drug and hence should be identified as “O”. If word embedding models like Word2Vec or Glove are used, 

the same word vector is used for both the mentions and hence would not be recognized correctly based on the 

context. Though recurrent neural networks (RNN) have been used for various NER models, the full potential 

is not realized when an LSTM or Bi-LSTM model alone is used. Also, in DNER, several drug names are  

n-gram entities. For instance, “albendazole sulfoxide” (2-gram entity), “central nervous system depressants” 

(4-gram entity). 

In this paper, to overcome the challenges mentioned above, a novel architecture has been proposed 

by incorporating a sentence embedding model, stacked Bi-LSTM and residual LSTM. A sentence embedding 

model called ELMo [11], is used to deal with entire sentence to capture the context properly. Since the model 

is extremely contextualized, both syntax and semantic characteristics of the word are modelled. The main 

advantage is that it would be able to generate vectors for words that are not seen during training. Also, to 

enhance the DNER model, the designed architecture utilizes the power of the RNN in drug prediction. The 

architecture consists of stacked Bi-LSTM layers [12] and a residual LSTM layer [13]. 

 Initially, the sentence embedding model ELMo used in this architecture creates word vectors by 

functioning on an entire sentence to efficiently capture the context of the word. The specific context and the 

variations in the content is identified and helps the machine to understand better, unlike having the same 

word vector for every mention of the word in other word embedding models. Though a single Bi-LSTM layer 

itself could possibly recognize the entities, the power of the RNN shall be enhanced by arranging multiple 

Bi-LSTM layers on top of each other. We have experimented with layers of Bi-LSTM in this model. To 

avoid stacked Bi-LSTM suffering from the vanishing gradient problem, the residual LSTM is used. The 

residual connection is used between the two Bi-LSTM layers. It allows the gradients to pass through the 

network directly and also helps to preserve the long range dependencies [14], [15]. We have tested our 

proposed approach with a test data set and the performance is compared with other DNER models and found 

to improve the recognition rate over the preceding state-of-the-art models. We have also evaluated the 

performance in identifying the 2-, 3-, and 4- gram entities which is a major challenge in DNER. The content 

of this paper is categorized as follows: section 2 extends the research method. Results are discussed in section 3 

and conclusion is given in section 4. 

 

 

2. RESEARCH METHOD 

In our model, we have used Bi-LSTM network where the sentence is read in both forward and 

reverse direction. The works represented in the following papers [16]-[19] have shown that the classification 

performance could be enhanced further by stacking many Bi-LSTM layers. Hence, in our model, we have 

used two Bi-LSTM layers stacked above each other as shown in Figure 1. When the sentences are long as 

given in the example in section 1, it is necessary to remember the long range dependency of the entity from 

the first instance and the next instance. When the depth of the neural network increases, accuracy of 

prediction also increases. Residual LSTM is used to avoid stacked Bi-LSTM suffering from the vanishing 

gradient problem and also it is suitable for handling such long range dependencies.  

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/interleukin-1-receptor-blocking-agent
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2.1.  Data source and preprocessing 

In this paper, we have adopted the tagged corpus namely, the DDI2013 drugbank dataset [20], the 

benchmark dataset to train the deep learning model. The data is categorized with the following labels: drug, 

brand, group and drug_n [20]. We have preprocessed the DDI2013 training dataset in such a way that the 

sentence is split into tokens and every token is labeled with the corresponding class labels. Since there are 

several n-gram words available as drug names in the biomedical articles, it is necessary to capture the 

beginning and end of the entity. The most common tagging scheme known as BIO tagging is useful to 

capture these details. Table 1 gives the count of the various BIO tags available in the training dataset. In BIO 

tagging, B, I and O correspond to the beginning, inside and outside or non-entity token respectively. For 

example, the label B-group, I-group represent the beginning and inside of the group respectively and O 

represents non-entity tokens.  

 

 

Table 1. Tags and its counts 
Tag B-brand I-brand B-drug I-drug B-group I-group B-drug_n I-drug_n 

Count 1425 48 8333 549 3027 1937 96 29 

 

 

2.2.    Components of the model 

2.2.1. Sentence embedding layer 

 Sentence embedding techniques addresses whole sentences and their semantic data as vectors. This 

aids the machine in understanding the specific context and different subtleties in the whole content. ELMo 

(embedding from language models) is an embedding model [11] which functions for an entire sentence. The 

word representation used in this model is deeply contextualized that can model characteristics such as syntax 

and semantics of the word and also finds how these characteristics can be used for different linguistic 

contexts [21]. Since this is also a character based representation, instead of simply looking into words and 

their vectors, it generates vectors that form representations of tokens that are not seen during training. 

 

2.2.2.  Stacked Bi-LSTM layers 

Bi-LSTM, which took its idea from bidirectional RNN that proceeds in both directions – forward 

and reverse – having independent hidden layers for each direction. These hidden layers are linked to a 

common output layer. Bi-LSTM networks are found to be better in many research areas such as traffic 

prediction [12], speech recognition [22] and phoneme classification [23].  

The previous studies [22], [23] have proved that deep LSTM models ie. stacked LSTM models with 

many hidden layers can develop a successively more significant level of description for the sequential data 

and hence could perform more effectively as illustrated in [12] using a two-layer Bi-LSTM model for traffic 

prediction. The effectiveness of stacked Bi-LSTM networks for better classification and regression tasks was 

also demonstrated in [17], [18], and [24]. 

In our work, based on the previous research works, we have also adopted the two layers of stacked 

Bi-LSTM. The lower layer of Bi-LSTM is more appropriate for extracting useful information from the input 

vectors. The unique vectors obtained for each word in the sentence using the sentence embedding model is 

given as input to the Bi-LSTM layer 1 which helps in capturing the features for predicting the drug 

categories. As we have used two stacked layers, the second layer or the top layer of the stack utilizes the 

features learned from the output of the lower layer. It also learns many complex features to enhance the 

achievement of the model. 

 

2.2.3.  Residual LSTM connection 

To overcome the issue of vanishing gradients, a residual LSTM connection is used which provides a 

bypass link between the layers [13]. The shortcut path could be from any lower layers. In this paper, we have 

used residual LSTM as a shortcut between the stacked Bi-LSTM layers. Since we have used only two stacked 

Bi-LSTM layers, the shortcut is taken from the output of layer 1 and added with the output of layer 2 as 

shown in Figure 1. 

 

2.3.  Architecture of the proposed system 

The system architecture of the proposed model for DNER system is shown in Figure 2. The main 

novelty of this architecture is the inclusion of sentence embedding layer which enables the system to capture 

the semantic information better than word or character embedding models. In addition, the architecture 

comprises of stacked Bi-LSTM (with two layers) and residual LSTM to capture the complex features of the 

sentences and to overcome the problem of vanishing gradients respectively.  
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Consider an input sequence w=(w1, w2,…wn) where w1,..wn represents the words in the sequence 

padded with a fixed length for each sentence and series of output tags e=(e1, e2…en) where e1, e2,..en refers to 

entities. The sentence embedding layer ELMo creates the vector to every word for sentence w. The input for 

Bi-LSTM layer 1 is the sequence of word vectors found from the sentence embedding layer. The sequence of 

hidden states forms the output of the layer 1 and that in turn becomes the input to the Bi-LSTM layer 2. The 

Bi-LSTM layers have two passes in each layer, namely forward pass/forward layer and reverse pass/reverse 

layer. 

 

 

 
 

Figure 1. Stacked Bi-LSTM with residual LSTM connection 

 

 

 
 

Figure 2. System architecture of the proposed model 

 

 

In the forward layer, the input sequence 𝑤𝑡  is fed from time t=1 to Tn and from t=Tn to 1 in the 

reverse layer. The hidden vector sequence and the output sequence are computed from the Bi-LSTM layer. 

The hidden vector sequence can be forward sequence and reverse sequence represented by 𝑠𝑡  𝑎𝑛𝑑 �⃖�𝑡 

respectively. The forward layer is iterated from t=1 to Tn and the reverse layer is iterated from t=Tn to 1. The 

calculation of forward hidden vector, reverse hidden vector and output sequence respectively are shown as in 

(1), (2) and (3). 

 

𝑠𝑡  = 𝐻(𝑊𝑤𝑠𝑤𝑡 + 𝑊𝑠𝑠𝑠𝑡−1 + 𝑏𝑠)        (1) 
 

�⃖�𝑡 = 𝐻(𝑊𝑤�⃖�𝑤𝑡 + 𝑊�⃖��⃖��⃖�𝑡+1 + 𝑏�⃖�)         (2) 
 

𝑦𝑡 = 𝑊𝑠𝑦𝑠𝑡 + 𝑊�⃖�𝑦�⃖�𝑡 + 𝑏𝑦       (3) 
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Where 𝐻 symbolizes the hidden layer function, 𝑊 symbolizes the various weight matrices, 𝑏 symbolizes the 

bias vectors and 𝑦𝑡  denotes the output layer variable. The weights 𝑊𝑤𝑠 , 𝑊𝑠𝑠 , 𝑊𝑤�⃖�, 𝑊�⃖��⃖�  and the biases 𝑏𝑠 , 

𝑏�⃖� represents the model parameters in (1) and (2). Then the bias parameter 𝑏𝑦 is concatenated with forward 

hidden layer 𝑠𝑡  and reverse hidden layer �⃖�𝑡 to get the output layer 𝑦𝑡  as in (3). In general, when more than 

one Bi-LSTM layer is used, the forward and reverse hidden sequence can be computed for n=1 to N and t=1 

to Tn as given in (4) and (5). 
 

𝑠𝑡
𝑛 = 𝐻(𝑊𝑠𝑛−1𝑠𝑛

𝑠𝑡
𝑛−1 + 𝑊𝑠𝑛𝑠𝑛

𝑠𝑡
𝑛 + 𝑏𝑠

𝑛)       (4) 
 

�⃖�𝑡
𝑛 = 𝐻(𝑊�⃖�𝑛−1 �⃖�  𝑛

𝑠𝑡
𝑛−1 + 𝑊�⃖�𝑛�⃖�𝑛𝑠𝑡

𝑛 + 𝑏𝑠
𝑛)      (5) 

 

The output sequence is calculated as given in (6). 
 

𝑦𝑡 = 𝑊𝑠𝑁𝑠𝑡
𝑁 + 𝑏𝑦              (6) 

 

Now, the residual LSTM connection is applied by adding the output sequences of Bi-LSTM layer 2 with w. It 

is referred by H(w) and is shown in (7). 
 

𝐻(𝑤) =  𝑦𝑡 + 𝑤                 (7) 
 

The vanishing gradient problem could be resolved by the application of residual LSTM since the gradients 

could pass through the layers directly by using the addition operator. The residual LSTM [13] permits 

different layers of LSTM to adequately train complex networks with an optional temporal shortcut path from 

deeper levels. Finally, the scores given for each label by the Bi-LSTM layers are provided as an input into the 

softmax classifier output layer 𝑂𝑤, as given in (8). 

 

𝑂𝑤 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻(𝑤))         (8) 
 

This layer produces the predicted probabilities for all the labels to each word used for classification which 

includes B-drug, I-drug, B-brand, I-brand, B-group, I-group and O. The label which has got the highest 

prediction in the sequence would be considered as the label for the word. 

 

2.4.  Pseudocode of the proposed DNER Model 

The general steps of the proposed DNER system based on stacked Bi-LSTM and residual LSTM is 

shown in Algorithm 1. 
 

Algorithm 1:   

1 Input Sentences of various lengths from DDI2013 Drugbank training 

dataset. 

2 Preprocessing Tokenize the sentences from the input dataset. 

3 For each token, include Part-of-Speech (POS) tags and BIO drug 

labels. 

4 Each tokenized sentence is padded with _PAD_ tokens to bring it to 

a fixed length. 

5 Model 

Construction  

Construct Sentence embedding using ELMo for the pre-processed input 

dataset. 

6 Implement Stacked Bi-LSTM layers (two layers) to obtain the 

previous and future contextual information for more accurate 

prediction ie. the sequence of hidden vectors obtained from Bi-LSTM 

layer 1 is given to Bi-LSTM layer 2 using (2),(3),(4),(5,(6), and 

(7). 

7 Establish a Residual connection using a vector addition between the 

Bi-LSTM layer 1 output and Bi-LSTM layer 2 output to prevent Bi-

LSTM suffering from the vanishing gradient problem as in (8) 

8 Finally, apply softmax function in the output layer to classify 

drug names into multiple categories of drugs as in (9) 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Performance metrics 

The DNER model needs to be evaluated by appropriate and unambiguous metrics to rightly judge 

the performance of the model. Precision, recall and F1-score are used as measurements to assess the model. 

As four different entities are available in DDI2013 corpus, it is necessary to compute the overall performance 

of all the entity classes. In this regard, we take the micro-average F1-score [25] metric for the comparison 
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with other systems. Micro-average F1-score, as in (9) is defined as the harmonic mean of micro-average 

precision (mP) and micro-average recall (mR) and it is given in (10) and (11) respectively. 
 

Micro-average F1-score = 2 * (mP x mR)/(mP + mR), where     (9) 
 

mP=tp1 + tp2 +…+tpn/(tp1 + tp2 +…+tpn + fp1+ fp2 +…+fpn)     (10) 
 

mR=tp1 + tp2 +…+tpn/(tp1 + tp2 +…+tpn + fn1+ fn2 +…+fnn)    (11) 
 

tp, fp and fn represents the true positive, false positive and false negative respectively. 
 

3.2.  Experimental setup 

The datasource used is described in section 2.2. The training data given in DDI2013 drugbank 

corpus is preprocessed and we have used 4990 sentences with 8006 unique words and 30% of the dataset is 

considered as test dataset. We used ‘adam’ optimizer with loss as ‘sparse_categorical_crossentropy’ for 

compiling the model. The batch size is 32 and the number of epochs is made as 8. The recurrent dropout is 

taken as 0.2. The softmax function is fully used in the classifier's output layer as the activation layer where 

the probabilities of identifying the input class are effectively achieved. 
 

3.3.  Result analysis 

Figure 3 shows the detailed results obtained in the form of precision, recall and f1-score for every 

class label of drug entity using the proposed model. The model has performed well with F1-score value of 

more than 85% in categorizing the drug entities except the drug_n class label. This may be due to the fact 

that less number of data is available in the training dataset to learn drug_n class label. However, this could be 

ignored as larger part of the corpus consisting of drug, group and brand labels have been classified 

efficiently.  

Since it is necessary to compute the overall performance of all the entity classes, analysis has been 

carried out  based on the performance metrics shown in (9)-(11) to contrast the proposed model with the 

existing DL based DNER model (LSTM-conditional random field (CRF)) [9] as well as other models from 

the DDI2013 challenge [26], [27]. The results are shown graphically in Figure 4.  

 

 

  
 

Figure 3. Performance of the proposed 

model 

 

Figure 4. Micro-average performance of proposed model vs 

Other DNER models 

 

 

Table 2 shows the results of the performance metrics obtained for each class label for the proposed 

model as well as other DNER systems. In LSTM-CRF, the features are based on both word and character 

level embedding. The percentage of improvement of the proposed model over LSTM-CRF with respect to 

micro-average precision, recall and F1-score are 9.22, 11.19, and 11.17 respectively. 

Liu et al. [26], have experimented a CRF based model (LIU) with semantic features based on word 

embedding. On comparison with this system, our proposed model that uses sentence embedding in stacked 

Bi-LSTM and residual LSTM has improved the micro-average precision, recall and f1-score by 4.18%, 

14.63%, and 8.80% respectively. Rocktäschel et al. [27], studied a model that ranked first in the DDI2013 

challenge studies the impact of domain specific features using linear chain CRF (WBI) for identifying drug 

names. While comparing with this model, a significant improvement of 18.8%, 18.12%, and 17.64% 

respectively for micro-average precision, recall and F1-score is shown by the proposed model. 

Based on the above results, it has been observed that the proposed model performs better as the 

sentence embedding included in the architecture considers the complete sentence for syntax and semantic 

features unlike word embedding which may ignore some of the character features. Even when character level 
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embedding is combined with word embedding as in [9], the sentence level embedding performs better in the 

proposed model in terms of all the micro-averaged performance metrics. In addition, the proposed model 

shows the power of using Bi-LSTM layers that reads the context back and forth in the sentence and captures 

the context well rather than using a single LSTM layer. Also, the automatic extraction of features using 

stacked Bi-LSTM layers in the proposed model is used to recognize entities better than using ML algorithms 

like CRF as in [26], [27]. 

In addition to the above results, the performance of the proposed approach is evaluated to address 

the major concern in the DNER field in identifying the n-gram drug entities where n>1 and the results are 

shown in Table 3. The results are promising in identifying the 2-gram and 3-gram drug entities. However, the 

results can be further improved.  
 
 

Table 2. Comparison of performance metrics-proposed model vs other DNER systems 
Class Label Proposed Model  LSTM-CRF  LIU  WBI 

 Pr Re Fs  Pr Re Fs  Pr Re Fs  Pr Re Fs 
Drug 91.23 88.42 90.37  85.78 80.86 82.59  92.34 85.67 89.54  74.3 85.59 79.32 

Brand 89.32 90.10 89.34  88.22 77.83 82.14  100 95.32 97.21  81.27 86.71 84.77 

Group 89.34 79.31 84.56  86.43 89.29 87.9  89.42 82.49 86.1  79.4 76.22 78.67 
Drug_n 100 40.45 57.67  78.21 57.64 63.48  89.39 14.56 24.75  31.02 90.41 14.2 

Micro-Average 91.12 86.00 88.00  83.62 78.00 79.26  87.46 75.22 80.88  76.7 73.00 74.8 

 

 

Table 3. Percentage of n-gram entities recognized using the proposed model 
Type of n-gram entity % Recognized  

2-gram 83.89% 

3-gram 76.67% 
4-gram 40% 

 

 

4. CONCLUSION 

In this paper, we have proposed a novel DNER architecture using the latest and advanced DL 

models. It includes stacked Bi-LSTM and a residual LSTM layers. The architecture takes the input in the 

form of vector from sentence level embedding model and outputs the desired drug label sequence with BIO 

tagging scheme. We conducted experiments using DDI2013 drugbank dataset. Our proposed model has 

achieved higher performance than the results obtained using the same dataset with previous state-of-the-art 

models. Besides, the proposed model has shown good results in recognizing 2- and 3- gram entities. The 

future research may be oriented towards further improving the performance using other latest embedding 

techniques and context aware DL architectures.  
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