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 This paper demonstrated the design and implementation of a unique algorithm 

used to generate interim coordinates for focus transitions in time-lapse 

photography. Through a prototype design methodology, the unique algorithm 

was developed to function within the limitations imposed by a low-cost 8-bit 

microcontroller for the development of a cost-effective focus and motion 

control system for deployment in photographic higher education. Through 

conceptualization and virtualization in MathLab and comparison with values 

generated in simulated real-world use-case, the proposed algorithm was 

tested for function and efficacy in generating interim coordinates that 

included focus coordinate estimation to facilitate smooth non-linear motion 

with focus transitions during image sequence capture. The 8-bit Arduino 

Mega 2560 proved capable of completing calculations required by the developed 

algorithm and generated coordinate data sets identical to sets generated in 

simulation. The generated coordinated illustrated effective user-defined control 

over motion and the smoothness of focus transitions. The developed algorithm 

is thus capable of facilitating the required movement and focus transition 

coordinate calculation and estimation required while deployed on a low-cost 

8-bit microcontroller and is well suited for deployments in time-lapse 

capture applications. 
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1. INTRODUCTION  

“I hear and I forget. I see and I remember. I do and I understand” is a Chinese proverb often echoed 

in education and historically attributed to scholars such as [1]. In the context of higher education (HE), 

hands-on practical experience is critical for deeper understanding and knowledge retention. This is even more 

so in technology-driven fields [2] such as photography, referring specifically to the artistic application of a 

camera for the capture of both still images and video. This theory has been well-researched and tactile 

engagement with the subject matter has proven to improve engagement and deeper cognitive processes [3]. 

Socio-economic issues currently prevalent in developing countries place enormous financial constraints on 

HE institutions [4], students and graduates alike [5]. This greatly impacts the ability of Universities of 

Technology (UoTs) to acquire sufficient equipment to allow the required volume of students adequate access 

needed to gain critical, hands-on practical experience with relevant equipment. Highly specialized tools also 

often command a premium price. These financial constraints further impact the ability of students and 

https://creativecommons.org/licenses/by-sa/4.0/
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graduates to purchase personal equipment that would allow them to strike out as entrepreneurs [6]. 

The shortage or lack of equipment thus has a direct impact on student preparedness and graduates’ ability to 

effectively function in the workplace [7]. One such type of niche tool prominently utilised within the photographic 

industry is systems used to control the motion and focus of cameras during the capture of both video and still 

images [8]. One possible solution to the problem of financial constraint UoTs face is an open-source, low-cost 

focus and motion control system (FMCS), easily assembled from off-the-shelf parts that are predominantly used 

for prototyping using common system on a chip (SoC) boards such as an Arduino [7].  

Low-cost 8-bit SoCs place specific limitations on the complexity of mathematical calculations possible 

in an expedient manner due to limited processing power and system resources [9]. To circumvent this limitation 

a unique algorithm that functions within these constraints needed to be developed. This algorithm is necessary 

to fulfil the requirement of coordinate calculation needed for an FMCS based on an Arduino Mega 2560 to be 

able to synchronise the movement of multiple stepper motors for the purpose of time-lapse sequence capture. 

Furthermore, the calculated coordinates need to create the perception of non-linear acceleration and deceleration 

in the resultant time-lapse video footage generated from captured still images. The non-linear acceleration and 

deceleration are required to render the resultant media with smooth transitions in focus or movement, which 

renders it more aesthetically pleasing and less jarring to the viewer [10]. S-curved, non-linear acceleration and 

deceleration are required for the FMCS to be deemed to perform at an adequate level to serve as a replacement 

for current commercial offerings [11]. 
 
 

2. LITERATURE AND RELEVANCE OF RESEARCH  

Manual, mechanical systems for controlling the focus of photographic systems were first patented in 

1917 [12] and subsequently introduced to the industry as a commercial product [13] in the early 1920s. 

Apparatuses for facilitating the movement of the camera during filming occurred coincidentally [14]. Early 

apparatuses such as dollies, tracks to side a heavy cart with a camera mounted on it [14], or jibs, a crane-like 

device allowing for movement across both vertical and horizontal planes simultaneously [8], were 

exclusively manual implements [7]. A pioneering exploration of automating the movement of a camera was 

done by the ubiquitous production company, Industrial Light and Magic, during the production of Star Wars: 

A New Hope to address specific creative requirements posed by this film, and would forever change 

filmmaking [10]. Motion control in photography as we know it today is defined as an electromechanical 

system that allows for the physical movement of the camera and other objects to be digitally recorded, 

enabling identical successive passes to be photographed [8].  

Access to FMCS’ would remain exclusive to only the largest Hollywood production houses due to 

the exorbitant cost, complexity and sheer bulk of the complex tools needed to facilitate control and 

movement of the camera [11]. This would remain the status quo until the emergence of digital single lens 

reflex (DSLR) cameras that were capable of recording video shortly after the arrival of the 21st Century [15]. 

These cameras, which are referred to as video-capable digital single lens reflex cameras (VDSLR’s), 

possessed professional-quality video recording capabilities, a minuscule form factor, and most importantly of 

all, an infinitesimal price tag when compared to traditional cinema cameras [16]. This revolutionary product 

created a need for small, lightweight, affordable FMCS’ which the industry was quick to explore, with 

academic research attempting to do the same. 

Though product development and prototyping has historically been an exceedingly costly process, 

it has become accessible to tinkerers and entrepreneurs through the advent and proliferation of open-source 

technologies, mass production thereof and the free sharing of ideas around product development as 

proliferated by the 4th industrial revolution [17]. Products such as the ubiquitous Arduino microcontroller have 

allowed legions of would-be inventors to start to develop new products at very low price points [18], with the 

Arduino Mega 2560 offering the best value for more complex projects [7]. The popularity of cost-effective do it 

yourself (DIY) additive manufacturing processes such as fused deposition modelling (FDM) has led to 

increased production and a subsequent decrease in the price of stepper motors such as the National Electrical 

Manufacturers Association (NEMA) 17-sized motor, which offers precise incremental control over mechanical 

motion at very affordable prices [7]. The popularity of FDM printing has had the same effect on the price and 

accessibility of aluminium extrusions used as both mechanical components and linear guides, as well as lead 

screws used to facilitate linear motion. The availability and cost-effectiveness of components such as these 

make them the ideal vehicles for developing a cost-effective FMCS. 

The academic exploration of FMCS’ has almost exclusively relied on the implementation of 

cost-effective prototyping tools such as SoCs and stepper motors for precise control of motion, but the vast 

majority of these implementations’ academic research has been in areas outside of the artistic and creative 

application of photography. A plethora of implementations such as those by [19]-[21] utilize Arduino-based 

systems to control the camera, its focus and motion purely as a technical tool for documenting data. Examples 
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like the camera stabilizer by Bryan and Murray [22] or the motorized zoom control of Bagri and Flotov [23] do 

have potential artistic applications in photography, but these academic exploits are only rudimentary “proof 

of concept” papers that form part of undergraduate studies, with the projects never being refined to 

completion. The most definitive academic exploration in the application of SoCs like Arduino for creative 

application in photography is the works of Hoesl in collaboration with [11], [10], [24] which do mention the 

importance and impact of acceleration and deceleration during motion control for photography but do not 

offer insight into the process for facilitating this requirement. 

Control over acceleration, travel speed and deceleration of the stepper motors used to facilitate 

control over the camera’s focus and movements are critical in conveying specific creative intent as well as 

ensuring the smooth and aesthetically pleasing resultant footage. The initial acceleration from a static 

position referred to as “ease-in”, and the deceleration at the end of travel, referred to as “ease-out”, fulfil the 

purpose of making focus adjustment and motion more subtle and less jarring to the viewer [10] as well as 

decreasing the mechanical forces on the drive system that can cause motion and vibration to become visible 

in the finale resultant. The speed, acceleration and deceleration of the motors facilitating change also offer 

the photographer control over the emotional and psychological reaction of the viewer to the resultant footage 

having a tremendous artistic impact on the footage [11]. This process of calculating the movement and its 

necessary vector changes is further complicated as multiple motors have to be deployed synchronously to 

facilitate the required motion and focus shift, with some motions needing to be continuous and linear while 

others will accelerate and decelerate to reach specific coordinates along the required travel path. Resources 

such as motor class implementations and Arduino libraries to handle motion implementations do exist, but 

they were developed to facilitate smooth continuous motion [25] which is more suited to video capture. 

The most noteworthy example of such an Arduino library is the AccelStepper library developed by 

McCauley [26]. No such resource could be found that would generate interim coordinates with acceleration 

for implementation in time-lapse sequence coordinate generation. A timelapse sequence consisting of 

multiple individual movements, with a still image captured between each movement and the resultant images 

combined and played back as a video sequence to illustrate the rapid passing of time. This task required an 

algorithm simple enough to be performed within the limited system resources of a low-cost 8-bit 

microprocessor, while still being able to expediently generate an s-curved travel path. The sigmoid function 

proved to be the ideal base for this calculation and this specific implementation. 

The base sigmoid function to define a point on a curve is defined [26] and visualized in Figure 1. 

This function’s angle of incline, midpoint and maximum curvature can be manipulated to result in a variety 

of coordinate point generation shifts for implementation in time-lapse sequence capture that ranges from 

linear travel with no acceleration or deceleration, to a time-lapse with a pronounced S-shaped travel curve 

with equally pronounced acceleration and deceleration. 
 

𝑓(𝑥) =
𝐿

1+ⅇ−𝑘(𝑥−𝑥𝑚𝑖𝑑)
 (1) 

 

Where, 𝑥𝑚𝑖𝑑 is the midpoint for 𝑥; 𝐿 is the curve’s maximum value; 𝑘 is the steepness of the curve. 
 
 

 
 

Figure 1. Base sigmoid as calculated with 𝑥𝑚𝑖𝑑 = 0, 𝐿 = 1 and 𝑘 = 1 
 

 

3. RESEARCH METHOD 

This section outlines the construction and operation of the prototype low-cost FMCS that can be 

used as a testbed to assess the function and visual impact of the coordinate generation algorithm on the final 

resultant time-lapse footage. This is followed by a discussion of the prototype design methodology [27] 

applied via conceptualization and virtualization used in developing the required interim coordinate generation 

algorithm. This is accomplished through documenting the development and testing of the position generation 

algorithm and its implementation for coordinate generation in facilitating transition focus estimation in a 

simulated and real-world use case implementation. 
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3.1.  Construction and operation of the low-cost FMCS 

A low-cost FMCS prototype was constructed using an Arduino Mega 2560, DRV8825 stepper 

motors drivers, other miscellaneous electrical components and 2 stepper motors as illustrated in Figure 2 and 

Figure 3 on the following page. One NEMA 17 stepper motor will facilitate moving the camera on a gantry 

via a TR8×8 lead screw drive mechanism along a 1000 m long V-slot C-beam which will serve as a short 

dolly track resulting in approximately 850 mm of total travel. A second NEMA 17 motor is mounted to the 

camera via a cinema industry-standard 15 mm rail support system and engages the lens via a similarly 

standard focus drive gear with a modulus of 0.8 using marts designed by the authors and produced via a fused 

deposition modeling printer. This low-cost FMCS prototype was used to facilitate real-world testing of the 

coordinate generation algorithm allowing for one degree of motion of the camera along with focus control 

which required the calculation of a 2-axis coordinate system. 
 

 

  
  

Figure 2. Physical prototype testing (by the 

authors) 

Figure 3. External view and internal wiring of FMCS control 

unit prototype (by the authors) 
 

 

The FMCS control unit would allow the user to define maximum travel extents for both motors 

(defined as NEMA17max, NEMA17min, focusmax, focusmin in later calculations) as well as between two 

and six sequential coordinate positions for the two axes of movement by allowing the user to jog the motors 

into position and storing the current position to the control unit memory via dedicated buttons for later recall. 

The prototype control unit in Figure 3 and the accompanying pins assignment diagram in Table 1 illustrate 

how this level of input is achieved. These user-defined coordinates are referred to as the start point (pmin), 

point 1 through point 5 and maximum travel point (pmax) in this text. The user-defined coordinates are then 

stored for later use via two user-defined capture modes. The first is capturing the progression of the camera 

through these sequential coordinates as one continuous sequence of motion for capturing a video sequence at 

a user-defined speed. The second option is a time-lapse sequence breaking up the sequence into multiple 

individual moves with the control unit triggering the camera to capture a still image at user-defined intervals 

between each movement. The FMCS interfaces with the camera, a Nikon D750 equipped with a Nikon AF-S 

50 mm F1.8 G lens through a proprietary connector cable (Nikon MD-DC2) modified with a male 3.5 mm 

stereo jack plug to interface with the FMCS.  
 

 

Table 1. Functions assigned to the Arduino Mega 2560 pins (by the authors) 
Analogue pin assignment 

10 Joystick 1 - X R 

11 Joystick 1 - Y R 

12 Slide speed pot 
13 Focus speed pot 

14 Focus control pot 

Digital pin assignment 

20 Display data 21 Display clock 

30 Joystick 2 button (unassigned) 31 Camera trigger optocoupler 

32 Joystick 1 button (menu selection joystick) 33 External input optocoupler 
34 Waypoint 6 button 35 Waypoint 6 light emitting diode (LED) 

36 Waypoint 5 button 37 Waypoint 5 light emitting diode 

38 Waypoint 4 button 39 Waypoint 4 light emitting diode 
40 Waypoint 3 button 41 Waypoint 3 light emitting diode 

42 Waypoint 2 button 43 Waypoint 2 light emitting diode 

44 Waypoint 1 button 45 Waypoint 1 light emitting diode 
46 Hard max button 47 Hard max light emitting diode 

48 Hard min button 49 Hard min light emitting diode 

50 Secure digital card reader master in slave out (MISO) SPI Secure digital card reader master out slave in (MOSI) 
52 Secure digital card reader system clock (SCK) 
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The FMCS triggers the camera by connecting the signal wire of this connection to the ground wire 

through the use of a Vishay 4N25 optocoupler. It is in this capture mode that the user-defined coordinate 

points are used in conjunction with the interim coordinate generation algorithm. This time-lapse function 

further allows for two more degrees of user input. The first allows the user to define the total number of 

images to be captured during the sequence (ShotsRequired), which directly influences the number of 

individual movements and images that should make up the complete sequence. The second allows the user to 

define a percentage variable (RampPercentage) that determines how much of the total camera travel should 

include an initial non-linear acceleration of the camera motion in the final video sequence (5%−50%), or 

whether the sequence should be performed as one movement at one continuous speed (0%). 
 
 

3.2.  Position coordinate generation 

As stated in the previous section, the interim coordinate point generation needs to be calculated from 

the specific user-defined start, four intermediate and the end coordinates for both axes, at which to stop the 

movement and trigger the camera to capture an image that forms part of the time-lapse sequence. 

The operational design specification is that the user must be able to define varying levels of initial 

acceleration for the motion axis which alters the movement from linear travel to smooth, non-linear 

acceleration before achieving user-defined travel speed. This function to achieve this 𝑋-axis movement is 

achieved by manipulating the base sigmoid function from (1) to: 
 

𝑆𝑡𝑒𝑝𝑠 (𝑎): = [[
1

1+ⅇ−𝑐1(𝑎−𝑐2)
] ∗ 𝑁𝑒𝑚𝑎17𝑃𝑜𝑖𝑛𝑡 − [

1

1+ⅇ−𝑐1(0−𝑐2)
] ∗ 𝑁𝑒𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡] ∗

[
𝑁ⅇ𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡

[[
1

1+ⅇ−𝑐1(𝑠ℎ𝑜𝑡𝑠𝑅ⅇ𝑞𝑢𝑖𝑟ⅇ𝑑−𝑐2)
]∗𝑁ⅇ𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡−[

1

1+ⅇ−𝑐1(0−𝑐2)
]∗𝑁ⅇ𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡]

] (2) 

 

Where a is the number of required images that influence the number of interim coordinates required 

(from 0 to total images needed); steps is the coordinate points calculated; 𝑁𝐸𝑀𝐴17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡 is the stored 

max position; 𝑐2 is total images needed + 100 (to get the shape required); 𝑐1 is 0.16 times a 𝑅𝑎𝑚𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 

divided by total images needed; 𝑅𝑎𝑚𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 is user-defined and is an indicator defining the shift from 

linear to initially accelerated motion. This function is rounded down as steps (a) from steps (a), with an example 

illustrating 𝑅𝑎𝑚𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 1. 

Figure 5 illustrates the linear relationship between the 𝑋-axis and the 𝑌-axis. An example illustrating 

motion with the user-defined 𝑅𝑎𝑚𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 50 is illustrated in Figure 6. This comparison is made to 

demonstrate the difference between the extremes of linear progression to the maximum achievable 

accelerated motion as defined by this implementation. This function is thus an auto-calibration algorithm that 

generates a defined number of travel coordinates and the linearity of the acceleration/movement curve as 

specified by the user. Figure 6 illustrates the contrasting, non-linear relationship between the 𝑋-axis and 𝑌-axis 

after the modified sigmoid function has been applied. 
 

 

  
  

Figure 5. Custom coordinate position generator based 

on the sigmoid curve with 

𝑅𝑎𝑚𝑝𝑃𝑟𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 1 

Figure 6. Custom coordinate position generator 

algorithm based on sigmoid with 

𝑅𝑎𝑚𝑝𝑃𝑟𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 50 
 
 

3.3.  Focus estimation  

As noted in section 3.1 there are user-defined coordinates set along the 𝑋-axis which must 

synchronously coincide with its defined 𝑌 coordinate in the sequence. The placement of these coordinates 

within the sequence will be influenced by the linearity of the modified sigmoid function as noted in Figure 6. 
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Focus transition coordinate estimation is thus a much more complex function influenced by the 

RampPercentage and this function needs to be designed, simulated, tested and verified for accuracy. 

The user-defined focus distance coordinates (𝑌-axis), that coincide with 6 specific coordinates during the 

progression of the movement axis (𝑋-Axis) need to be considered in this design as their position as calculated 

in the previous section will no longer be accurate in relation to the 𝑋-axis and differ from the user-defined 

position in the sequence. This will then require the calculation of new estimated focus distance coordinate 

values to accommodate this shift. The larger the ramp percentage, the more complex the output generations 

calculation could be for smooth focus transitions. A quantum physics approach was applied, where each 

coordinate point is given its own “gravity” that influences the priority of its focus set value as a distance from 

the set value to the calculated value on the movement axes. Phrased differently, the calculated coordinate 

point’s distance is calculated relative to each defined coordinate and the closer the value gets to the defined 

coordinate, the more it must use that defined coordinate focus value to transition over to it. This led to multi-level 

calculation. The first level is the “gravity” calculation for each point. Below is the algorithm for the first set point. 
 

𝑚𝑜𝑣𝑒𝑚𝑖𝑛(𝑎) = {
100 [1 − (

𝑠𝑡ⅇ𝑝𝑠(𝑎)−𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥
)]  𝑖𝑓 100[1 − (

𝑠𝑡ⅇ𝑝𝑠(𝑎)−𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥
)] 𝑥 ≤ 100

100 + [100 − [100 [ 1 − (
𝑠𝑡ⅇ𝑝𝑠(𝑎)−𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥
)]]]  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

 

Where, 𝑚𝑜𝑣𝑒𝑚𝑖𝑛(𝑎) is the calculated influence or “gravity” as a percentage towards each coordinate 

calculated in (2) in relation to the last point (𝑝𝑚𝑎𝑥); 𝑠𝑡𝑒𝑝𝑠(𝑎) is each coordinate calculated in (2); 𝑝𝑚𝑖𝑛 is the 

position of the first user set coordinate; 𝑝𝑚𝑎𝑥 is the last user-defined coordinate. In other words, the further the 

calculated time-lapse position moves away from the user-defined coordinate 𝑝𝑚𝑖𝑛, the smaller the 

percentage of its influence. This function is repeated for all 6 user-defined coordinates calculating each one’s 

influence on the steps coordinate calculation, with the influence decreasing as distance increases as per 

Newton’s inverse square law [28]. The next layer of calculation is to determine what user coordinate is the 

closest to the calculated time-lapse point (𝑠𝑡𝑒𝑝𝑠(𝑎)). If for instance, user point 2 is closer to the 𝑠𝑡𝑒𝑝𝑠(𝑎) 
point than user point 1, then user point 2 focus set value must be used as a factor of distance from that point 2. 

See the (4) for point 2 (that is repeated for all the 6 user points). 
 

𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2(𝑎) = {
𝑚𝑜𝑣𝑒2(𝑎) 𝑖𝑓 𝑚𝑜𝑣𝑒1(𝑎) < 𝑚𝑜𝑣𝑒2(𝑎) > 𝑚𝑜𝑣𝑒3(𝑎)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

Where, 𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒 2(𝑎) is the focus priority for point 2 (labelled as min, 1, 3, and 4); 𝑚𝑜𝑣𝑒 − is the 

value calculated with (3) (labelled as min, 1, 3, and 4); a is the interim coordinate value from 0 to shots 

required. There are more rules, with a precalculated layer that influences the final “gravity” of each coordinate. 

It might be clearer to start with a later layer and discuss the layers that were precalculated. See point 2’s later 

layer (5) (that is repeated for all the user points min, 1, 2, 3, 4 ,5 and max). 
 

𝑝𝑝2(𝑎) =

{
 

 
𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2(𝑎) 𝑖𝑓 𝑝1𝐹 < 𝑝2𝐹 > 𝑝3𝐹)

𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2100(𝑎) 𝑖𝑓 𝑝1𝐹 ≥ 𝑝2𝐹 ≤ 𝑝3𝐹

𝑝𝑝𝑝(𝑎) 𝑖𝑓 𝑝1𝐹 < 𝑝2𝐹 ≤ 𝑝3𝐹

𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2100(𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 

Where, 𝑝𝑝2(𝑎) is the “gravity” of point 2, 𝑝‘𝑛’𝐹 is the focus value of coordinate ‘𝑛’ user-defined to 𝑝‘𝑛’; 
𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2 is calculated as in (4) (where 𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒3 would be for 𝑝𝑝3. If function is repeated for other 

points; 𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2100 is: 
 

𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2(𝑎) = {
𝑚𝑜𝑣𝑒2(𝑎) 𝑖𝑓 𝑚𝑜𝑣𝑒1(𝑎) < 𝑚𝑜𝑣𝑒2(𝑎) > 𝑚𝑜𝑣𝑒3(𝑎)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

 

𝑃𝑝𝑝2 is: 

𝑝𝑝𝑝2(𝑎) = {
𝑝𝑝𝑒𝑟2 𝑖𝑓 0 < 𝑝𝑝𝑝𝑝2 < 𝑝𝑝𝑒𝑟2

𝑝𝑝𝑝𝑝2(𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

 

Where, 𝑝𝑝𝑝𝑝2 is: 
 

𝑝𝑝𝑝𝑝2(𝑎) = {
100 𝑖𝑓 𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2(𝑎) > 𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2(𝑎 − 1)

𝑝𝑜𝑠𝑡𝑚𝑜𝑣𝑒2(𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8) 
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𝑐𝑝2(𝑎) = {
𝑐𝑝𝑒𝑟2 𝑖𝑓 0 < 𝑐𝑝𝑝2 < 𝑐𝑝𝑒𝑟2

𝑐𝑝𝑝2(𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

 

𝑐𝑝2 is: 
 

𝑐𝑝2(𝑎) = {
𝑐𝑝𝑒𝑟2 𝑖𝑓 0 < 𝑐𝑝𝑝2(𝑎) < 𝑐𝑝𝑒𝑟2

𝑐𝑝𝑝2(𝑎)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

 

Where, 𝑐𝑝𝑒𝑟2 is: 
 

𝑐𝑝𝑒𝑟2 = {
[
𝑝1𝐹

𝑝2𝐹
] ∗ 100 𝑖𝑓 100 <

𝑝2𝐹

𝑝1𝐹
∗ 100

[
𝑝2𝐹

𝑝1𝐹
∗ 100] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

 

The following (5) is thus a mathematical rule set that selects between the “gravity” calculations as 

seen from (6) to (10). This is repeated with corresponding values for each of the user-defined coordinates. 

This ruleset ensures that if the focus value of the previous coordinate is the same as the destination 

coordinate, no gravity coefficient less than 100 must be used which would have resulted in a dip in the focus 

transition. In other words, if the two values are the same then there must be no focus transitions. Note that there 

are five such rules in (5). This equation, which is repeated for each point with their corresponding sub-layers, 

is then applied to calculate 6 focus ranges as (only focusmin is shown). 
 

𝑓𝑜𝑐𝑢𝑠𝑚𝑖𝑛(𝑎) = 𝑝𝑚𝑖𝑛𝐹 ∗
𝑝𝑝𝑚𝑖𝑛(𝑎)

100
 (12) 

 

Where, focus ‘𝑛’ is the range value, 𝑝 ‘𝑛’ is the focus value for point ‘𝑛’, 𝑝𝑝 ‘𝑛’ is (5) (or similar depending on ‘𝑛’). 
The final range is then calculated (13). 
 

𝑓𝑖𝑛𝑎𝑙(𝑎) = 𝑓𝑜𝑐𝑢𝑠𝑚𝑖𝑛(𝑎) + 𝑓𝑜𝑐𝑢𝑠1(𝑎) + 𝑓𝑜𝑐𝑢𝑠2(𝑎) + 𝑓𝑜𝑐𝑢𝑠3(𝑎) + 𝑓𝑜𝑐𝑢𝑠4(𝑎) +  

𝑓𝑜𝑐𝑢𝑠𝑚𝑎𝑥(𝑎)  (13) 
 

A user-defined smoothing filter is applied using averaging. 
 

𝑓𝑖𝑛𝑎𝑙𝑎𝑣𝑒3(𝑎) =
𝑓𝑖𝑛𝑎𝑙𝑎𝑣ⅇ(𝑎)+𝑓𝑖𝑛𝑎𝑙𝑎𝑣ⅇ2(𝑎)

2
 (14) 

 

Where, 𝑓𝑖𝑛𝑎𝑙𝑎𝑣𝑒3 is the output of filter finalave is:  
 

𝑓𝑖𝑛𝑎𝑙𝑎𝑣𝑒(𝑎) =
∑ 𝑓𝑖𝑛𝑎𝑙(𝑎+𝑖)
(𝑓𝑖𝑙𝑡ⅇ𝑟)
𝑖=0

𝑓𝑖𝑙𝑡ⅇ𝑟+1
 (15) 

 

Where, 𝑓𝑖𝑛𝑎𝑙𝑎𝑣𝑒 is the average with a shift in one direction; filter is the filter ratio defined by user; 

final is calculated form (12); 𝑓𝑖𝑛𝑎𝑙𝑎𝑣𝑒2 is: 
 

𝑓𝑖𝑛𝑎𝑙𝑎𝑣𝑒2(𝑎) =
∑ 𝑓𝑖𝑛𝑎𝑙(𝑎+𝑖)
(𝑓𝑖𝑙𝑡ⅇ𝑟)
𝑖=0

𝑓𝑖𝑙𝑡ⅇ𝑟+1
 (16) 

 

Where, 𝑓𝑖𝑛𝑎𝑙𝑎𝑣𝑒2 is the average with a shift to the opposite direction; filter is the filter ratio 

defined by the user; final is calculated from (12). These equations need to be translated into C++ language for 

compatibility with Arduino. For example, (2) is translated: 
 

𝑙𝑜𝑛𝑔 𝑆𝑡𝑒𝑝𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (((1/(1 + 𝑝𝑜𝑤(𝑒, (−1) ∗ (𝑐1) ∗ (𝑎 − 𝑐2))))) ∗ 𝑁𝑒𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡 −  

((1)/(1 + 𝑝𝑜𝑤(𝑒, (−1) ∗ (𝑐1) ∗ (0 − 𝑐2))) ∗ 𝑁𝑒𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡)) ∗  
(𝑁𝑒𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡/(((1)/(1 + 𝑝𝑜𝑤(𝑒, (−1) ∗ (𝑐1) ∗ (𝑆ℎ𝑜𝑡𝑠𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 − 𝑐2)))) ∗  
𝑁𝑒𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡 − (1)/(1 + 𝑝𝑜𝑤(𝑒, (−1) ∗ (𝑐1) ∗ (0 − 𝑐2))) ∗ 𝑁𝑒𝑚𝑎17𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡))  (17) 
 

It is important to note the memory required to complete the above calculations for a sufficient 

number of required images to make the FMCS viable for time-lapse implementation exceeds the 

specifications of the Arduino Mega 2560. This is overcome by writing the required data sets to an external 

micro-SD card module via SPI before each calculation. Thus, when this function is called, the (2) is 

calculated coordinate by coordinate and each value is stored individually on the SD card in a 

“StepPosion.txt” file. Thereafter each layer calculation is done individually by generating interim coordinates and 

stored sequentially for the focus transition calculations in a similar manner and written to the micro-SD card. 
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The same procedure is applied to the filter. Once the required calculation function has been completed and 

the data set containing the resultant 𝑋-axis values with RampPercentage applied and 𝑌-Axis values with 

focus coordinate estimation applied have been written to the micro-SD card, the FMCS can perform the 

number of individual movements as defined by the value ShotsRequired from the calculated values stored in 

the corresponding “.txt” file on the SD card. McCauley’s AccelStepper library, as noted in the literature 

section, is then utilized to facilitate the required movements in real time, with the corresponding image 

captures between each movement. 
 
 

4. RESULTS AND DISCUSSION 

The results are generated in the form of a simulated use-case scenario with user-defined coordinate points 

that approximate an average FMCS deployment. The FMCS system was jogged via user input and the required 

6 coordinate points were saved as described in the methodology section. The Arduino Mega 2560-based FMCS 

was then allowed to calculate the 𝑋-axis coordinates with RampPercentage and 𝑌-axis with focus transition 

estimation applied for a 300-image sequence on the micro-SD card. The original six user-defined coordinates 

and the calculated coordinate values were then retrieved from the storage media. The user-defined coordinate 

values were then entered into the simulation in MathLab and the resultant calculated coordinates from the 

simulation were compared to the coordinates generated by the Arduino Mega 2560. The six user-defined 

coordinates are tabulated in Table 2 with the user-defined capture settings available in Table 2. 

The coordinates values from point (a) of the position calculation from (5) as performed in the 

simulation (results seen in Figure 6 as Figure 6 had the same range) resulted in identical coordinate values when 

compared to the coordinates from point (a) as calculated by the Arduino Mega 2560 and stored on the SD. 

The focus estimation calculation (final(a)). Figure 7 visually illustrates the focus values for the required 300 

image capture events from Table 2 and Table 3 with applied gravity of the equivalent coordinate and time-lapse 

coordinate calculation. Mathematically this expression is accurate, but visually the sharp transitions would result 

in abrupt movements of the FMCS motors that would be aesthetically displeasing. Thus, the need for filter 

calculation is observed. The filter results are as. 

Figure 8 illustrates the original, pre-filter focus value and the focus value with filtered output applied 

for the required 300 images captures events. With the filter percentage influencing averaging and thus the extent 

of smoothing of the resultant curve. As stated at the start of this section the Arduino Mega 2560 based FMCS 

was used to generate both the user-defined set of six coordinates and the resultant set of 300 coordinates to test 

the Arduino’s ability to utilise the proposed algorithms. The pre-filter and filtered values generated by the 

Arduino Mega 2560 matched exactly with the above pre-filter coordinate values and filtered coordinate values 

as generated by the Arduino Mega 2560 and recorded on the SD card in the corresponding “.txt” file as were 

generated in the simulation in MathLab. This observation lends credence to the accuracy of the translation of 

the required calculation to one compatible with the C++ language as well as the efficacy of the algorithm for 

deployment on Arduino’s limited 8-bit processor. 

It must be noted that the filter and focus estimation calculations are made more time-intensive due to 

the limited system resources of the Arduino and the necessity of writing relatively large data sets to the 

Micro-SD card. This phenomenon is impacted by the user-defined filter percentage and the number of images 

in the sequence. The greater the filter percentage or number of images to be captured in the sequence, the more 

time is required for pre-filter calculation. The observed time required for a 20% filter percentage calculation 

was approximately 1.3 seconds per image/coordinate point. Fortunately, this calculation occurs prior to 

sequence capture and once the calculation is complete the sequence is captured in real-time. 
 
 

Table 2. Point names and user-defined coordinate positions 

Point name 
𝑋-Axis 

Motion coordinate value 

𝑌-Axis 

Focus coordinate value 

pmin 0 1453 
p1 6800 1833 

p2 15410 2125 
p3 43010 2324 

p4 61000 1735 

pmax 77020 2738 

 
 

Table 3. User-defined capture setting values 
Variable Value 

ShotsRequired 300 
RampPercentage 50 

Filter 10 
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Figure 7. Final(a) calculation Figure 8. Pre-filter and averaging filter output 
 
 

5. CONCLUSION 

This paper aimed to demonstrate the development and results of an algorithm and implementation 

method to generate coordinates used for focus transitions during focus and motion control applications in 

time-lapse photography when deployed on a cost-effective 8-bit SoC. The proposed algorithm utilised a 

modified sigmoid function to create an auto-calibration algorithm combined with a quantum physics-based 

gravity calculation to expediently generate coordinate points that included position estimation for focus 

transitions. The point-by-point calculation procedure was implemented on an 8-bit Arduino Mega 2560. 

While implemented on this low-cost SoC, the algorithm facilitated user control over the degree of 

acceleration of camera motion as well the acceleration and deceleration curve of focus transitions. This 

allowed for the smooth, accurate and synchronous control of two degrees of motion in real time. 

The functionality and efficacy of the algorithm were assessed by comparing the coordinate values of a 

simulated use case created from user input for a capture sequence consisting of six user-defined coordinate 

points resulting in 300 generated coordinate points as calculated by the Adruino Mega 2560. These coordinates 

were compared with a coordinate set generated by simulation in MathLab using the same user-defined 

variables. The curve profile of the generated coordinates was then compared to the profile of the coordinates 

with linear motion not containing interim focus point estimation and assessed for smoothness. 

The 8-bit processor proved capable of completing calculations required by the developed algorithm 

and generated coordinate values identical to those values generated in the simulation. The generated 

coordinated illustrated effective user-defined control over the acceleration and deceleration resulting in 

travel. The developed algorithm is thus capable of facilitating the required focus transition coordinate 

estimation required while deployed on a low-cost 8-bit Arduino so that it might serve as the main component 

of a low-cost FMCS for deployment in HE. This low-cost FMCS has the potential to greatly impact HE 

institutions’ ability to offer a more engaging and effective teaching experience to their graduates. 

The developed algorithm was optimised for expedient deployment on an 8-bit system with the 

byproduct of the simplified calculation being large data. These large data sets exceeded the onboard memory 

of the Arduino Mega 2560 and required being written to supplemental storage. This limitation does leave 

room to explore further optimisation in deployment to decrease data set size or optimisation for compatibility 

with other SoC on the market that might offer larger onboard memory sizes or greater processing power at 

similarly low-price points. 
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